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Lewis base-catalyzed intermolecular triazene
alkyne cycloaddition for late-stage functionalization
and scaffold diversification
Shuaipeng Lv1,4, Hui Zhou2,4, Xin Yu1,2, Yue Xu1, Huijuan Zhu1, Min Wang1, Haitao Liu1, Ziru Dai1, Guibo Sun1,

Xiaojie Gong3, Xiaobo Sun1 & Lei Wang1

3-Trifluoromethylpyrazole and its derivatives are of major interest to both the agrochemical

and pharmaceutical industry for their diverse biological activities. Reported routes for the

synthesis of 3-trifluoromethylpyrazoles are hindered by poor regioselectivity and limited

scope of application. Here we report a directed Lewis base catalyzed intermolecular triazene-

alkyne cycloaddition. It is featured that the combination of 1,8-diazabicyclo[5.4.0]undec-7-

ene and 2,2,2-trifluorodiazoethane produces reactive triazene intermediates, which readily

participate in cycloaddition reactions with terminal/internal alkynes, thus assembling densely

substituted 3-trifluoromethylpyrazole scaffolds with environmental friendliness and opera-

tional simplicity. Synthetic utility of the protocol is highlighted by late-stage functionalization

and scaffolds diversification. The practical value is also emphasized in potential platelet

aggregation inhibitor synthesis.
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Pyrazoles are the core scaffolds of numerous biologically
active molecules and exhibit innumerable applications in
chemistry and biology. Pyrazole derivatives represent one of

the most active classes of compounds and possess a broad range
of chemical, biological, agrochemical, and pharmacological
properties1,2. 3-Trifluoromethylpyrazoles, well-known examples
of pyrazole derivatives, are key privileged scaffolds widely existed
in many important biologically active molecules, agrochemicals,
and pharmaceuticals (Fig. 1a)3–11. Conventional approaches for
the construction of 3-trifluoromethylpyrazoles involve by the
condensation of hydrazines with fluoroalkyl 1, 3-dicarbonyl
compounds (Fig. 1b)12–15. However, these methods are limited by
the need for prefunctionalized starting materials and by poor
regioselectivities. Notwithstanding recent progress, these specific
methods are incompatible with the extreme value of 3-
trifluoromethylpyrazoles.

Recently, 2,2,2-trifluorodiazoethane (CF3CHN2) has emerged as
an attractive synthon and has been extensively studied as a metal
carbene precursor, 1,3-dipole, C- nucleophile/electrophile, and N-
terminal electrophile16–40. Compelling examples have been reported
on the utilization of CF3CHN2 as a fluorine-containing building
block. Considerable efforts have also been expended on the con-
struction of 3-trifluoromethylpyrazoles25,30. This has been chal-
lenging because the effective documented processes always rely on

the use of stoichiometric catalyst or prefunctionalized starting
materials and the explored methods are confined to a narrow range
of substrates and limited scope of general applications. Due to the
explored N-terminal electrophilicity of CF3CHN2

34 and triazenes as
a versatile tool in organic synthesis41 together with the convenient
methods for the synthesis of CF3CHN2 in different solvents
reported by Ma’s group42, the applications of the merger of N-
terminal electrophilicity of CF3CHN2 and Lewis base to form
triazene intermediates in organic synthesis and medicinal chemistry
have rarely been studied.

Late-stage functionalization (LSF)43–46, a valuable tool for
directly introducing functional groups onto a bioactive compound,
has merged as an important strategy for contemporary drug dis-
covery due to enabling rapid structural diversity of drug candidates
or drug-like molecules to ultimately affect their physiochemical
properties such as ADME (absorption, distribution, metabolism,
and excretion)47. In support of an on-going drug discovery strategy,
novel LSF with high efficiency, selectivity, and operational simpli-
city is highly desirable. 3-Trifluoromethylpyrazoles, as COXs inhi-
bition pharmacophore8–10,48, their derivatives have been screened
as clinical drug candidates and commercial pharmaceuticals. Drugs
aimed at COXs inhibition is a billion opportunity, which has been
inspiring medicinal chemists to search constantly for novel COX
inhibitors. The attractive transition-metal-free transformation from
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the alkyne moiety embedded compounds with known biological
properties to the corresponding 3-trifluoromethylpyrazole deriva-
tives via LSF and scaffolds diversification is still rarely explored.

We hypothesized that by the combination of Lewis base cata-
lysis and CF3CHN2 to generate reactive triazene intermediates
could be employed in cycloaddition reactions with terminal/
internal alkynes and open a new avenue for the assembly of
densely functionalized 3-trifluoromethylpyrazoles. Also, the
newly developed transformations could be hypothetically
expanded to enable LSF of pharmaceuticals and diversification of
clinical drugs, natural products, and bioactive molecules with 3-
trifluoromethylpyrazole scaffold. Currently, there are more than
400 drugs and more than 4000 natural products bearing alkyne
moiety (http://dnp.chemnetbase.com). Thus, there is a huge
potential demand to develop a facile and generally applicable 3-
trifluoromethylpyrazole synthetic procedure for LSF and scaffolds
diversification.

Here we show a transition-metal free catalytic intermolecular
triazene-alkyne cycloaddition (TAC) procedure for the synthesis
of highly substituted 3-trifluoromethylpyrazoles and efficient
installation of the title heterocycle into complex bioactive mole-
cules in the context of LSF and scaffold diversification. Con-
sidering the important role of COXs inhibition in antiplatelet
therapy, we also extend the protocol to assemble drug-like platelet
aggregation inhibitors (Fig. 1c).

Results
Screening of reaction conditions. The designed Lewis base cat-
alyzed TAC reaction was evaluated by using the simple terminal
alkyne 1a (1.0 equiv.) and CF3CHN2 2a (4.0 equiv., 1.5 mol/L in
toluene) in the presence of DBU as Lewis bases at 60 °C. We
found that the reaction proceeded smoothly and the cycloadduct
3a was obtained in good yield when 1,4-dioxane was used as the

external solvent (71%) (see Supplementary Table 1). Various
bases were then evaluated, revealing that DBU was still essential
for the high efficiency of this transformation (Table 1, entry 2–6).
Further optimizations of reaction conditions indicated that the
stock solvents of CF3CHN2 could significantly affect the reaction
with decreased yield (Table 1, entry 7, 8). Attempts to increase the
yield of 3a were carried out with different reaction temperatures.
To our delight, this transformation gave the almost quantitative
yield at 80 °C (Table 1, entry 12). It was noted that the erosive
yield was observed when the catalyst loading was reduced to 10
mol% (Table 1, entry 13).

Synthesis of 3-trifluormethylpyrazoles. With the established
optimal reaction conditions in hand, the generality of this
approach to synthesize a range of 3-trifluormethylpyrazoles was
evaluated (Fig. 2). Various terminal alkynes 1 bearing electron-
neutral, electron-rich, and electron-deficient substituents on the
aromatic ring were found to be suitable for this reaction to form
the corresponding pyrazoles (3a–q) with very good to excellent
yields. Notably, heteroaryl terminal alkynes, electron-poor alkyne,
and N-protected aliphatic alkyne were also readily converted into
the desired products with high efficiency (3r–x). However, low
yields were obtained when aliphatic alkynes were used in this
transformation (3y, 3z).

From the perspective of product diversity, internal alkynes 4
were also explored for this DBU-catalyzed TAC strategy (Fig. 2).
The alkyne substrates bearing phenyl, ester, phosphonate diester,
aldehyde, halides, indole, N, N-dimethylacetamide, N, N-
dimethylethanethioamide, 2-pyridyl, methyl, and trifluoromethyl
groups were all compatible, resulting in the synthesis of various
desired densely functionalized 3-trifluormethylpyrazoles with
moderate to excellent yields (5a–m). However, erosive yields
were obtained with diphenylacetylene and phenyl

Table 1 Selected optimization of reaction conditions

Entry Variations from the ‘initial conditions' Yield (%)a

1 No DBU <10
2 1,1,3,3-tetramethylguanidine

instead of DBU
57

3 Triethylamine instead of DBU 65
4 4-dimethylaminopyridine instead of DBU 35
5 Tetramethylethylenediamine

instead of DBU
51

6 1,4-diazabicyclo[2.2.2]octane
instead of DBU

48

7 CF3CHN2 in 1,4-dioxane 69
8 CF3CHN2 in DCE 22
9 MeCN instead of 1,4-dioxane 14
10 Diethyl ether instead of 1,4-dioxane 31
11 70 °C 79
12 80 °C 97
13 10mol% DBU, 80 °C 72

Unless otherwise specified, all reactions were carried out using phenylacetylene 1a (0.3 mmol, 1.0 equiv.) and CF3CHN2 2 (1.2 mmol, 4.0 equiv., 1.5 M in solvents), 20 mol% base (0.06mmol, 0.2 equiv.),
solvent (0.4mL), 12 h
aYield of the isolated product 3a after chromatography
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(phenylethynyl) selane as substrates (5n, 5o). Notably, all the
internal alkynes afforded densely functionalized 3-
trifluormethylpyrazoles with high levels of regioselectivity. Based
on the X-ray crystallographic analysis of compounds 5a and 5k,
the configuration of the functionalized 3-trifluormethylpyrazoles
products was assigned (see Supplementary Figs. 230 and 231).
However, 5k and 5l possessed distinctive substituents compared
with others functionalized pyrazoles mainly due to electronic and
steric reasons.

Late-stage functionalization. To further indicate the utility of
TAC procedures, we set out to perform LSF of pharmaceutically
relevant molecules. As indicated in Fig. 3, erlotinib, used to treat
nonsmall cell lung cancer and pancreatic cancer, was directly
functionalized by our TAC strategy in 49% yield (7a). Further-
more, efavirenz, a commercially available anti-HIV drug, was also
functionally obtained with product diversity in good yield (7b). In
addition, the extension of the LSF to pargyline, an anti-
hypertensive drug, was also achieved and formed the corre-
sponding derivative with good yield (7c).

Scaffold diversification. To show the generality of TAC pro-
cedure, we set out to perform scaffold diversification to embed

3-trifluormethylpyrazole into various kinds of bioactive
compounds, ranging from pharmaceutically relevant molecules
and natural products to a panel of bioactive heterocycles. As
indicated in Fig. 4, paciltaxel, hydroxycamptothecin, and
fluorouracil, used to treat different types of cancer, was
directly diversified by TAC strategy in very good yield (9a–d).
Similar method was also directly applied to diversify efavirenz
and yielded the product with high efficiency and mono/di
selectivity (9e, 9f). Interestingly, penicillin G, a commercially
available antibiotic used to treat bacterial infections, was also
functionally obtained in good yield. Artemisinin, medication
approved for the treatment of malaria, could be varied in a TAC
manner and was readily reached in 45% yield after this diver-
sification (9h).

The scaffold diversification strategy in terms of various
natural products was also explored. As shown in Fig. 4, natural
products related with tetracyclic and pentacyclic triterpenes
such as cholesterol and oleanolic acid were tolerated for this
diversification with high yields (9i, 9j). The variation of scaffold
range to flavonoid and coumarin was also successful and
assembled the related diversified products with very good yields
(9k, 9l). Lignins and alkaloids, such as podophyllotoxin
and huperzine A, were also investigated in this TAC
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transformation, giving the corresponding functionalized deri-
vatives with moderate to good yields (9m–o). Interestingly,
tetrahydropalmatine, applications as an adrenergic agent and a
dopaminergic antagonist, was additionally found to be suitable
for this diversification in 78% yield (9p).

Beyond scaffolds diversification of highly valuable pharmaceu-
ticals and natural products. This TAC strategy also unlocked new
pathways for the straightforward and efficient diversification of
appealing bioactive molecules. Privileged N-containing hetero-
cycles with various biological activities, such as indole, carbazole,
dihydroquinolinone, acridone, azepine, and dihydroazepine were
also engaged in this diversification to construct the corresponding
functionalized products in high to excellent yields (9q–v).
Furthermore, adenine, a fundamental component of adenine

nucleotides found in both DNA and RNA, was also suitable for
this diversification and afforded the functional derivative in very
good yield (9w). Moreover, we also extended the strategy to
protected glucofuranose and provided the diversified product
with high efficiency (9x).

Applications. Gram-scale synthesis of 3b, 3c, 3i, and 3j using the
established TAC system promoted smoothly without affecting the
efficiency outcome of the reactions. To further highlight the
potential industrial application of this transformation, a 10-g-
scale synthesis of 3c proceeded smoothly without erosion of the
yield but only with increased reaction time (Fig. 5). In addition,
the gram-scale products, as crucial intermediates, can be further
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Fig. 7 Postulated mechanism for the TAC reactions. a Plausible catalytic cycle. b NMR study of deuterium-labeling experiment. c NMR study of DBU-
CF3CHN2 interaction

COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-019-0168-6 ARTICLE

COMMUNICATIONS CHEMISTRY |            (2019) 2:69 | https://doi.org/10.1038/s42004-019-0168-6 | www.nature.com/commschem 7

www.nature.com/commschem
www.nature.com/commschem


used to assemble pharmaceuticals including SC-560, mavacoxib,
and celecoxib49,50.

3-trifluormethylpyrazole synthesis in pharmaceutical applica-
tions. To further evaluate the pharmaceutical implication of
this TAC protocol, the 3-trifluormethylpyrazole synthesis in
drug discovery was also explored. Recently, diaryl-3-
trifluormethylpyrazoles have been successfully screened as
COXs inhibitor and exerted selectively COX-1 or COX-2
inhibition, such as SC-560 (selective COX-1 inhibitor). Con-
sidering the potential combined pharmacological effects of
COXs inhibition and P2Y12-receptor antagonism in antiplate-
let therapy51,52, we showcased the structural features of clopi-
dogrel (P2Y12-receptor antagonist) and SC-560 (COX-1
inhibitor) that allow novel analogs to mimic theirs functions
and then 3-trifluormethylpyrazole scaffold was embedded onto
thienopyridine ring via TAC strategy (Fig. 6a, b) (see Supple-
mentary Methods and Supplementary Fig. 4). Later, we
downloaded the crystal structure of COX-1 (3N8Y) from PDB
and used Surflex-dock (SYBYL X-2.0) to complete molecular
docking53. It was found that the N-atom of the pyrazole ring
(10a, 10b) showed H-bonding with Tyr385 (distance N–H=
2.6 Å for 10a and 2.4 Å for 10b, respectively), while 10c H-
bonded to Tyr385 and Ser530 (key amino-acid residues in
COX-1 binding pocket) via the F-atom of the CF3 group (dis-
tance F–H= 2.2 Å for Tyr385 and 2.0 Å for Ser530, respec-
tively). In addition, the N-atom of the pyrazole ring (10b, 10c)
also showed H-bonding with Ser530 (distance N–H= 2.6 Å for
10b and 2.8 Å for 10c, respectively) (Fig. 6c). These results
suggested that the synthetic analogs had potential COX-1
inhibition (see Supplementary Table 2). To prove the reason-
able of the docking model and possible pharmacological
properties, the platelet aggregation inhibition assay in vitro was
evaluated in parallel with aspirin. We found 10c could dra-
matically inhibit platelet aggregation which induced by ara-
chidonic acid (Fig. 6d) (see Supplementary Fig. 5). The result
indicated the promise of 10c for future pharmaceutical
applications.

Mechanistic proposal. A postulated mechanism for this
Lewis base catalysis via the triazene intermediate is proposed
(Fig. 7a)54,55. A deuterium-labeling experiment was conducted
using deuterated alkyne (1a′) with CF3CHN2. Compound 3a′
with 90% deuterium incorporation onto the pyrazole ring was
obtained, which supports our proposed 1,3-H shift. To confirm
the DBU activation of CF3CHN2 to form triazene intermediate in
the cycloaddition reaction, experiments between DBU and
CF3CHN2 (in CDCl3) were conducted (Fig. 7c). The postulated
intermediate IV was captured from the crude 1H NMR and
LC–MS experiments (see Supplementary Figs. 6 and 7), which
further supports the possible mechanism for this Lewis base
catalysis.

Discussion
We have developed a TAC reaction to synthesize a series of 3-
trifluormethylpyrazole heterocycles in high to excellent yields. In
addition, with the newly explored transformation, the cycload-
dition strategy is extended to enable LSF of pharmaceuticals and
fuse various scaffolds, ranging from clinical drugs and natural
products to bioactive heterocycles, which may aid the efficiency of
lead compound and drug discovery processes. The protocol,
featured in an operationally simple and environmentally friendly
manner in comparison to transition-metal catalysis, exhibits a
broad, structurally diverse substrate scope (>40 examples), and

fused scaffolds scope (>25 examples). Considering the important
role of COXs inhibition in antiplatelet therapy, we also developed
drug-like platelet aggregation inhibitor synthesis using TAC
protocol. Notably, further applications of Lewis base catalysis for
the synthesis of related heterocycles will be reported in due
course.

Methods
General procedure for the TAC reactions. A dried Schlenk tube is charged with
the alkynes 1 (0.30 mmol, 1.0 equiv.), CF3CHN2 2 (1.2 mmol, 4.0 equiv., and1.5 M
in toluene), and 0.4 mL 1,4-dioxane. Subsequently, DBU (0.06 mmol, 20 mol%) is
successively added. The resulting yellow solution is stirred at room temperature
until the reaction is complete (as monitored by TLC). After the solvent is evapo-
rated under reduced pressure, the crude product is purified via flash chromato-
graphy (pentane/ethyl acetate 10:1–3:1) to give the 3-trifluormethylpyrazoles 3 as
white solids. A similar procedure was used for the synthesis of 3-
trifluormethylpyrazole derivatives 5, 7, 9, and 10.

Synthetic applications. The procedures for 10-g-scale synthesis, pharmaceuticals
synthesis, and drug-like molecules development are available in the Supplemen-
tary Methods and Supplementary Figs. 1–4.

Platelet aggregation inhibition assay. Please see Supplementary Methods and
Supplementary Fig. 5.

NMR spectra. 1H, 13C, and 19F NMR spectra of purified compounds are available
in Supplementary Figs. 8–229.

Crystallography. X-ray crystallographic CIF files for compounds 5a and 5k are
available in Supplementary Data 1, 2, and Supplementary Figs. 230, 231.

Data availability
The authors declare that all the data supporting the findings of this study are available
within the paper and its supplementary information files, or from the corresponding
author upon request. The X-ray crystallographic coordinate for structure reported in this
article has been deposited at the Cambridge Crystallographic Data Center (CCDC
1886034, CCDC 1907151). These data could be obtained free of charge from the
Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.
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