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Comprehensive modeling of bloodstain aging by
multivariate Raman spectral resolution with
kinetics
Ayari Takamura 1,2*, Daisuke Watanabe 2, Rintaro Shimada 1 & Takeaki Ozawa 1*

Blood, as a cardinal biological system, is a challenging target for biochemical characterization

because of sample complexity and a lack of analytical approaches. To reveal and evaluate

aging process of blood compositions is an unexplored issue in forensic analysis, which is

useful to elucidate the details of a crime. Here we demonstrate a spectral deconvolution

model of near-infrared Raman spectra of bloodstain to comprehensively describe the aging

process based on the chemical mechanism, particularly the kinetics. The bloodstain spectra

monitored over several months at different temperatures are decomposed into significant

spectral components by multivariate calculation. The kinetic schemes of the spectral com-

ponents are explored and subsequently incorporated into the developed algorithm for the

optimal spectral resolution. Consequently, the index of bloodstain aging is proposed, which

can be used under different experimental conditions. This work provides a novel perspective

on the chemical mechanisms in bloodstain aging and facilitates forensic applications.
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B lood has critical functions in the body, such as delivery of
oxygen to cells and transport of nutrients, immune sub-
stances, and waste products. Not only clinical applications

(e.g., blood collection, blood transfusion and blood diagnosis), but
elucidating biochemical properties of blood has also been a sci-
entific enterprise for so long. Like other biological samples, blood
contains many kinds of biomolecules. To comprehensively eval-
uate the behaviors and relationships among the constituents and
integrate the information into interpretable formulas, methods
for both experimental and data analyses need to be explored. This
is a fundamental issue common to studies of complicated systems
with varying compositions.

Spectroscopic techniques, such as visible absorption spectro-
scopy, near-infrared (NIR) or mid-infrared spectroscopy, Raman
spectroscopy, and electron paramagnetic resonance spectroscopy,
have contributed to analyses of blood composition1–8. Hemo-
globin and its internal heme structure have been primary targets
of spectroscopic investigations. Heme contains a porphyrin ring
with an iron ion at its center. Hemoglobin has unique optical
properties that change with coordination (i.e., the number and
types of ligands) to the iron and the oxidation state of the iron
ion9–11. Knowledge of spectral changes attributed to hemoglobin
variants is crucial to understanding changes in biochemical
behavior with blood composition. The versatility of spectroscopic
techniques enables detection of various other molecules in blood
simultaneously. Moreover, rapid and non-invasive spectral mea-
surements, particularly by vibrational spectroscopy, show
potential for simple analysis of blood in practical situations, such
as medical diagnoses and criminal analyses.

Biochemical characterization of blood is of great significance in
forensic science. Analysis of bloodstain evidence provides
important clues in criminal investigations12,13. Identification of
blood in evidence can be an indicator of criminality in a case.
DNA profiling from bloodstains enables narrowing of potential
suspects and victims. As a main emphasis in this study, we
focused on predicting the age or time elapsed since bloodstain
deposition, which could provide supportive evidence and enable
estimation of the details of a crime. Specific autoxidation of
hemoglobin, oxyhemoglobin (oxyHb), methemoglobin (metHb),
and hemichrome (HC), is a potential indicator of bloodstain
aging14,15. oxyHb has a ferrous iron in heme, which an oxygen
molecule binds to in the sixth vertical coordination position of
the heme plane. The heme of metHb is known to contain a high-
spin ferric iron and a water molecule or a hydroxy ion as the sixth
ligand. HC, the final oxidized state, contains bishistidine com-
plexes of hemes with low-spin ferric irons. Spectral changes
caused by heme autoxidation have been investigated and char-
acteristic peaks have been identified1,11,16–18. Moreover, multi-
variate statistical modeling, such as partial least squares and
support vector machine, has been applied to time series of Raman
scattering, Fourier transform infrared spectroscopy absorption
and visible absorption spectra to distinguish new/old bloodstains
and predict the time elapsed since deposition19–22. These studies
demonstrate that spectral changes reflect transformation of the
chemical constituents in bloodstains during aging, and these can
be mathematically correlated with the elapsed time.

This pioneering research has successfully shown the potential
of spectroscopic approaches to capture and correlate the changes
of chemical components in blood. However, because complicated
mixed signals are observed from blood constituents, simultaneous
characterization of individual blood components is quite difficult.
In addition, the pure statistical natures of the prediction models
mean they cannot provide chemical interpretations of the process
of bloodstain aging. Furthermore, a mathematical model built by
a training dataset collected under specific experimental conditions
is not adequate for application to conditions beyond the range of

the prepared parameters, which is not suitable for the diversity
encountered at crime scenes. Besides, data collection from
bloodstains in all possible conditions is practically impossible.
Therefore, a novel analytical approach is required to reveal the
overall chemical dynamics of blood compositions during aging.
Moreover, development of a model that incorporates the under-
lying chemistry in bloodstain aging would be beneficial to
enhance the availability of bloodstain analysis in forensic
investigations.

Here, we develop a spectral deconvolution model for NIR
Raman spectra of bloodstains involving a kinetic description of
the overall aging process. Kinetic modeling of chemical processes
in bloodstain aging is feasible for prediction of the transformation
of blood components under different conditions. NIR Raman
spectroscopy using an excitation wavelength of 785 nm shows
well-balanced spectral signals from both the weak resonances of
heme variants and off-resonances of other compositions23,24.
This feature is advantageous to explore comprehensive changes in
blood composition during aging and heme autoxidation. In
addition, the non-destructive manner of Raman spectral mea-
surements is preferable in forensic investigations as it enables
preservation of the evidence for subsequent DNA analyses25.
Furthermore, blood identification analysis using NIR Raman
spectroscopy26–28 can be conducted simultaneously with evalua-
tion of bloodstain aging. In this study, we collect Raman spectra
of bloodstains aged at three different temperatures (30, 24, and
16 °C) for up to 4 months. In addition, we develop a multivariate
algorithm for optimal spectral deconvolution and incorporate
chemical kinetic models. Deconvolution of the bloodstain spectra
identifies significant spectral components and provides a com-
prehensive aging model for blood constituents. This study facil-
itates forensic analysis of bloodstain aging. Furthermore, our
discussion integrates prior knowledge and provides a compre-
hensive overview of bloodstain aging.

Results
Raman spectral changes during bloodstain aging. To compre-
hensively investigate the chemical processes of bloodstain aging, we
investigated the time and temperature experimentally. Fresh blood
samples collected from three individual donors (A, B, and C) were
deposited on glass slides and stored at 30, 24, or 16 °C for up to 3
or 4 months. For each time point (Supplementary Table 1), 10 or
15 spectra collected using 785 nm excitation light were recorded at
different spots on the bloodstain samples. This enabled averaging
of the spectral quality and avoided photodegradation by long-term
exposure to the excitation light. Figure 1 shows spectra of blood-
stain samples stored at 24 °C for some select periods. The inten-
sities of the fluorescence background profiles apparently increased
over time. The total areas of the fluorescence profiles evaluated by
a polynomial baseline fitting demonstrated increases at every
temperature (Supplementary Fig. 1). Here, it is worth noting that
the fluorescence background intensity cannot be used as a practical
indicator of bloodstain aging because the fluorescence intensity can
be affected not only by temperature and time, but also by other
factors such as contaminants and ambient light. In actual cases, the
bloodstain substrate may contribute to the fluorescence
background21,29. Additionally, photobleaching also hinders reliable
evaluation of fluorescence. Therefore, Raman signals on the
fluorescence profiles were targeted in subsequent analyses for
bloodstain aging.

The Raman signals in the blood spectra were obtained by
subtraction of the fluorescence baselines and averaged for each time
point and each donor. Figure 2 shows temporal changes of the
averaged Raman spectra at 30, 24, and 16 °C. The spectral profiles
varied according to the storage time and temperature. Visually, the
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intensities of some bands, at around 1580, 1254, 970, and 525 cm−1,
increased over time. By contrast, the intensities of other bands, such
as those at 1225 cm−1 and 570 cm−1, decreased over time. These
monotonic changes occurred more rapidly at higher temperatures.
Meanwhile, at 24 and 16 °C, a band at 376 cm−1 showed an

increase at early time points and then decreased. By contrast, at
30 °C, a slight but continual increase was observed for this band.
The asynchronous behaviors of the spectral features indicate that
the blood spectra arise from some spectral components or chemical
constituents, which have different kinetic properties during blood-
stain aging. The overall tendency in the Raman spectra was an
increase in the total areas over time (Supplementary Fig. 2). This
result suggests that the spectral profiles also contain certain
dominant components whose concentrations increase with time.
Herein, in order to evaluate temporal changes of relative abundance
of respective spectral components, the averaged Raman spectra
observed by a stable instrumental condition were subsequently
analyzed without normalization pre-processing.

To assess the latent spectral features with different temporal-
and temperature-dependencies, we performed principal com-
ponent analysis (PCA) for the whole spectral dataset after
baseline subtraction. PCA enables decomposition of a multi-
variate dataset into linear combinations of orthogonal, or
mathematically independent, components (i.e., principle com-
ponents: PCs)30. The Raman spectra dataset of the bloodstains
had three parameters: Raman shift (cm−1), time (day), and
temperature (°C). Datasets were collected from three donors.
All of the Raman spectral data were aligned in order of time,
donor, and temperature, and then augmented into a large
matrix (D in Supplementary Fig. 3). To precisely investigate the
contribution of potential significant spectral components with-
out rank reduction31, the PCA for the augmented spectral
dataset was conducted without mean-centering (Supplementary
Fig. 4). The first PC showed a spectral profile similar to the total
averaged spectra and the corresponding scores increased with
time at all temperatures. Several subsequent PCs also showed
characteristic time- and temperature-dependent behaviors of
the corresponding scores and significant spectral profiles.
Therefore, the Raman spectra of bloodstains can be separated
into several significant components that have specific kinetic
behaviors in bloodstain aging.
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Fig. 1 Spectral series during bloodstain aging. The averaged spectra of
bloodstain samples collected from one of the three donors are represented.
The aging process at 24 °C was observed over 3 months. The wavenumber of
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Fig. 2 Raman spectra for bloodstain aging. Bloodstain aging was monitored at 30, 24, and 16 °C for up to 3 or 4 months. The Raman spectra were
preprocessed by subtraction of fluorescence baseline and averaged for each time point. The blue and magenta lines indicate the Raman bands for which
increases and decreases were visually observed over time, respectively. The yellow lines highlight the Raman bands at 376 cm−1, which showed non-
monotonic behavior over time. The spectral data of bloodstains collected from one of the three donors are represented
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Blood Raman spectral resolution by self-modeling. Multi-
variate curve resolution-alternating least squares (MCR-ALS) is
a technique for multivariate bilinear deconvolution. MCR-ALS
facilitates chemical or physical interpretation of the decom-
posed components because it enables incorporation of some
constraints with physiochemical meaning, such as non-nega-
tivity, unimodality, and closure, into the calculation for mul-
tivariate resolution32. MCR-ALS finds the optimum solution, a
set of two decomposed matrices (C and S in Supplementary
Fig. 3), through an iterative calculation to minimize residual
errors. Here, using a non-negativity constraint on all elements
of the decomposed matrices, the augmented matrix of the
Raman spectra of bloodstains (D in Supplementary Fig. 3) was
subjected to the MCR-ALS algorithm. This showed that
the blood Raman spectra contained five significant spectral
components with characteristic spectral profiles (Fig. 3) and
time- and temperature-dependent behavior of the corre-
sponding scores (Supplementary Fig. 5).

The resolved spectral components were assignable to specific
constituents in blood according to the distinctive peaks and
scores’ behaviors. The first component profile showed good
consistency with some characteristic bands for Fe2+–O2 binding
in oxyHb at 1638 cm−1 (v(CαCm)asym), 1225 cm−1 (v13 or v42 of δ
(CmH)), 570 cm−1 (v(Fe–O2)), and 419 cm−1 (δ(Fe–O–O))
17,18,23,33. The corresponding scores of the first component
showed maxima at the beginning of the measurements, and then
a monotonic decrease toward zero over time at all temperatures.
The fastest rate of decrease was observed at 30 °C and the slowest
at 16 °C. According to these results, the first spectral component
was dominated by oxyHb features in the initial state of heme
autoxidation. The most noteworthy band in the second spectral
component was at 376 cm−1. This is a known marker band for
metHb formation (δ(CβCcCd))34,35. Bands observed at 1629 cm−1

(v(CαCm)asym), 1372 cm−1 (v4), and 1212 cm−1 (v5+ v18 or v13)
are also typical of metHb11,18,34,35. In addition, the corresponding
scores started from zero and increased over time. After reaching
their maxima, the scores slightly decreased or stayed constant.
The maximum values of the second scores were dependent on
temperature, with the highest observed at 24 °C and the lowest at
30 °C. The scores’ behaviors suggest that the second component
represents an intermediate state of a chemical reaction with more
than two steps. Therefore, the second resolved component was
assigned to metHb character in the second state of heme
autoxidation. The third component of the blood spectra showed
distinctive bands at 1578 cm−1 (v(CαCm)asym), 1254 cm−1 (v13 or
v42), 970 cm−1 (γ(CαH=)), 745 cm−1 (v15(pyrbreathing)), and
665 cm−1 (v7(pyrdeform)asym)34. These peaks reportedly appear
after long-term aging and photo/thermal denaturation of
blood34,36. The corresponding scores of the third component
showed increases from zero, and then plateaued at 30 and 24 °C
or remained around zero at 16 °C. Accordingly, the third
component was assigned as a contribution from HC, which is
the third and final product of heme autoxidation. The HC state
does not exist in blood in vivo or in fresh bloodstains and is
formed under in vitro conditions16,37,38. HC formation has been
sometimes been discussed along with protein denaturation.
However, the HC state also reportedly forms under non-
denaturing conditions37,39. Therefore, we presumed that the
third component represents the extracted feature of HC’s heme
formed by the autoxidation process. As described above, the first
three spectral components showed salient features of the
constituents of heme autoxidation (i.e., oxyHb, metHb, and
HC). The relationship among the three corresponding scores was
also supportive of the assignments. The 30 °C condition showed
the fastest decrease of the first scores (oxyHb). At the same time,
the third scores (HC) showed the fastest increase. Therefore, the
second scores of metHb was observed at a low level. At 24 °C,
there was a relatively low rate of HC formation. Then, metHb
formed from oxyHb accumulated, resulting in a high maximum
value of the second score. At 16 °C, we observed the lowest
reaction rates for both metHb and HC formation. Accordingly,
the second and third scores increased slowly.

The fourth component profile showed no distinctive features
related to heme autoxidation, but did show some peaks
for proteins (1654 cm−1 (Amide I), 1451 cm−1 (δ(CH2/CH3)),
1003 cm−1 (Phe)), and heme (1620 cm−1 (v(C=C)vinyl),
1605 cm−1 (v(C=C)vinyl), 1580 cm−1 (v37), 1562 cm−1 (v11),
1124 cm−1 (v5(Cβ−methyl)), 753 cm−1 (v15), and 676 cm−1

(v7))18,23,33,35. The corresponding scores of the fourth compo-
nent started from non-zero values and then increased with time.
The rates of increase were fastest at 30 °C and slowest at 16 °C.
We tentatively associated the fourth component with an overall
denaturing process in bloodstains, involving hemoglobin, other
proteins, and some minor constituents. Protein features of
hemoglobin were transferred mainly from the first three
components as the native states to the fourth component as
the denatured state. Heme aggregation caused by hemoglobin
denaturation, which was previously suggested, may also be
reflected in the fourth component23,36. In addition, other
proteins and constituents exist and can be degraded over time,
although their contributions in the blood Raman spectra may be
relatively small. We supposed that, because of the weak
resonance effect of the NIR Raman to heme, the denaturation
process of the surrounding proteins was identified separately
from the heme autoxidation processes. The fifth component had
broad and featureless patterns. However, the corresponding
scores of the fifth component significantly increased with time at
every temperature, and was especially rapid at 30 and 24 °C. The
fifth component was interpretable as a contribution of
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Fig. 3 Decomposed Raman spectral profiles of bloodstains. The spectral
decomposition into five components was performed by multivariate curve
resolution-alternating least squares. The spectral profiles are represented
after normalization by the total area. The characteristic bands are labeled
on each profile
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fluorescence arising from residuals of the baseline subtraction
because of baseline variance and noise.

Kinetic description of bloodstain aging. The final aim in this
study was to comprehensively describe the process of bloodstain
aging, specifically the chemical kinetics. Using the MCR-ALS
model discussed above, we decided to apply the calculated scores
for the first (oxyHb) and fourth (overall denatured products)
components to kinetic modeling. Behaviors of the scores of the
second (metHb) and third (HC) components indicated a rela-
tionship based on a chemical reaction between them (Supple-
mentary Fig. 5). However, we determined that the complicated
mechanism involving the two components would need to be
investigated further before modeling the kinetics. In addition, the
fifth component as a fluorescence contribution is possibly affected
by other factors, such as contaminants, external light, substrates,
and photobleaching, besides temperature and time. Therefore, the
scores of the fifth component were also excluded from the kinetic
description. This spectral deconvolution processing is tolerant of
unmodeled perturbations.

For the first spectral component, autoxidation from oxyHb to
metHb has been described by a first-order reaction, as shown in
Eq. (1)40–42:

oxyHb�!ko metHb ! Hemichrome ð1Þ
Then, the kinetic equation for oxyHb concentration is given by

the following equation:

oxyHb½ �t ¼ C1 exp �kotð Þ ¼ Score 1ðtÞ ð2Þ
Equation (2) was fitted to the scores for the first component

(oxyHb) from all three donors’ data using a common coefficient
C1 simultaneously for each temperature condition (global fitting).
Figure 4a shows the result of curve fitting for the first scores. The
fitting errors and the estimated rate constants are summarized in
Table 1 and Supplementary Table 2, respectively. Although the
observed scores involved experimental dispersion, the fitted
curves substantially represented decreases over time. The decrease

rate at higher temperatures was obviously faster than that at lower
temperatures. Here, the Arrhenius equation is available to
describe the dependency of the reaction rate (k) on
temperature (T):

k ¼ A exp � EA
RT

� � ð3Þ
where A is a pre-exponential factor, EA is an activation energy,
and R represents the gas constant. Taking the logarithm, Eq. (3)
can be re-written as follows:

log10k ¼ log10A� log10e
EA
R

1
T

ð4Þ

To assess the relationship with temperature, each rate constant
yielded by the curve fitting was converted into the logarithm, and
then applied to Eq. (4). Figure 4b shows good linearity of the
logarithms of the rate constants against the inverse of the
temperature (T), where the coefficient of determination (R2) was
0.982 (Table 1). Moreover, the calculated activation energy, 152 ±
20 (kJ mol−1), was also comparable with previous reports
(Supplementary Table 2)43,44. These results strongly support that
the first component resolved via MCR-ALS represents the oxyHb
contribution in the blood Raman spectra, and the corresponding
scores can be modeled based on the kinetics of autoxidation into
metHb.

Next, the scores of the fourth component were also explored
using a chemical reaction model. The fourth scores showed
monotonic and temperature-accelerated increases over time
(Supplementary Fig. 5). We presumed that the fourth component
exhibited mixed contributions from constituents related to the
overall denaturing process in bloodstain aging. Then, we built the
following reaction scheme of first-order (Eq. (5)) and kinetic
equation (Eq. (6)):

Native�!kd Denatured; ð5Þ

Denatured½ �t¼ C4 exp �kdtð Þ þ d ¼ Score 4 tð Þ: ð6Þ
As the increases of the fourth scores started from non-zero

values, we considered that small amounts of the constituents

–2.0
–1.8
–1.6
–1.4
–1.2
–1.0
–0.8

–2.2
–2.0
–1.8
–1.6
–1.4
–1.2
–1.0

3.45 × 10–33.403.353.30

5 × 104

8 × 104

4

3

2

1

0
120100806040200

Day

6

4

2

0
120100806040200

a c

R2 = 0.982

1/temperature (K–1)

3.45 × 10–33.403.353.30

1/temperature (K–1)Day

lo
g 10

(k
o)

 (
da

y–1
)

lo
g 10

(k
d)

 (
da

y–1
)

In
te

ns
ity

 (
a.

u.
)

In
te

ns
ity

 (
a.

u.
)

b d

R2 = 0.999
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Table 1 Error evaluations of kinetic modeling for scores corresponding to spectral components developed by spectral
deconvolution techniques

Model Sigma NRMSE RE R2(score) R2(log k)

(Normal) MCR-ALS 1.03 × 104 Score1 0.352 0.318 0.593 0.982
Score4 0.202 0.195 0.668 0.999

Kinetic P-ALS 1.03 × 104 Score1 0.290 0.235 0.850 0.999
Score4 0.141 0.137 0.818 0.987
Ratio (Score1/Score4) 0.264 0.203 0.904 −
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formed by denaturation are contained in the bloodstains at the
beginning of deposition. The contributions of the native proteins
were mainly represented in the first three components and then
transferred into the fourth scores by denaturation. The developed
Eq. (6) was fitted to the fourth scores from all three donors using
common coefficient C4 and intercept of d for each temperature
(global fitting). Figure 4c, d show the results of curve fitting and
the correlation of the rate constants against temperature based on
the Arrhenius equation (Eq. (4)). The fitted curves exhibited
increases over time with different rates for the three temperatures.
Moreover, the fitted rate constants agreed with the Arrhenius
equation and the coefficient of determination (R2) was 0.999
(Table 1). The fitting errors and the estimated parameters are
summarized in Table 1 and Supplementary Table 2, respectively.
These results suggest that the denaturation process represented in
the fourth component proceeds in parallel with the heme

autoxidation, but is not completely synchronized. This tendency
is consistent with previous reports that the spectral features of
protein denaturation and heme show different time-courses in
aging of blood samples24. Consequently, the proposed reaction
scheme (Eq. (5)) and equation (Eq. (6)) can adequately describe
the kinetics of the fourth spectral component as a denaturing
process in bloodstains.

Kinetic optimization of blood Raman spectral resolution. The
MCR-ALS model discussed above was obtained only with self-
modeling constraints, that is, non-negativity. However, a draw-
back of such self-modeling methods is that the provided solutions
(i.e., the spectral loading profiles and corresponding scores) are
not definitely unique but have rotational ambiguity within a range
in which the constraints are satisfied32,45. Moreover, since the
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Fig. 5 Kinetic optimization for spectral deconvolution of bloodstains. a Schematics of the kinetic P-ALS. The Raman spectral dataset depicted as the matrix
D was decomposed into the score matrix C and the loading profile matrix S. The first (magenta) and fourth (turquoise) scores in the matrix C were
subsequently fitted to the respective kinetic equations (fo and fd), which yielded the rate constants (ko and kd). The rate constants were updated by fitting
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observed data exhibited deviations from ideal behaviors because
of noise and unideal chemical or spectroscopic responses, the
non-negativity constraints possibly caused distortion of the pro-
files of spectral components and the scores, particularly over-
estimation around zero. These properties introduce lack of
selectivity to the spectral profiles, increase fitting errors, and,
more importantly, hinder accurate kinetic modeling of the scores’
behaviors. The decreases of the first scores to zero showed con-
siderable deviations, particularly at higher temperatures. In
addition, the fitting qualities of the kinetic equations (i.e., R2 for
the scores) were not sufficient for precise prediction of bloodstain
aging (Table 1).

To improve the model of spectral resolution for kinetic
modeling in bloodstain aging, we developed a calculation
algorithm that incorporated the following: (i) curve fittings of
the kinetic equations, and (ii) penalty functions for moderate
constraint in the iterative process of the MCR-ALS algorithm
(designated as “kinetic P-ALS”). Hybrid techniques that intro-
duce physiochemical constraints, such as concentration calibra-
tion46, chemical equilibrium47, area correlation48, and chemical
kinetics49–51, into the iterative optimization process of self-
modeling have been proposed to reduce the rotational ambiguity
of the solutions. Furthermore, the penalty functions allow small
deviations from the constrained values (i.e., fitted kinetic
equations), as well as negative values52,53. These functions are
beneficial to avoid excess fitting to insignificant experimental
deviations and to yield more a probable model with smaller
errors. The algorithm of the kinetic P-ALS is outlined below
(Fig. 5a).

The spectral profiles, matrix S, obtained above by (normal)
MCR-ALS was used as the initial input. The score matrix C was
first calculated as C=D S+ without non-negativity constraint,
where S+ is the pseudo-inverse of the matrix S. Then, the first
and fourth component’s scores of the matrix C were fitted using
Eqs. (2) and (6), respectively. Applying the obtained rate
constants (ko and kd) to the Arrhenius equation (Eq. (4)), the
rate constants were updated and corresponding kinetic equations
(fnew) were obtained. Subsequently, the new kinetic equations and
label-vectors (H) for the first and fourth components were
augmented with the matrices D and S, respectively, multiplying
by the weighting factor λ. Then, the moderately-constrained

matrix C (depicted as Cnew) was produced by solving the matrix
equation. Finally, the matrix S was re-calculated by non-negative
linear least-squares algorithm using the matrices D and Cnew. The
updated matrix S was used in the next iterative cycle.

Considering the noise level of the scores, the penalty function
weighting factor, λ, was set at 0.01 for soft constraints52–54. The
iterative calculation continued until reaching convergence (see
the Methods section). Supplementary Figs. 6 and 7 represent
the final results of the decomposed spectral profiles and the
corresponding scores from the kinetic P-ALS algorithm.
Although the spectral profiles from the kinetic P-ALS were
almost similar to those from MCR-ALS, some slight changes
were observed. First, the bands at 378 and 420 cm−1 disappeared
in the fourth profile but increased in the first profile. In addition,
the fifth profile became flatter with less features. These differences
indicated that some spectral features were redistributed among
the five components, while maintaining critical features for each
component. The corresponding scores for each component also
showed similar patterns to those by MCR-ALS (Supplementary
Fig. 7). However, the fitting accuracies of the first and fourth
scores with the kinetic equations Eqs. (2) and (6), respectively,
were drastically improved compared with those in MCR-ALS
(Fig. 5b–e and Table 1). Besides, sufficient correlations of the rate
constants with the Arrhenius equation were maintained. The rate
constants for the respective temperatures are summarized in
Supplementary Table 2. The rate constant for oxyHb autoxidation
(ko) increased in the kinetic P-ALS, particularly at 30 °C. We
considered that these increases were because non-negativity
constraints were not used for the score matrix C, which prevented
overestimation, especially of small values around zero. At the
same time, by eliminating underestimation of the fourth scores,
the rate constants for denaturation (kd) decreased. Meanwhile,
the sigma value (i.e., standard deviation of the residual errors
after matrix decomposition) obtained in the kinetic P-ALS model
was comparable to that of the MCR-ALS model (Table 1). This
result supported that the kinetic equations employed in the
model’s calculation process adequately explained the data’s
characteristics without accumulating unmodeled residuals.

To validate the reliability of the calculation scheme developed
in this study (i.e., kinetic P-ALS), we performed donor-
independent external validations. From the spectral data collected
from three individual donors, we selected the data from two
donors (calibration donors) and used these to build the MCR-
ALS model and then the kinetic P-ALS model. The provided
spectral profiles in the kinetic P-ALS model (matrix S) were
subsequently applied to calculate the corresponding scores
(matrix C) from the dataset of the third donor (test donor).
Finally, the prediction accuracies for the calculated first and
fourth scores were evaluated in comparison with the modeled
kinetic equations. This sequence was repeated three times by
changing the donor used as the test donor. No significant
differences were observed in the regression errors for the first and
fourth scores between the calibration and test data (Supplemen-
tary Fig. 8 and Supplementary Table 3). Moreover, despite the
small size of the dataset used for calibration (i.e., only two
donors), the predicted rate constants (ko and kd) showed good
consistencies among the three external validations and with those
obtained using data from all three donors (Supplementary
Table 4). Therefore, these results demonstrate that the kinetic
P-ALS scheme is successful without over-fitting and the kinetic
models have robustness against donor individualities.

Estimation of bloodstain aging. The corresponding scores of the
first and fourth components exhibit their respective kinetic
behaviors. However, the absolute values of the two modeled
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scores involve the intrinsic restriction on a specific instrumental
condition, which affected the absolute intensity of Raman spectra
used for the model building. Here, the ratio calculation of Score1/
Score4 provides a universal index of bloodstain aging available in
various forensic analytical conditions since it removes the
dependency on experimental conditions, such as efficiencies of
excitation and signal detections, and on blood concentration of a
stain sample. Figure 6 shows temporal curves of the ratio indices
at 30, 24, and 16 °C with their standard deviations. The fitting
errors for the ratio curves were also evaluated (Table 1 and
Supplementary Fig. 9). According to the kinetics of both the first
and fourth scores, the ratio indices at 30 °C rapidly decreased to
zero, whereas those at 16 °C decreased gradually. The prediction
accuracies of the ratio and the ages (time elapsed since deposi-
tion) of bloodstains changed depending on both the ratio itself
and temperature (see the Methods section). As the ratio index
decreases rapidly at the beginning of aging at 30 °C, the range of
the predicted age becomes small (e.g., several days). However,
when a bloodstain is aged for >8.6 days, it cannot be distinguished
from more aged samples. A lower temperature can make the
decrease in the ratio index slower. Then, the bloodstain age can be
predicted over more than several months, and the predicted range
widens (e.g., several tens of days). These tendencies about the
prediction accuracies were chemically reasonable and demon-
strated that the developed model successfully avoided over-fitting
to a specific experimental condition. Obviously, increasing the
number of time points, temperature points, and donors for the
model training would effectively improve the prediction accuracy.

Discussion
A salient advantage of this kinetic-based modeling approach for
bloodstain aging is the availability to evaluate bloodstain aging at
different temperatures. Moreover, even if the temperature is not
constant, if the temporal changes are recorded, the ages of
bloodstains can potentially be predicted by integrating the index
equation with time. Besides, a relative comparison of the degree
of bloodstain aging is also beneficial in criminal investigations to
support the relevance of bloodstain evidence and to identify
details about the crime. This analysis is feasible even without
accurate temperature information or if some external stimuli,
such as exposure to chemical materials and light, may affect the
aging rate. More detailed investigation at various temperature
conditions would be useful to validate the developed approach
further and expand the potential.

The comprehensive investigation performed in this study about
Raman spectral changes during bloodstain aging also suggests
potential directions for further studies. The chemical origins and
mechanisms of the fluorescence increases have not been clearly
determined. The analysis of fluorescence profiles may be useful to
estimate the environment where the bloodstain evidence was
stored and possibly the time elapsed since deposition. As for the
second heme autoxidation step from metHb to HC, the scores’
behaviors suggest the possibility of an equilibrium relationship
between the two forms. Previous studies have also suggested an
equilibrium reaction between these species in solution9,38,55. The
humidity dependency of the rate for this transition is an inter-
esting aspect as previously reported56. The spectral deconvolution
technique described here should be helpful to explore the
mechanism of this chemical pathway. More specific assignment of
the origin of the fourth component would be beneficial to further
support the reliability of the developed model for bloodstain
aging. In addition, it is possible further chemical processes could
occur with bloodstain aging over several months and years.
Studies on the detailed mechanisms of bloodstain aging will offer
deeper scientific insights and enable more precise modeling.

Besides, bloodstains on absorbent substrates such as fabric and
paper are considered as more practical targets in forensic analysis.
We have previously investigated a spectral processing method to
remove interfering signals from the substrate in use of infrared
spectroscopy57. The spectral processing method will also be
applicable to the developed technique based on Raman spectro-
scopy, which should be explored in the future.

In conclusion, we developed a comprehensive model for
bloodstain aging via Raman spectroscopy using spectral decon-
volution with kinetic descriptions of the heme autoxidation and
denaturing processes. Discovery of significant spectral compo-
nents and kinetic models was achieved by use of NIR (785 nm)
excitation for well-balanced detection of heme variants and other
components in a large spectral dataset collected from multiple
donors at several temperatures and many time points over several
months. The developed model can predict the time elapsed since
deposition for bloodstains under different experimental condi-
tions or compare the relative degree of bloodstain aging using the
proposed index, which reflects the abundance ratio of spectral
components in the Raman spectra.

To date, spectral decomposition techniques with physiochem-
ical constraints, such as kinetics, have been applied to reactions
involving relatively simple chemical compounds49–51. The novel
application to a biological sample in the present study highlights
the feasibility for extraction of information of interest from
extremely complex data and provides complementary perspec-
tives about unmodeled constituents. This study expands the range
of possible targets for spectral analysis and increases under-
standing by providing comprehensive descriptions of the
constituents.

Methods
Blood sample preparation. Blood samples were collected from three healthy
Japanese volunteers (donors A, B, and C) by pricking the ears with a lancet.
Aliquots (2 µL) of whole blood were immediately deposited onto glass slides
covered with aluminum foil. A total of 60–70 small blood spots were prepared for
each donor at one blood collection, and the blood collection was repeated three
times. The time of each blood collection was recorded. The deposited blood
samples were dried and stored in incubators with controlled temperatures set at 30
and 16 °C, or in a paper box at room temperature (24 °C). A blood sample set from
each donor was exposed to each temperature condition. The bloodstains were
stored for up to 99 days at 30 °C, 98 days at 24 °C, and 121 days at 16 °C. The three
temperature conditions were determined so that substantial spectral changes of
bloodstain could be observed within 3–4 months in this study. All procedures
involving human participants were carried out in accordance with the guidelines of
the National Research Institute of Police Science and approved by the Institutional
Ethics Committee of the National Research Institute of Police Science (Kashiwa,
Japan). Written informed consent for sample collection, analysis, and publication
was obtained from all participants.

Acquisition of Raman spectra of bloodstains. Raman spectra of the bloodstains
were acquired using a Raman spectroscopy system developed in our laboratory,
which included a spectrometer (Acton SP2500, Princeton Instruments, NJ) and a
charge-coupled device camera (SPEC-10-100BR, Princeton Instruments). Excita-
tion light (785 nm, approximately 2 mW at the sample) from a diode laser was
focused by a ×50 magnification objective lens (MDPlan50, NA0.75, Olympus,
Japan). The system was operated using WinSpec/32 ver. 2.6.0.0 software (Princeton
Instruments). For each time point, a total of 10 (up to 1 week of storage) or 15
(from 1 week of storage to the last time point) spectra were recorded at different
points on each dried bloodstain sample. Each spectrum was obtained using a 20 s
accumulation within the spectral range of 90–2355 cm−1. The spectral resolution
was approximately 6–7.5 cm−1. Collection of the series of spectra at each time
point was started at a certain time after blood sample deposition (Supplementary
Table 1). The total number of time points at which Raman spectra were measured
was 42–50 for each donor and each temperature condition. A new (i.e., not pre-
viously observed) bloodstain sample was used for acquisition of Raman spectra at
every time point. The performance of the Raman system, such as the spectral
intensity, spectral resolution, and laser focusing, was confirmed and adjusted if
necessary on a daily basis using the Raman spectrum of polystyrene as a reference.

Data analysis. All of the recorded spectra were loaded into IGOR Pro software
(WaveMetrics Inc., OR) for spectral pretreatment. The raw spectra of the
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bloodstains were calibrated using a polystyrene standard, and truncated to the
range of 274–1709 cm−1, including significant signals. The fluorescence baseline of
each spectrum was estimated using a sixth degree polynomial fitting and then
subtracted. The averaged Raman spectrum of bloodstain was obtained for each
time point and each donor. Multivariate statistical analysis of the averaged pre-
treated spectra was performed using R software with the RStudio environment.
PCA was executed using the prcomp function in the R package “stats”. The MCR-
ALS algorithm was implemented using the als function in the R package “ALS”
with a non-negative constraint on all elements of the decomposed matrices. The
initial spectral profiles for MCR-ALS were defined as dominant positive or negative
regions in corresponding PCs. Convergence of the MCR-ALS calculation was
assessed by evaluating the standard deviations of the residuals between the
observed data matrix and calculated data matrix58 (designated as “sigma”):

sigma ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

dij � bdij� �2

N

r
;

ð7Þ

where dij indicates an element of the observed data matrix in the i-th row and j-th

column, bdij is an element of the reconstructed data matrix from MCR-ALS, and N
is the total number of elements in the data matrix (imax × jmax). When the relative
differences of sigma between two consecutive interactive cycles were <1 × 10−5, the
convergence was determined as follows:

Threshold for convergence ¼ sigmaold � sigmanew
sigmanew

< 10�5: ð8Þ
Non-linear least-squares fitting of kinetic equations to the decomposed spectral

scores was implemented by the Levenberg–Marquardt non-linear least-squares
algorithm59 using the nlsLM function in the R package “minpack.lm”. The
regression quality was evaluated using the normalized root-mean squared error
(NRMSE), relative error (RE), and coefficient of determination (R2) with the
following equations:

NRMSE ¼ 1
�c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ci �bci� �2

n

r
; ð9Þ

RE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ci �bci� �2Pbci2
s

; ð10Þ

R2 ¼ 1�
P

ci �bci� �2P
ci � �cð Þ2 ; ð11Þ

where ci and bci indicate the observed and predicted i-th element, respectively; c ̄ is
an average of all elements; and n is the total number of the observations. Non-
negative least-squares calculation in the kinetic P-ALS scheme was performed
using the nnls function in the R package “nnls”. The convergence of iterative
calculation in the kinetic P-ALS algorithm was also monitored using the criterion
of Eq. (8). The degree of bloodstain aging was finally represented using the ratio of
the first score (s1) against the fourth score (s4). The standard deviations of the ratios
(σr) were determined as follows:

σr ¼ s1
s4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σs1
s1

� �2
þ σs4

s4

� �2
� 2

σs1 ;s4
s1s4

r
; ð12Þ

where σs1 and σs4 represent the standard deviations of the first (s1) and fourth (s4)
scores, respectively; and σs1,s4 indicates the covariance between the first (s1) and
fourth (s4) scores as follows:

σs1 ;s4 ¼
P

s1;i � bs1;i� �
s4;i � bs4;i� �

n : ð13Þ

Data availability
All data supporting the findings of this study are available within the paper and its
supplementary information files, and from the corresponding authors upon reasonable
request.
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