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VespAI: a deep learning-based system for
the detection of invasive hornets
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The invasive hornet Vespa velutina nigrithorax is a rapidly proliferating threat to pollinators in Europe and
East Asia. To effectively limit its spread, colonies must be detected and destroyed early in the invasion
curve, however the current reliance upon visual alerts by the public yields low accuracy. Advances in
deep learning offer a potential solution to this, but the application of such technology remains
challenging. Here we present VespAI, an automated system for the rapid detection of V. velutina. We
leverage a hardware-assisted AI approach, combining a standardised monitoring station with deep
YOLOv5s architecture and a ResNet backbone, trained on a bespoke end-to-end pipeline. This enables
the system to detect hornets in real-time—achieving a mean precision-recall score of ≥0.99—and send
associated image alerts via a compact remote processor. We demonstrate the successful operation of a
prototype system in the field, and confirm its suitability for large-scale deployment in future use cases.
As such, VespAI has the potential to transform the way that invasive hornets are managed, providing a
robust early warning system to prevent ingressions into new regions.

The detection of invasive species at the earliest possible juncture is crucial in
mitigating their impacts, and often represents the only feasible opportunity
to prevent population establishment1,2. This challenge has traditionally been
approached via manual surveying, trapping, and predictive modelling3–5,
however such tools face substantial limitations when applied to small and
mobile social insects, which represent ~40% of the most successful invasive
invertebrates globally6. Specifically, the difficulty of detecting repeated but
rare queen dispersal and founding events7,8, combined with the exponential
growth of colony populations from initial bridgeheads7–9, severely impedes
the efficacy and cost-effectiveness of manual monitoring techniques.

The aforementioned issues are exemplified in the case of the invasive
hornet Vespa velutina nigrithorax—commonly known as the Asian or
Yellow-Legged hornet10—a eusocial vespid originating from South East
Asia. This species has spread rapidly across parts of East Asia and Europe
since initial colonisation events in or before 200311,12 and 200413,14, raising
concern due to its consumption of native invertebrates15,16, and predation
upon colonies of the European honey bee, Apis mellifera17. Notably, V.
velutina has also recently been recorded in North America18, and existing
invasion fronts have continued to expand despite substantial national and
international management efforts19–21. A key reason for this is that current
surveillancemethods rely uponmanual identification22, and thus struggle to
achieve the coverage, accuracy, and vigilance required to detect invasions

into new regions. As such, there is an urgent need to develop systems that
can address these limitations, and thus bolster long-term containment
strategies.Here,we demonstrate howanAI-based approach—utilising deep
learning to detect and identify V. velutina—can provide a solution to this
challenge, and hence fundamentally enhance the control of this globally
invasive species.

To prevent the invasion of V. velutina into an area, it is essential that
ingressions are detected as early as possible, enabling colony destruction
before the production of new queens10,23. If this narrow window is missed,
the population is likely to become established, and management costs will
scale rapidly24. At present, this task depends upon visual alerts from bee-
keepers and the public; however these suffer from high rates of mis-
identification—yielding a mean accuracy of only 0.06% in the UK25.
Additionally, other methods such as baited kill-traps are of limited efficacy,
as they do little to reduce hornet populations, and result in considerable
‘bycatch’ of non-target insects26,27. Effective control thus requires the capture
of live hornets to determine the location of the colony10, but the initial
detection of individual foragers is difficult and time-consuming. As such, an
automated, accurate, and passive monitoring system is needed to improve
both the sustainability and efficacy of future exclusion efforts.

The applicability of deep learning to this challenge is evident through
parallel machine vision applications in behavioural tracking28–31, pest
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management32–34, and conservation biology35–37. Consequently, there have
been several attempts to develop proof-of-concept detection systems for
various Vespa species—primarily utilising optical38–41, infrared42, and
acoustic sensors43. These efforts have yielded prototype monitors for
deployment at apiaries, with initial tests successfully detecting the presence
of hornets in real-time39,42. Notably however, while such systems show
promise in areas where V. velutina is already established, they are not well
suited to provide early warning coverage along the invasion front itself. This
is because initial V. velutina ingressions are exceedingly rare44,45, necessi-
tating detection models with both high precision (ensuring that only V.
velutina are detected), and high recall (ensuring that no V. velutina are
missed)—parameters that are often inversely related46.

When considering the performance of current operational detection
systems, these achieve mean classification accuracies within the range of
~74.5–83.3% for V. velutina39,41, but suffer from false detections of other
hornet species41, and in some cases honey bees39,42. False positives therefore
have the potential to accumulate rapidly over time, degrading the efficacy of
such systems in cases where true positives are rare. Consequently, precision
values consistently ≥0.99 are crucial to the successful development of a pre-
emptive detection capability. The substantial complexity of this challenge,
pairedwith the need to integrate sucha capacity into compact hardware, has
thus far constrained the development of a functional early alert system.

Here, we leverage deep learning to develop ‘VespAI’—a remote
monitor that automatically detects the presence of V. velutina at a specia-
lised bait station, and relays standardised images via an automated alert.
This system employs a hardware-assisted AI approach, providing state-of-
the-art precision and recall performance based on YOLOv5s architecture,
implemented in a compact and remotely deployable Raspberry Pi 4 pro-
cessor. In addition to V. velutina, the algorithm can also detect and classify
Vespa crabro—the European hornet—and robustly differentiate both spe-
cies from other visually similar insects, demonstrating a precision-recall
F1 score of≥0.99.As such,VespAIhas thepotential to substantially improve
the way in whichV. velutina is managed, providing an accurate and passive
detection capability to prevent its invasion into new regions.

Results
Training data pipeline
To develop an accurate but resilient detector, we employed a hardware-
assisted AI approach. This utilised a standardised bait station setup, which
captured training footage against a clean, uniform, and featureless back-
ground to limit environmental variation. Dependent upon local climatic
conditions, it typically took up to 48 h for hornets to begin visiting these
stations. Notably, the same platform was used for both training data col-
lection and hornet detection, ensuring a consistent end-to-end pipeline.
Following the collection of footage, we extracted training images that
encompassed the full range of biological, environmental, and spatio-
temporal variability present at bait stations, thus forming a robust dataset for
annotation.

The training and validation dataset consisted of 3302 images, collected
from locations across Jersey, Portugal, France, and the UK, and including a
combination of three object classes: V. velutina, V. crabro, and non-target
insects. The first two classes were labelled with polygonal masks to generate
precise annotations for training and augmentation (Fig. 1a, b), while the
third class remainedunannotated, allowing the system topassively ignore all
non-target species. Polygonal annotations were found to be superior to
bounding boxes, as they allowed for copy-paste data augmentation47—in
which hornets could be transposed between frames during training—sub-
sequently improving model performance (Fig. 1c–e). Training images were
specifically selected to include the range of light and weather conditions
experienced by the bait stations, along with co-occurrences of both hornet
species, and a diversity of non-target taxa (Table S1).

Dataset specification
Prior to training, image data was partitioned into three subsets. The first,
termed the ‘hornet training subset’ (HTS), consisted of 2147 images of

hornets with a limited number of non-target insects, recorded in 2021. The
second, termed the ‘hornet/non-target training subset’ (H/NTS), consisted
of 2745 images, containing a broad range of non-target insects in addition to
the original hornet images from the HTS, and was also recorded in 2021.
Finally, the third, referred to as the ‘validation subset’ (VS), consisted of 557
images, including hornets, non-target insects, and empty bait stations
recorded in 2022, andwas used solely for validation. Utilising this structure,
we were thus able to determine how the inclusion of non-target insects
influenced model robustness while ensuring that all validation data was
composed of unique individual hornets.

Model training and optimisation
Our hornet detection algorithm is built around the YOLOv548,49 family of
instance segmentation models, with a motion and size pre-filter pipeline
facilitatedbyViBe50 (Fig. 2a, S1). Fundamentally,YOLOv5 is adeep learning
model based on aCSPDarkNet-5351 CNNbackbone, however it isflexible to
the integration of alternate architectures52. We thus opted to utilise a
ResNet-5053 backbone to allow for decreasednetwork size, although this still
required a largequantity of trainingdata tooptimise themillionsofpotential
model parameters (Fig. 2b). As such, we implemented an extensive and
bespoke image augmentation routine to expand the total quantity of
training data to 13,208 images, and thus expose the model to anticipated
variations in image quality during inference (Fig. 1c).

Polygonal labels specifically enabled the use of copy-paste
augmentation47 (Fig. 1d), allowing us to greatly diversify the initial train-
ing data by transposing hornets between images and placing unseen indi-
viduals together. This improved both ‘objectness loss’ (the probability that
bounding boxes contained target images) and mean average precision (the
mean value of model precision across confidence thresholds). Specifically,
incorporating an augmentation rate of 90% reduced objectness loss from
0.0024 to 0.0016, and increasedmean average precision from 0.911 to 0.948
when compared to un-augmented models (Fig. 1e, S2a).

To enable effective functionality in the field, it was important to opti-
mise ourmodel for use on a remote processor. To achieve this, we compared
differing base architectures to obtain a balance between performance and
complexity. These consisted of the ‘medium’ YOLOv5m, the ‘small’
YOLOv5s, and the ‘nano’ YOLOv5n48. Our results demonstrated that
YOLOv5m and YOLOv5s achieved comparable performance, with mean
average precision values of 0.957 and 0.951 respectively, however the nano
model had a reduced mean average precision of 0.934 (Fig. S2b). We thus
adopted YOLOv5s as our primary architecture, enabling us to utilise the
comparatively reduced model size, while maintaining performance tanta-
mount to larger models.

Validation and performance
Images for the validation subset were collected from different bait stations,
different locations, and during a different year to the training data. This
ensured that all validation images were novel, and minimised subset cross-
correlation; thus facilitating a meaningful assessment of the model.

Comparisons of iterative models trained on the HTS and H/NTS
demonstrated the importance of including non-target species in training
(Fig. 2c,Table 1). Thiswas characterisedby differences inmodel F1 scores—
a harmonic mean of precision and recall—as a function of acceptance
threshold (Fig. 3a, Table 1). While both models exhibited high recall, their
curve gradients differed at confidence thresholds within the range of 0.05-
0.20—this being the region corresponding to precision. The model trained
on theHTS showed F1 scores <0.95 forV. velutinawithin this region, while
the H/NTS model maintained scores ≥0.99, demonstrating its improved
ability to avoid false detections of non-target insects (Fig. 3a). Additionally,
this latter model exhibited good performance across the recall-relevant
range of confidence thresholds from 0.50 to 0.95, attaining mean F1 scores
of 0.988 and 0.985 when detecting V. velutina and V. crabro respec-
tively (Fig. 3a).

Notably, when calibrated to an optimum confidence threshold of
0.194, the final model demonstrated a true positive rate—defined as the
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proportion of all individual hornet detections that were correct—of ≥0.99,
false positive rate of≤0.01, true negative rate of≥0.99, and false negative rate
of ≤0.01 for both classes, translating into a combined F1 score of 0.994
(Fig. 3a, Table 1). As such, we considered thismodel to provide the requisite
accuracy needed for effective detection of V. velutina incursions.

Explaining AI predictions by pixel contribution
Developing explainable AI models is an important consideration, as the
many layers, parameters, and hyperparameters of deep neural networks
pose a serious challenge to interpretation. A potential solution to this lies in
the backpropagation of a model’s predictions, to assess the contribution of
individual pixels to a classification decision. Thismethod is known as layer-
wise relevance propagation (LRP)54,55 and has proven to be a valuable tool
both for model artefact detection, and notably, in providing insight into
deep learning decision-making processes55.

To characterise models, we thus employed an LRP-based approach to
generate independent pixel-by-pixel relevance heatmaps for model classi-
fication decisions (Fig. 3b, c, and S3). We then used these predictions to
identify the key visual features of both hornet species and their influence
across classes and trainingdata subsets. First,we assessedpixels contributing

to opposite and same-class predictions for the two species of hornet.
Notably, we found that pixels aligned with the orange band on the
fourth abdominal segment, and those around the outer edge of the wing,
were important for correctly classifying V. velutina, but not V. crabro
(Fig. 3b). We then investigated pixel contribution differences when
achieving correct classifications with the HTS and H/NTSmodels, in order
to determine the impact of including non-target insects. We found that the
spread of relevant pixels was more focused in the H/NTS model over both
classes, supporting a refinement of the deep parameters governing hornet
classification (Fig. 3c).

Prototype and deployment
To provide proof-of-concept for remote use in the field, we produced a
prototype system, integrating the software, hardware, and bait station. This
setup consisted of a Raspberry Pi 4, camera, and power source, allowing the
monitor to capture and analyse video in real-time (Fig. 4a), sending can-
didate image detections to a paired computer via a local Wi-Fi connection.
We utilised this prototype design to test varying camera setups, tune
hardware parameters, trial power sources, and ensure robust network
connectivity (Fig. 4b and Table S2).

Fig. 1 | VespAI training pipeline. a, b Diagram of the data annotation process for
aV. velutina, and bV. crabro (V. crabro, yellow;V. velutina, purple) (N = 3302). We
employedAI-assisted annotation using Plainsight labelling software, thus producing
detailed polygonal masks encompassing the body and wings of hornets. Corrections
and class assignments based on species were made manually, and annotations were
exported in the common objects in context (COCO)68 format. c Example aug-
mentations used to expand the training data (N = 13,208). These consisted of mask
repositioning, image overlays, and RGB, HSV, brightness, and contrast

manipulation. d Illustration of the copy-paste augmentation technique. Due to the
use of polygonal annotations, masks could be rotated, duplicated, and moved into
new frames to create novel permutations of instances. Numbers denote classes (V.
crabro, 0; V. velutina, 1). e Performance of models with incremental increases in
copy-paste training data augmentation, specifically when considering objectness
loss and mean average precision for unseen validation data (N = 15). Line colours
indicate degree of augmentation (0%, grey; 30%, light blue; 90%, dark blue).
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Fig. 2 | VespAI model architecture and functionality. a Illustration of the motion
detection and video pre-filtering process used byViBe50. This ensures that the system
remains passive until motion is detected and that only ‘hornet-sized’ objects—
determined from a known reference range for each species (Fig. S1)—are extracted
from videos and passed on to the detection algorithm. b Diagram detailing the
algorithm for hornet detection, classification, and confidence assignation. This
model is built on YOLOv5s architecture, utilising a ResNet-5053 backbone with a
PaNet71 neck, and applies a single F-CNN to the whole image to rapidly detect and
classify hornets. To optimise performance, the algorithm downscales images to a

resolution of 640 × 640 and applies letterboxing during detection. Class predictions
and detection confidence values between 0 and 1 are then provided on an associated
bounding box that is projected back onto the original image, as detailed in the
diagram. c Examples of successful detections in a range of common scenarios
including target saturation and overlap, class co-occurrence, and the presence of
non-target insects. Dashed boxes denote discrete modules of ViBe motion detection
and background subtraction, YOLOv5s object detection and classification, and
example outputs when these processes are combined.
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VespAI functioned successfully in the field, demonstratingV. velutina
detection performance broadly comparable to that seen during testing, with
the system achieving a mean precision value ≥ 0.99 and mean recall
value > 0.93 across all cameras (Fig. 4c). Notably, when considering only the
highest performing camera model, these values were ≥0.99 and ≥0.96
respectively, highlighting the importance of optimally calibrated hardware
(Fig. 4c). In the latter case, this translated into a true positive rate of ≥0.96,
false positive rate of ≤0.01, and false negative rate of ≤0.04, as determined
over 26 independent field trials (Table S3). It should be noted, however, that
the aforementioned false negative rate was likely a conservative over-
estimate, as evenwhen ahornetwasmissed in an image, the same individual
was invariably detected in one of the subsequent frames.

In addition to model evaluation, field testing confirmed that hornet
detections and the associated images could be sent to a paired computer or
mobile device remotely, and that the system was amenable to running on a
lightweight rechargeable battery for periods ~24 h. Data collected during
trials also enabled the calibration of an optimised detection interval of 30 s,
this being derived fromminimumrecordedhornet visitationdurations (Fig.
S4). Further work will aim to test the hardware with enhanced 4 G con-
nectivity configurations and alternative power sources to reduce recharge
frequency, while integrating the additional training data collected during
field trials.

Discussion
Our results demonstrate that VespAI achieves the requisite accuracy to
detect rare V. velutina ingressions, while avoiding false alerts from visually
similar insects. The system utilises a compact processor for deployment in
the field, and a modular hardware configuration for adaptability across use
cases. This fulfils the urgent operational requirement for an automated
hornet detection system and advances the current state-of-the-art in inva-
sive species monitoring. Crucially, the passive and non-lethal nature of
VespAI ensures that detected hornets can be captured and tracked back to
the nest for destruction, while at the same time entirely eliminating non-
target bycatch.When combinedwith exceptionally highprecision and recall
—achieving an F1 score of ≥0.99—this enables pre-emptive deployment of
the monitor to at-risk areas, thus helping to prevent V. velutina population
establishment.Consequently,VespAIhas thepotential to transform theway
in which invasive hornets are managed, providing an accurate, passive, and
sustainable early detection capability to limit their spread into new regions.

The hardware-assisted AI approach utilised by VespAI enables
leading-edge performance in terms of hornet detection. Specifically, the
standardised bait station provides a uniform background for image capture,
while training data from this same setup enables the deep ResNet archi-
tecture to achieve high identification fidelity (Fig. 3a). Upstream of this, the
use of a vespid-specific attractant limits the range of visiting insects, and the
ViBe filtering step ensures that only appropriately sized candidates are
passed on to the YOLOv5s detection and classification algorithm. This
approach differs markedly from previous systems, which aim to detect
hornets against heterogenous backgrounds, and thus fail to achieve com-
parable levels of accuracy38,40,56. Indeed, the standardised solution that we
employ is common to other machine learning applications in rare event
detection57–59—a salient point when considering the scarcity of V. velutina
colonies early in the invasion curve24,60.

To enable effective deployment in the field, we optimised our detection
model to run on a Raspberry Pi 4 processor. This hardware setup was

selected to prioritise cost-effectiveness and modularity, with the ability to
utilise mains and battery power sources, while providing flexible con-
nectivity through a Wi-Fi hotspot (Fig. 4). Additionally, by opting for an
edge computing solution, we aimed to negate the need for continuous
connectivity to third-party infrastructure, as is the case in cloud computing
approaches. Initial tests of theprototype systemdemonstrated the successful
detection of hornets in real-time, and transfer of associated image alerts
across both a localWi-Fi network and remotely via an internet connection.
Crucially, additional field testing confirmed the ability of VespAI to achieve
comparable accuracy to that seen during initial model validation, and thus
function effectively in regions where both V. velutina and V. crabro are
present (Fig. 4c, d, and Table S3). This is pertinent when considering future
operational deployment, as it demonstrates the tractability of our integrated
hardware setup in the field. Depending on the specific use case, the platform
can further be configured to integrate solar, battery, or mains power; and
send detection alerts via direct access, Wi-Fi, or through SMS. Such versa-
tility is an important feature when considering the breadth of potential
operators, from beekeepers that often prioritise accessibility at a local scale,
to governments and agencies that may wish to utilise large-scale detection
networks.

While the principle aim of theVespAI system is to enhanceV. velutina
detection capabilities, it also promises to substantially reduce the environ-
mental impact of such surveillance. This ismost pertinentwhen considering
that the majority of current monitoring strategies rely upon baited traps,
which primarily capture and kill non-target insects, making them anti-
thetical to the aims of ecosystem protection26,27. Further, trapping has lim-
ited efficacy in the context of control when not directed at emerging queens,
as for social vespids, killing even considerable numbers of workers has little
impacton the success of the colony61,62. VespAI is thus optimised to facilitate
the detection and tracking of live hornet workers, which currently con-
stitutes the most effective method of nest location and destruction, and
forms the basis of all efficacious exclusion strategies10. Beyond V. velutina,
the platformalso provides a tool for the detection ofV. crabro in areaswhere
it is itself invasive63 or protected64, and its efficient training pipeline is
amenable to the inclusion of additional invasive or conserved species. As
such, the system has strong potential for rapid adaptation to emerging
biosecurity and conservation challenges, with future development aiming to
support this goal.

In conclusion, we demonstrate that VespAI provides an efficient,
sustainable, and cost-effective system for the automated detection of inva-
sive hornets. This fulfils an urgent and timely requirement in the control of
V. velutina, with the potential to substantially improve exclusion efforts
across the invasion front. Futureworkwill aim to enhance the capabilities of
VespAI through the development of an improved user interface, integration
ofmobile network connectivity, and expansion of the detection algorithm to
encompass additional species such as V. orientalis and V. mandarinia.
Taken together, our results demonstrate the power of machine vision when
applied to species monitoring, and provide a robust tool for future control,
conservation, and research applications.

Methods
Bait station
Bait stations consisted of a Dragon Touch Vision 1 1080p camera, sus-
pended at a height of 210mm above a featureless detection board, shielded
by an opaque baffle (Fig. 4). This setupminimised background and lighting

Table 1 | Summary of evaluation metrics for models trained on the HTS and N/NTS

Training data Description Vespa velutina Vespa crabro

mAP F1 Score mAP F1 Score

HTS Hornet training subset consisting primarily of hornets with few non-target insects 0.941 0.989 (0.668) 0.922 0.981 (0.668)

H/NTS Hornet/non-target training subset consisting of hornets and a broad range of non-target
insects

0.960 0.996 (0.194) 0.951 0.992 (0.194)

Results are derived from model evaluation using the validation subset (VS) data, brackets indicate the confidence values at which F1 scores are calculated, mean average precision (mAP) values are
calculated within the confidence range of 0.05–0.95.

https://doi.org/10.1038/s42003-024-05979-z Article

Communications Biology |           (2024) 7:354 5



variability, thus simplifying the computational complexity of hornet
detection, while ensuring that only hornets and other insects visiting the
station were captured in videos. A sponge cloth impregnated with com-
mercial vespid attractant—VespaCatch (Véto-pharma) or Trappit (Agri-
sense)—was placed in a 90mm diameter Petri dish at the centre of the bait
station, thus attracting hornets to landdirectly beneath the camera.Weused
these bait stations to collect and extract an extensive training dataset,

comprising images of V. velutina, V. crabro, and other insects across loca-
tions in Jersey, Portugal, France, and the UK.

To ensure dataset fidelity, resultant images of both V. velutina and V.
crabro were visually identified via expert assessment of colouration,
abdominal markings, and morphology. Additionally, the identity of each
hornet species was confirmed through utilisation of the appropriate taxo-
nomic keys65,66.

Fig. 3 | VespAI model optimisation and explana-
tion. a F1 confidence curves demonstrating mean
precision and recall formodels trained on the hornet
training subset (HTS), and hornet/non-target
training subset (H/NTS), tested against the unseen
validation subset from 2022. Line colours indicate
classes (V. crabro, yellow; V. velutina, purple; class
mean, blue), with the left side of the confidence axis
predominately corresponding to model precision,
and the right side to recall. b Layer-wise relevance
propagation heatmaps demonstrating pixel rele-
vance when classifying hornets, divided by class,
with dark areas indicating regions of irrelevance to
the class in question. The opposite class panels
highlight relevant pixels leading to the wrong class
prediction, while the same-class panels highlight
relevant pixels leading to a correct decision. The
brightness of the pixels is normalised across images
to demonstrate the comparative relevance distribu-
tions of specific image regions. c Layer-wise rele-
vance propagation heatmaps demonstrating pixel
relevance when classifying hornets, divided by
model training data. The HTS panels highlight
relevant pixels when classifying hornets with the
hornet training subset model, while the H/NTS
panels detail this for the hornet/non-target training
subset model.
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Data collection
Data were collected in 2021 and 2022, with selected images being extracted
from the raw video footage, and divided into three subsets. All training
images were collected in 2021, while the final validation images were col-
lected in 2022, ensuring complete spatiotemporal and biological novelty.
Images yielded a maximum simultaneous co-occurrence of six V. velutina,
this being observed in Jersey; and five V. crabro, this being recorded in the
UK. As a processing step prior to training, images were letterboxed—this
being the process of downsampling to 640 × 640 for enhanced throughput
performance, while maintaining a 16:9 aspect ratio and filling any residual
image space with blank pixels. This then allowed for extensive image aug-
mentation during training, producing three additional variations to sup-
plement each original frame, and thus increasing the total number of images
by a factor of four. The specific details of each training data subset are
outlined in the following sections.

Hornet training subset (HTS). A collection of 1717 images for training
and 430 for initial validation metrics, totalling 8,588 after augmentation.
This set contained hornet images with a 50:50 split between V. velutina
and V. crabro, while the number of non-target insects was intentionally
limited. Data were collected from bait stations at sites in the UK and
Portugal.

Hornet/non-target training subset (H/NTS). A collection of 2196
images for training and 549 for initial validation metrics, totalling 10,980
after augmentation. This set contained all hornet images from theHTS, in

addition to 598 images of non-target insects. Images of non-target insects
included a representative selection of species attracted to the bait station,
with a focus on visually similar genera such as Vespula, Dolichovespula,
and Polistes. All insects were identified to the genus level, utilising a
combination of expert assessment and the relevant taxonomic identifi-
cation resources65,67. A full list of non-target taxa is provided in (Table S1).
These data were collected from bait stations at sites in the UK, Jersey, and
Portugal.

Validation subset (VS). A collection of 557 images for final validation
only, totalling 2228 after augmentation.Of these, 433 contained instances
of V. velutina and V. crabro in a 50:50 split, including multiple co-
occurrences of both species and non-target insects. The remaining
images contained a combination of non-target species and empty bait
stations under different lighting and climatic conditions. Validation data
were collected from bait stations at sites in the UK, Jersey, France, and
Portugal.

Data annotation
Annotation was performed using the Plainsight AI (Plainsight) software
interface. This allowed for expedited labelling via automated polygon
selection and AI-assisted predictive annotation. Two classes of annotation
were generated, corresponding toV. velutina andV. crabro, and these were
then manually applied to a random selection of training frames. Polygonal
masks includedhornet bodies andwings, and excluded legs and antennae—
as we found these to be redundant during testing. Once ~500 frames had

Fig. 4 |VespAIhardware andperformance. aDiagramof components and optional
additions for the detector hardware. The system is built around a Raspberry Pi 4,
with flexible modular components including (1) a 16MP IMX519 autofocus camera
module; (2) a 4 GHATwithGNSS positioning for remote transmission of detections
via SMS; (3) a PiJuice 12,000 mAh Battery; and (4) a PiJuice 40 watt solar panel for
self-sustaining remote deployment. The hardware configuration is not limited to
these components and will work with any Raspberry Pi 4-compatible additions,
allowing for complete customisation based on use case and budget. Photographs

courtesy of Raspberry Pi Ltd. b Prototype setup of bait station and hardware to test
the VespAI algorithm in the field. c, d Precision and recall scores across candidate
cameras for cV. velutina and dV. crabro during field testing of the prototype system
(N = 55). Boxplots are coloured by measure (precision, blue; recall, grey) and
grouped by camera performance. Dashed lines indicate the desirable precision
threshold of >0.99. Outliers (greater than 1.5 times the interquartile range from the
median) are denoted with circles.
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been annotated manually, we then used this data to train an automated
detection and segmentationmodelwithin the labelling interface, allowingus
to more rapidly generate further annotations for training. Prior to data
export, all annotations were reviewed manually, and corrections made
where required. Annotations were exported in COCO format, enabling full
segmentation of hornet features from the background68.

VespAI software
To develop a hardware-specific hornet detection and classification model,
we combined our extensive image dataset with bespoke augmentations to
obtain high predictive confidence. The VespAI detection algorithm is built
on the YOLOv5 family ofmachine visionmodels, specifically YOLOv5s—a
variant optimised to runonportable processors such as theRaspberry Pi 448.
As a front-end pre-filter to this, we incorporated the lightweight ViBe50

background subtraction algorithm, allowing the system to remain passive in
the absence of motion (Fig. 2a). Specifically, this pre-filter detects motion
from the raw video input, extracts the contours of moving insects, and
retains only objects within a reference size range generated from known
hornet detections (Fig. 2a and S1). Consequently, energy is conserved, as
only relevant candidate frames are passed on to the YOLOv5 detection
algorithm itself. This then applies a single fully convolutional neural net-
work (F-CNN) to images (Fig. 2b), providing superior speed, accuracy, and
contextual awareness when compared to traditional regional convolutional
neural networks (R-CNN)49,69.

All models were built and optimised using the PyTorch70 machine
learning environment, with the aim of generating an end-to-end software
package that would run on a Raspberry Pi 4. This was achieved by testing
models on a range of YOLOv5 architectures, specifically YOLOv5m,
YOLOv5s, and YOLOv5n; thus optimising them to include the minimum
number of parameters—this being ~7 million—whilst maintaining their
performance (Fig. S2b).

Final models were trained and tested utilising a NVIDIA Tesla V100
TensorCoreGPU(NVIDIA),with a total of 200–300 epochspermodel, and
a batch size of nine images. Model optimisation was evaluated via three loss
functions; boundingbox loss, this being thedifference between thepredicted
and manually annotated bounding boxes; objectness loss, defined as the
probability that bounding boxes contained target images; and cross-entropy
classification loss, encompassing the probability that image classes were
correctly classified (Fig. S2). In all cases, training concluded when there was
no improvement in these three loss functions for a period of 50 epochs.

Prototype hardware
The prototype system was developed to provide proof-of-concept for
remote detection under field-realistic conditions. The VespAI software was
installedon aRaspberryPi 4, running anUbuntudesktop22.04.1 LTS64-bit
operating system. This was then connected via USB to a variety of 1080p
cameras, and tested using both mains and battery power supplies. These
components were mounted on top of a bait station in the standard camera
position, and a remote device was connected to the Pi server via the secure
shell command. This allowed the hardware to be controlled remotely, and
hornet detections viewed from a corresponding computer.

The setup was validated in Jersey during 2023, testing five candidate
camera models and four prototype systems over a total of 55 trials at two
field sites, yielding >5500 frames for analysis. Cameras were selected to test
system robustness to differing lens and sensor options, while maintaining a
standard resolution of 1080p across a range of cost-effectivemodels (Fig. S5
and Table S2). Prior to testing, each camera was calibrated to a specific
height, thus ensuring that the relative size of objects in frame remained
constant across differences in lens angle and focal length (Table S2). Field
sites were situated in Jersey to allow visits from both V. velutina, and V.
crabro workers, along with a variety of common non-target insects, thus
providing a rigorous test of the system under representative conditions.

Each trial consisted of a≥ 100-frame test, with the monitor capturing
and analysing frames in real-time at intervals of either 5 or 30 s—these being
based on known hornet visitation durations (Fig. S4). Specifically, in the first

38 trials, the systemwas set to collect images at 5 s intervals; before optimising
to 30 s intervals in the final 17 trials (Table S3), thus allowing for maximum
power and data storage conservation, in tandem with reliable hornet detec-
tion. (Fig. S4). Results were then manually validated, and compared to the
corresponding model predictions to calculate evaluation metrics.

Following field testing, the system was configured to integrate a
DS3231 Real-Time Clock module, thus ensuring accurate timestamps for
detections in the absence of external calibration.

Statistical analyses
To train the detection models and enable customised image augmentation,
we employed the Python packages ‘PyTorch’, ‘Torchvision’, and ‘Albu-
mentations’. Models were then evaluated via k-fold cross-validation, spe-
cifically utilising the metrics of precision, recall, box loss, objectness loss,
classification loss, mean average precision (mAP), and F1 score (Fig. S2 and
Table 1). Cross-validation analyses employed a subsample (k) of 5, as this
proved sufficient to select an optimised detection classifier that balanced
model size with performance. Resultant model rankings were based on
mean cross-validation scores, calculated using the Python packages ‘scikit-
learn’ and ‘PaddlePaddle’, and the ‘YOLOv5’ integrated validation func-
tionality. Additional performance visualisations were generated via the
packages ‘Seaborn’, ‘Matplotlib’, and ‘NumPy’. All statistical analyses were
performed in SPSS (release v. 28.0.1.1) and Python (release v. 3.9.12).

Training data pipeline. Cross-validation of polygonal and box annota-
tion techniques utilised precision, recall, box loss, objectness loss, clas-
sification loss, and mAP as response variables, and compared models
with copy-paste augmentation levels of 0%, 30%, and 90%, with the
former of these corresponding to box annotations.

Dataset specification. Visualisation of training data subsets to ensure
sufficient image novelty utilised frequency distribution analyses of blur, area,
brightness, colour, and object density between the HTS, H/NTS, and VS.

Model training and optimisation. Cross-validation of model archi-
tectures employed precision, recall, box loss, objectness loss, classification
loss, and mAP as response variables, and compared models using the
YOLOv5m, YOLOv5s, and YOLOv5n architectures.

Validation and performance. Cross-validation of models trained on the
hornet training subset and hornet/non-target training subset used
F1 score and mAP as response variables, and compared models trained
on the HTS and H/NTS, validated against the VS.

Explaining AI predictions by pixel contribution. The LRP class clas-
sification model employed normalised contributions to classification
decisions as a response variable, and compared same and opposite class
pixel contributions. The LRP training subset classification model used
normalised contributions to classification decisions as a response vari-
able, and compared models trained on the HTS and N/HTS.

Prototype and deployment. Precision and recall analyses were utilised
to compare camera models, with comparisons based on median perfor-
mance across test types for each metric.

Statistics and reproducibility
Model development utilised a sample of 3302 images collected from a total
of four countries, each consisting of multiple sampling sites. Data aug-
mentation further expanded this sample to 13,208 images and provided
additional variation to enhancemodel robustness. Analyses of the prototype
system employed a sample of >5500 frames, collected across 55 field trials at
two sites in Jersey. The source data underlying all figures and analyses are
availablewithin the supplementarydata. Full details of statistical tests, subset
sample sizes, andmodel selection procedures are provided in the results and
statistical analyses sections.
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Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The authors declare that all supporting data is available within the sup-
plementary information. For source data underlying the field trial figures
and analyses, see (Supplementary Data).

Code availability
All model code, validation data, manuals, and hardware setup instructions
are available under a CC BY-NC-SA 4.0 license at: https://github.com/
andrw3000/vespai. This permits usage and adaptation for non-commercial
applications, with any derivatives falling under the same restrictions. Access
to this data must be requested via contacting the corresponding author and
providing a statement outlining its intended use case. This pathway aims to
prevent unauthorised commercial usage, while facilitating research colla-
boration. All such requests will receive a response within 14 days.
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