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A marine heatwave drives significant shifts in
pelagic microbiology
Mark V. Brown 1,2✉, Martin Ostrowski 2, Lauren F. Messer 3, Anna Bramucci2, Jodie van de Kamp 1,

Matthew C. Smith1, Andrew Bissett 1, Justin Seymour 2, Alistair J. Hobday 1 & Levente Bodrossy 1

Marine heatwaves (MHWs) cause disruption to marine ecosystems, deleteriously impacting

macroflora and fauna. However, effects on microorganisms are relatively unknown despite

ocean temperature being a major determinant of assemblage structure. Using data from

thousands of Southern Hemisphere samples, we reveal that during an “unprecedented”

2015/16 Tasman Sea MHW, temperatures approached or surpassed the upper thermal

boundary of many endemic taxa. Temperate microbial assemblages underwent a profound

transition to niche states aligned with sites over 1000 km equatorward, adapting to higher

temperatures and lower nutrient conditions bought on by the MHW. MHW conditions also

modulate seasonal patterns of microbial diversity and support novel assemblage composi-

tions. The most significant affects of MHWs on microbial assemblages occurred during

warmer months, when temperatures exceeded the upper climatological bounds. Trends in

microbial response across several MHWs in different locations suggest these are emergent

properties of temperate ocean warming, which may facilitate monitoring, prediction and

adaptation efforts.
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Marine heatwaves (MHWs) are prolonged anomalous
ocean warming events that are emerging as con-
sequential disruptors of coastal ecosystems globally1,2.

While the drivers of individual MHWs can be region-specific and
complex, most extreme MHWs are linked to phases of large-scale
climate modes3, some of which are increasing in frequency and
intensity due to climate change4,5. Similarly, the frequency,
intensity, and duration of MHWs has been increasing over the
last century, linked to anthropogenic global warming6,7 and this
trend is projected to continue1. In fact, by the late 21st century
widespread near-permanent MHW status could be the “new-
normal” across large oceanic regions8. Indeed, reconstructed cli-
matological datasets suggest many parts of the ocean are already
experiencing a near constant state of heat stress compared to
conditions a century ago9.

Several well-documented extreme MHW events around the
globe have had significant ecological and socioeconomic impacts.
Ecological impacts include mass mortality events in marine fauna
and flora such as fish10, abalone11, corals12,13, seagrass14 and
kelp15. In addition to species range extensions, contractions,
disruption to phenology16 and local extinction due to thermal
displacement15,17, potential decreases in net primary
productivity18 and the development of harmful algal blooms10

can lead to impacts on commercially important fisheries and
aquaculture systems19, or even total collapse20. The loss of bio-
diversity, ecosystem function and productivity from MHWs has
knock on economic costs, often exceeding billions of dollars21.
While severe consequences from MHWs have been documented
for macroscopic assemblages, the response of microbial assem-
blages, which form the base of marine food-webs and perform
important functional roles within marine ecosystems, remains
relatively understudied18,22–24. Nevertheless, the relationship to
temperature is consistently identified as a key trait determining
microbial biogeography and assemblage composition25–27 and
thus extreme warming events are considered highly likely to
impact microbial community structure and function28.

In many macro-ecological studies observational data collected
along oceanic gradients has been used to describe the organismal
realised niche and define indicators such as the optimal tem-
perature for a species occupation, the species temperature index
(STI) and related community indicators, such as the community
temperature index (CTI), which describes the abundance-
weighted average thermal affinity of all the organisms present.
These approaches have proven useful in describing and predicting
species’ biogeography29 and providing insights into how whole
ecosystems might respond to medium to long-term warming or
cooling30 and localised extreme events31. By constructing stan-
dardised frameworks, such metrics facilitate quantitative com-
parisons between data from different locations, times and
environments regardless of species composition. From a micro-
bial perspective, using in situ observations of the realised niche
based on census data provide an assessment that accounts for
biotic phenomena and synergistic stressors such as selective
grazing, variability in viral mortality and microbial interactions
that modulate the purely genetically defined “fundamental”
growth optima generally captured in laboratory settings32. Indeed
the “observed” oceanic niche may substantially differ from the
“fundamental” niche33. Here, we collated a highly standardised
molecular dataset describing Southern Hemisphere marine
microbial composition in thousands of samples linked to in situ
oceanic conditions (Supplementary Figs. 1 and 2 and Supple-
mentary Table 1). Samples originate from latitudes 0–66 °S,
depths 0 m–~6000 m and water temperatures −2–32 °C in the
Pacific, Indian and Southern Oceans and the Tasman, Coral,
Arafura and Timor Seas, spanning globally relevant gradients of
light, temperature and nutrients. The combined molecular and

oceanographic dataset was used to generate indices describing the
generalised niche characteristics or environmental preferences of
microbial species and assemblages. We use these indices to elu-
cidate the impacts on pelagic microbiota of MHWs in temperate
waters. Of particular focus was the 2015/16 Tasman Sea MHW
which has been described as ‘unprecedented’ in its duration and
intensity34. The event was captured during repeat sampling at the
long-term Integrated Marine Observing System (IMOS) National
Reference Station (NRS) at Maria Island in the Tasman Sea.
Marine waters in this region have experienced pronounced
warming at rates well above the global average35. Indeed, half of
Australian coastal waters have experienced their warmest ever
monthly temperatures since 200836. Much of this warming has
been associated with boundary currents such as the East Aus-
tralian Current (EAC), which transport warm oligotrophic waters
from the tropics into temperate latitudes and have been linked to
profound ecosystem changes, including ‘tropicalisation’ of mac-
rofauna and flora, as well as microbial assemblages37. We sought
to determine if our niche-based framework could reveal pre-
viously undocumented impacts of this extreme warming event,
and if so whether these impacts were greatest when temperatures
exceeded the long-term climatological maxima.

Results and discussion
The microbial relationship to temperature. Microbial STIs were
calculated for ASVs representing an average of 97.9% of bacterial,
95.2% of archaeal and 93.4% of eukaryotic assemblage structures
(note only STIs that were estimated in > 100 replicate analyses
were included; Supplementary Table 2) allowing us to generate
highly representative community level indices based on the
combined STI of each ASV in the assemblage weighted by its
relative abundance.

Overall, as expected, CTI was significantly aligned with
environmental temperature (Fig. 1, Supplementary Fig. 3 and
Supplementary Table 3) highlighting that at a global scale
bacterial, archaeal and microbial eukaryotic filtering associated
with organisms’ thermal optima efficiently tracks marine
temperature changes. Assemblages with a CTI above in situ
temperatures (i.e. above the 1:1 line in Fig. 1) are described as
under positive thermal bias, being composed of taxa precondi-
tioned to higher temperatures, and so may display reduced
sensitivity to oceanic warming. Conversely, assemblages under
negative thermal bias (below the 1:1 line in Fig. 1) are composed
of taxa with thermal optima lower than in situ conditions and so
may be more sensitive to warming. The CTI ~ temperature
relationship tends to flatten at temperature extremes (e.g. slope
estimate from linear regression for voyage samples
<10 °C= 0.705, 10 °C to 20 °C= 0.98, >20 °C= 0.486 and
similarly, at the southern most NRS station MAI= 0.378, at the
mid-latitude station PHB= 0.767 and at the northern most
station DAR= 0.241; see parameter estimates for linear regres-
sion, Supplementary Table 3), but particularly for bacteria in the
warm range (Fig. 1), such that assemblages in waters warmer than
~25 °C are under negative thermal bias while those waters cooler
than ~5 °C are under positive thermal bias. This pattern is
repeatable using other independent global microbial datasets
(Supplementary Fig. 4) and is also consistent with global
observations of macro-organisms such fish and invertebrates29.
Similarly, waters between 100 and 1000 m are generally under
negative thermal bias while those in waters >1000 m are under
positive thermal bias (Fig. 1a). Such broad global patterns are
thought to result from the fact that very few species have
abundance optima near the edge of their thermal range38. As
range is fundamentally constrained by the maximum and
minimum ocean temperatures, species living near these extremes
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tend to have optima slightly warmer (in the poles) or slightly
cooler (in the tropics) than these absolutes, resulting in combined
community compositions that display either positive or negative
thermal bias. Assemblages that are already under thermal stress,
i.e. displaying negative thermal bias, are likely to be where the
greatest ecosystem perturbations from oceanic warming due to
global climate change will occur. Importantly, within this overall
envelope, the CTI ~ temperature relationship varied considerably
when sampled over time at different locations. At the seven NRS
sites, while uniformly positive, the slope of the microbial
regression ranged from almost flat at stations in the tropics
(DAR, YON) to nearer 1:1 in temperate systems (PHB, ROT,
NSI) and flatter again in the cool temperate waters (MAI, KAI)
(Fig. 1b and Supplementary Table 3). Depending on where each
slope crossed the 1:1 line these relationships resulted in
systematic patterns of seasonal thermal bias at a local level
(Supplementary Fig. 5). We next sought to examine how localised
warming during MHWs affects microbial assemblages against
this backdrop of seasonal thermal bias.

Microbial thermal response to marine heatwaves. The MAI
NRS is located in the temperate Tasman Sea. Environmental
conditions here are highly seasonal (Fig. 2), with water tem-
peratures peaking in late Austral summer/ early autumn (Feb-
ruary-March) and troughs occurring in late winter/early spring
(August-September). Over the temporal sampling period, from
February 2012–2020, this site experienced 34 MHWs (Supple-
mentary Table 4), most of which lasted less than two weeks and
were thus too ephemeral for our sampling regime to capture. The
most sustained and intense event, however, occurred during the
Austral summer of 2015/16 as part of a widespread Tasman Sea
MHW event34,39 (Fig. 2).

Anomalous poleward advection of warm water into the
Tasman Sea by the East Australian Current (EAC; Australia’s
Pacific western boundary current) and its eddies is considered to
be the dominant contributing factor to the “unprecedented”
2015/16 MHW event in the Tasman Sea34,39. The resultant
MHW was mainly localised along the southeast Australian coast
(Fig. 2a and Supplementary Fig. 6a–c). Sea surface temperatures
were the warmest ever recorded for that region, with anomalies

up to 3 °C being observed over thousands of square kilometres34.
The event lasted for many months (from 6 September 2015 − 9
May 2016). At the MAI NRS this event manifested as two
prolonged MHWs interspersed with ~1 week of non-MHW
conditions (Maria Island MHW No’s 68 and 69: Supplementary
Table 4). Combined, these MHW events lasted 241 days
(excluding the 7-day interval), had a peak intensity of 3.69 °C
and represented a cumulative intensity (sum of all heatwave days
and the average heatwave intensity in °C) of 499.3. Because the
definition of MHW events used here is based on satellite data, and
so restricted to surface waters, deeper waters may not have
undergone unusual warming during the periods we identified.
Indeed, during the 2015/16 MHW, while the upper water column
was in a state of MHW, below ~50 m the water was unusually
cool, and actually cooled until mid-February 2016 (Fig. 2b).
However, waters rapidly warmed in late February leading to
warm temperature anomalies for deeper waters during late
summer and autumn 201634 (Fig. 2b). A transition to very low
nutrient concentrations occurred at the same time, suggesting a
sustained deep-water intrusion over the continental shelf gave
way to warmer oligotrophic poleward flowing EAC derived
waters very rapidly in late February 2016.

Based on CTI ~ temperature relationship at the MAI NRS,
bacterial and archaeal assemblages are under some degree of
seasonal thermal stress during the months November-April when
waters are warming to their peak (Supplementary Fig. 5a).
However, while they display a similar seasonal cycle, eukaryote
assemblages maintain a higher CTI and remain under positive
thermal bias throughout most of the year (Supplementary Fig. 5a).
We generated linear models describing the CTI ~ temperature
relationship at MAI for each depth and kingdom separately. This
enabled the identification of samples that deviated from long-
term trends (for example, where the CTI was higher or lower than
would be expected for a given in situ temperature, indicating
times when there is significant deviation from the normal
seasonal mechanisms driving community assembly). In total,
across the three kingdoms (bacteria, archaea and eukaryote) we
identified 53 significant outliers (>four times mean Cook’s
Distance; Supplementary Fig. 7), 72% of which occurred in
samples collected during MHWs and 51% of which occurred
during the ‘unprecedented’ 2015/16 Tasman Sea MHW (Oliver

Fig. 1 The relationship between bacterial community temperature index and in situ environmental temperature. a Samples collected spatially during
oceanic voyages in the Southern Hemisphere (n= 1946). b Samples collected temporally at IMOS National Reference Stations (NRS) time-series sites
around the Australian continental shelf (n= 1660). Dashed red line represents a slope of one.
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et al 2017). The highest water temperature recorded during the
sampling period outside of summertime MHW conditions was
18.3 °C. When MHW activity forced in situ temperatures above
this level, the slope of the bacterial and archaeal CTI ~
temperature relationship increased (Supplementary Fig. 7a, b),
suggesting selection pressure based on temperature was stronger
when these unprecedented temperatures were reached. The
eukaryote assemblage maintained a positive thermal bias until
higher temperatures, with the CTI ~ temperature slope crossing
the 1:1 line at ~17.5 °C, nearer the peak MHW temperatures
(Supplementary Fig. 7c). This suggests eukaryotic microbes
experienced less temperature stress during MHW conditions.
Even so, the highest CTIs observed at Maria Island for all three
kingdoms and for all six depths (except Archaea at 50, 75 and
85 m) occurred near the peak of the 2015/16 MHW, during
sampling on either the 4th or the 22nd of February 2016, after
several months of the near continuous MHW activity (Fig. 3a and
Supplementary Figs. 8a and 9a). The cold summer conditions in
deeper waters, followed by warm temperature anomalies, are also
evident in the signatures of the microbial assemblages. While
peak CTI in deeper waters occurred in February, the CTI during
November–January sampling periods remained at comparatively
low values for summer periods (Fig. 3a).

Temperature based selection can be observed by directly
comparing the STI of taxa that were present in greater or lesser
abundances during the 2015/16 MHW event than in equivalent
months during non-MHW conditions (Fig. 3b). The STI of taxa
that were positively selected for (i.e. had a greater relative
abundance during MHW conditions) in surface waters (0–10 m)
effectively tracked the increasing environmental temperatures as
the MHW progressed, resulting in a thermal bias for these
organisms centred on zero (Fig. 3b and Supplementary Figs. 8b

and 9b). Conversely, taxa that were selected against displayed
negative thermal bias and, for many bacteria and archaea, in situ
MHW temperatures exceeded even the upper temperature of
their normal range (Tmax: upper quartile of temperature profile)
(Fig. 3c and Supplementary Fig. 8c), especially during the peak
MHW months of February and March. In deeper waters taxa
selected both for and against generally tracked environmental
temperatures during all months until the March sampling period
(Supplementary Figs. 10–12), which was when deeper water
temperatures peaked and entered MHW status (Fig. 2b).
Ultimately, the 2015/16 MHW event drove environmental
temperatures to approach or exceed the upper limits of the
known thermal distribution of many taxa normally inhabiting the
Maria Island NRS.

The niche state of pelagic microbial assemblages. We extended
our temperature-based framework to include other environ-
mental variables widely available for our dataset (Supplementary
Fig. 2 and Supplementary Table 1), resulting in the generation of
species and community salinity (SSI/CSI), nitrate + nitrite (SNI/
CNI), phosphate (SPI/SPI), silicate (SSiI/CSiI) and oxygen (SOI/
COI) indices. As with temperature, at a global scale most com-
munity indices reflect efficient microbial filtering along environ-
mental ocean gradients (Supplementary Table 5) and at MAI
reflected the temporal dynamics of seasonal cycles and associated
effects of water column mixing and stratification. CSI, CNI and
CPI for each kingdom were positively correlated (Pearson cor-
relation coefficient > 0.5) with in situ environmental conditions
(Supplementary Table 5). Additionally, the archaeal CSiI was
correlated with in situ silicate concentrations (Pearson correlation
coefficient= 0.76) and bacterial and eukaryotic COI were

Fig. 2 Conditions during the 2015/16 marine heatwave at Maria Island. a Map displaying SST anomaly during the 2015/16 MHW event in the Tasman
Sea. Six-day composite night-only SST anomaly and current velocity images are centred around February 8th, 2016; date of peak intensity of 2015/16
MHW at Maria Island National Reference Station (42° 35.80 S, 148° 14.00E). Data was sourced from Australia’s Integrated Marine Observing System
(IMOS) – IMOS is enabled by the National Collaborative Research Infrastructure Strategy (NCRIS). It is operated by a consortium of institutions as an
unincorporated joint venture, with the University of Tasmania as Lead Agent. b Temperature profile of the Maria Island National Reference Station water
column from July 2015 through October 2016, capturing the MHW event. Data consists of in situ monitoring at depths 0m, 20m and 85m, as well as
ship-based CTD profiling at depths 2 m,10m, 20m, 50m, 75m and 85m collected at the time of sampling for molecular analysis. Horizontal lines
represent the highest temperature at each depth to be observed outside the 2015/16 MHW event.
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correlated with in situ oxygen concentrations (Pearson correla-
tion coefficient 0.51 and 0.73 respectively; Supplementary
Table 5). As with temperature, the 2015/16 MHW resulted in
extreme levels for most of these indices, with the highest CSI and
lowest CNI, CPI, and COI observed at MAI all occurring during
this event (Supplementary Figs. 13–17). Additionally, this MHW
accounted for 27% of all CSI outliers, 50% of all CPI outliers and
38% of all CNI outliers in the trend analysis (Supplementary
Figs. 18–20).

Another series of MHWs occurred in the Tasman Sea during
the Austral summer of 2017/18. From 16 November 2017
through 19 March 2018 at Maria Island three heatwave periods
occurred that rendered MAI under MHW status for 110 days out
of the 124-day period. While the 2015/16 event was localised to
Australia’s eastern seaboard, the 2017/18 event spread further

east, covering the entire Tasman Sea (Supplementary Fig. 6
compares SST anomalies in the Maria Island region between A-
C) 2015/16 MHW and D-F) 2017/18 MHW), with SST anomalies
reaching 3.7 °C in the eastern Tasman Sea near New Zealand16.
Rather than advective heat associated with the EAC extension, it
has been suggested the 2017/18 event was more closely tied with
local air–sea heat fluxes40 and coincided with significant land-
based heatwaves in both Tasmania and New Zealand16. Although
sampling of this event was not as comprehensive, and the
cumulative intensity of the heatwave at MAI was not as intense
(245.52 vs. 499.30 in total for the 2017/18 and the 2015/16
heatwaves, respectively), we did observe similar general trends in
community indices, especially in surface samples. Temperature
and salinity-based indices of all kingdoms increased to near the
peak levels observed during the 2015/16 MHW, along with low

Fig. 3 The evolution of temperature selection for bacteria during the 2015/16 Tasman Sea MHW. a Bacterial community temperature index (CTI) at the
Maria Island NRS during the sampling period. Lines correspond to depths: Surface (black), 10 m (dark grey), 20m (light grey), 40m (dark green), 50m
(light green), 75m (light blue) and 85m (dark blue). The 2015/16 and 2017/18 heatwave periods are shown as light red background, with peak intensity
for each MHW event identified with a red bar. b Density plots display the distribution of the thermal optima and (c) the thermal maxima of bacteria
selected for (total n across all months =2017) or against (total n across all months =1735) in surface waters (0 and 10m depth) during the 2015/16
MHW, compared to equivalent months during non-heatwave conditions (YES=selected for during the heatwave event, NO=selected against during the
heatwave event). Dashed red line indicates zero bias. Notably, during February and March, the thermal maxima of many organisms selected against during
the MHW is exceeded.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05702-4 ARTICLE

COMMUNICATIONS BIOLOGY |           (2024) 7:125 | https://doi.org/10.1038/s42003-023-05702-4 |www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


levels in nutrient-based indices (Fig. 3a, Supplementary Figs. 8a,
9a, and 13–17), illustrating a repeatable pattern of selection for
community niche characteristics under heatwave conditions.
Further, given the different proximate causes of each of these
MHW events, the observation of similar trends suggests they are
intrinsically linked to the ocean warming itself, rather than
poleward advection of microbial assemblages (via the EAC, which
has been linked to shifting microbial compositions at sites further
north37).

The environmental niche status of microbial assemblages
shifted to novel states during the 2015/16 MHW in the
Tasman Sea. We clustered samples based on the values of their
community indices, providing a single reference cluster for each
sample in each kingdom (bacteria n= 20 clusters, archaea n= 20,
eukaryote n= 14) reflecting the generalised niche characteristics
or environmental preferences of the assemblage (Supplementary
Figs. 21–23). Clusters are indexed based on increasing mean of
the community temperature index. Over basin scales these clus-
ters resolve along lines of depth and latitude, providing insight
into oceanic zones where biological niche transitions occur
(Supplementary Fig. 24), while resolving over temporal scales at
the local level. Bacterial samples collected at MAI NRS generally
resolved into clusters 9, 11, and 12, with 77% (329/427) falling
within cluster 11 (Fig. 4). When transitions between cluster states
are observed, they are aligned with seasonal changes. For exam-
ple, 49 out of 52 samples classified as cluster 9 occur in samples
collected between August and November, corresponding to the
late Austral winter and spring (Supplementary Fig. 25). During
this time waters are cooler and strong winds result in a well-
mixed water-column (Fig. 2b). Additionally, in mid- to late
summer, when the water column becomes stratified, another

transition to cluster 12 occurs, mostly in surface samples (Sup-
plementary Fig. 25). However, during the 2015/16 MHW, sam-
ples from MAI transitioned to clusters 13 and 17 (Fig. 4 and
Supplementary Fig. 25). These two clusters represent commu-
nities with quite different niche characteristics to those usually
observed at MAI NRS, with affinities for higher temperature and
salinities and lower nutrient and oxygen requirements (Fig. 5).
For both clusters 13 and 17, the MAI NRS, at latitude 42° S,
represents the furthest south (poleward) they were observed in
our entire dataset (Supplementary Fig. 24; mean/maximum
(equatorward) latitude for cluster 13= 35.1° S/29.9° S and cluster
17= 27.3° S/10.5° S) and they are rarely, if ever, observed at MAI
outside of this MHW event (cluster 13 was recorded once in
March 2012). Indeed, these niche state clusters are generally
characteristic of microbial assemblages inhabiting warm oligo-
trophic water masses much further to the north (equatorward),
including at National Reference Stations PHB (latitude 34° S),
NSI (27° S) (Fig. 4) and YON in the Great Barrier Reef Lagoon
(19° S; Supplementary Fig. 24). Cluster 17 in particular is often
observed in the Pacific western boundary current (WBC) the East
Australian Current and as far north as 10.5° S in the Coral Sea,
1936 nautical miles (3585 km) to the north of MAI (Supple-
mentary Fig. 24).

Marine heatwaves modulate the diversity and structure of
microbial assemblages. The move towards higher community
temperature and lower nutrient indices (Fig. 5) is a result of the
niche preferences of the organisms selected for and against during
MHW conditions. Not all “winners” under MHW conditions
result in taxonomic turnover. For example some ubiquitous taxa
such as the SAR11 clade Ia are composed of many strains that
resolve along temperature gradients26 and, in relation to MHWs,

Fig. 4 Cluster state of bacterial assemblages at National Reference Stations Maria Island (MAI), Port Hacking (PHB) and North Stradbroke
Island (NSI). During the heatwave in 2015/16 assemblages at Maria Island transitioned to niche states generally observed at stations situated hundreds of
kilometres to the north (equatorward). (Legend: Black = cluster 9, Turquoise = 10, Red = 11, Blue = 12, Yellow = 13, Pink = 14, Brown = 17, Maroon = 18).
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transitions between strains adapted for different temperatures
occur (mean STI of SAR11 Ia strains selected for/against each
month of the MHW; October 14.54 °C/12.87 °C; November
17.11 °C/13.87 °C; December 18.20 °C/14.04 °C; February
17.05 °C/14.93 °C; March 19.91 °C/14.33 °C; April 19.70 °C/
15.75 °C). However, many of the taxa that were favoured during
MHW conditions display well established preferences for warm,
oligotrophic conditions, including the marine cyanobacteria
(Synechococcus, Prochlorococcus and the diazotrophic Tricho-
desmium), photoheterotrophic bacteria such as the SAR86,
SAR116 (Fig. 6a) as well as photoheterotrophic Archaeal lineages
MGIIb-O1, MGIIb-O3, MGIIb-O5, and MGIIa-L1, (Supple-
mentary Fig. 26a) which grow particularly well in warm (median/
optimum temperatures > 20 C) low nutrient waters41,42. Within
the eukaryotes, MHW conditions favoured many largely
uncharacterised dinoflagellates clades (Supplementary Figs. 27a
and 35) as well as small unicellular algae (Chlorophytes) of the
Class Mamiellophyceae (as identified using chloroplast 16S rRNA
gene sequence data; Supplementary Fig. 28). Conversely, MHW
conditions saw a transition away from bacterial groups such as
Flavobacteria clades NS2b, NS5 and NS7 and the Rhodospirillales
AEGEAN-169 Marine Group (Fig. 6a) that are often associated
with particle attachment to larger phytoplankton.

Similar transitions away from large phytoplankton and their
associated bacteria, towards unicellular phototrophs (such as the
marine cyanobacteria and Chlorophytes) and photoheterotrophic

bacteria and archaea have been observed in warming eastern
Australian waters linked to the seasonal transport by the East
Australian Current37. Interestingly, these transitions also align
with those observed during a large and sustained MHW in the
northeast Pacific Ocean during 2014/15, (see43 and reference
therein). At both the northerly and southerly extent of this MHW
(northerly station Ocean Station Papa (OSP), 50 ° N, 145 ° W,
in the oceanic subarctic Pacific;22,23 southerly stations in the
Southern California Current (SCC) ecosystem at 29.84 − 37.61 °N,
117.28 − 125.75 °W24), marine cyanobacteria, particularly
Prochlorococcus, Synechococcus increased in relevance as waters
became more oligotrophic. Further, at OSP photoheterotrophs
including SAR11 Ia and the MGII Archaea were favoured and
unicellular Chlorophytes also proliferated, while at SCC an array of
dinoflagellate taxa were favoured.

Taken together, these common responses (i.e. MHW phyto-
plankton assemblages dominated by small, unicellular Chlor-
ophytes, dinoflagellates and cyanobacteria, along with increased
numbers of photoheterotrophs), may be fundamental results of
warming in temperate marine waters. Importantly, these shifts
can have profound ecosystem consequences as the rates,
magnitude and fate of carbon fixed by small unicellular
phytoplankton can be quite different to that fixed by larger
organisms such as diatoms37.

Non-metric multi-dimensional scaling (nMDS) analysis shows
surface samples from MAI during MHWs form distinct grouping

Fig. 5 Relationship between bacterial niche-based clusters observed at Maria Island and community indices. CTI community temperature index, CSI
community salinity index, CNI community NOx index, CPI community phosphate index, CSiI community silicate index, COI community oxygen index.
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to those observed at other times at MAI or at PHB
(Supplementary Fig. 29). That is, while niche preferences of the
MHW assemblages may align to those observed in assemblages
farther north (Fig. 4), the phylogenetic composition and relative
abundances of taxa remain distinct. To determine how the
community structure of these assemblages may be altered we
further examined aspects of diversity and composition.

MAI displays a strong seasonal cycle of microbial diversity, a
pattern that has previously been linked to high environmental
heterogeneity at the site44. During non-MHW conditions both
Shannon and Inverse Simpson measures of diversity peak during
Austral winter months although the timing of the peak differs
slightly between kingdoms (Bacteria peak between June -August,
Archaea around July-September and Eukaryotes peak between
May-July (Fig. 6b, c and Supplementary Figs. 26 and 27). When
MHW conditions occur during the warmest months of March
and April, bacterial and archaeal diversity actually increases
significantly (Fig. 6b-c; Supplementary Fig. 26b, c and Supple-
mentary Tables 6a, b and 6a, b) compared to levels during non-
MHW conditions, and in the case of bacteria modulates the shape
of the seasonal diversity cycle by shifting the peak towards spring.
Indeed the highest bacterial diversity levels observed occurred
during MHW conditions. Bacterial and eukaryotic diversity also
increase during MHW activity in spring and early summer

(November and December), when diversity typically reaches its
lowest levels, leading to a further moderation in the degree of
variability in the seasonal cycle (Fig. 6b, c, Supplementary Fig. 27
and Supplementary Tables 6 and 8).

The increases in diversity during MHWs, along with the
appearance during the 2015/16 MHW of unusual taxa such as
Prochlorococcus and Trichodesmium erythreum (which overall
occurred in <1% of samples from the cool temperate MAI NRS),
suggest heatwave conditions support the appearance of uncom-
mon taxa at this site. An important consequence of ocean
warming on macro-organisms has been the proliferation of
species redistributions and range shifts, leading to the formation
of assemblages that facilitate novel biological interactions45. This
phenomenon has been well documented around the Australian
coastline, including in our study region46. Given that many of the
important ecosystem services provided by microorganisms are a
result of biological interactions47, we sought to consider to what
level the introduction of new species into the environment was a
driver of diversity and restructuring in microbial assemblages. To
do this we identified how often each ASV occurred at MAI over
the sampling period, based on presence/absence. ASVs were
defined as common if they occurred in > 90% of samples and
uncommon if they occurred in < 10% of samples. For the bacteria,
out of 15,674 total ASVs, this resulted in a “core” group of 140

Fig. 6 Marine heatwaves lead to compositional and structural changes in microbial assemblages. a Heatmap detailing the bacterial genera contributing
most to the compositional difference between surface samples collected in equivalent months during MHW and non-MHW conditions. b The seasonal
cycle of bacterial Shannon diversity, (c) Inverse Simpsons diversity and (d) the number of “uncommon” bacterial taxa in each sample are all modulated by
MHW condition. Samples collected during MHW conditions (n= 121) are in red and those collected during non-MHW conditions (n= 378) are in blue.
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common ASVs. Most ASVs (n= 11,978) were uncommon but
the majority of these also displayed low overall relative
abundances, forming part of the well-documented rare tail of
microbial assemblages48,49. To determine if uncommon taxa were
becoming more prevalent during MHWs than expected, we
examined the top 500 most abundant ASVs in each sample
(representing the top ~1/3 of ASVs, with the average number of
unique ASVs per sample being 1,511) thus avoiding the rare tail
where sampling may not reveal robust patterns. Overall, bacterial
assemblages during MHWs contained a significantly greater
proportion of uncommon (but relatively abundant) taxa when
they occurred during the late Austral summer, with particularly
high values between February – April, Fig. 6d and Supplementary
Table 6C), times when diversity is high and the microbial
assemblage is already in a state of thermal deficit or stress
(Supplementary Fig. 5). Conversely, MHW samples also con-
tained fewer of the common taxa, however they generally retained
well over 100 (of the 140) core bacterial ASVs. Thus, when
MHWs occurred during warmer months, forcing local tempera-
tures beyond upper levels of the long-term climatology, they
supported relatively high levels of uncommon, warm adapted
bacteria while retaining many core species, leading to increased
diversity and the development of novel assemblage structures, as
seen in macro-organisms. Although these assemblages may only
persist in the short term, if, as expected under future climate
scenarios, near continuous MHW conditions are achieved in
these temperate regions8, the local pelagic microbiota will
undoubtedly undergo significant change, with concomitant effects
on the ecosystem services they provide.

Conclusions
Here we develop and demonstrate a framework for examining the
impacts of MHWs (and longer-term climate-related warming) on
microorganisms that is aligned with efforts developed for macro-
organisms. Because these indices are fundamentally linked to
assemblage composition they provide a metric of turnover along
with a direction of selective pressure. While direct comparisons of
molecular methods to data generated by other methods (e.g.
microscopy) at the species level should be undertaken with cau-
tion (see Methods and Supplementary Data 2), comparison
between the magnitude and directional response of community
level indices across taxonomic boundaries (e.g. microbes to
phytoplankton to zooplankton to fish) will likely prove fruitful as
generalised whole of ecosystem indicators. Our indices are
available to be visualised and interrogated using the IMOS Bio-
logical Ocean Observer application50 (shiny.csiro.au/BioOcea-
nObserver/) While focusing here on extreme temperature events,
our approach lends itself to examining the effects of other eco-
system perturbations such as cold spells, storms that cause
extreme rainfall, turbulence and mixing etc., where selection is
likely to occur along complex gradients of environmental traits.
These indices provides a way to distil the complex microbial
response to extreme marine events into simple metrics that could
be used as a warning or alert signal to facilitate clear, effective
communication and aid public comprehension51. Using this
framework, we address a considerable deficiency in knowledge
concerning MHW impacts on the coastal ocean. We show that
extreme warming events, such as the 2015/16 MHW in the
Tasman Sea, have the capacity to drive profound transitions in
the niche characteristics of microbial assemblages and modulate
strong seasonal cycles of diversity. Common trends in indicators
across multiple heatwaves, as well as common taxonomic
responses observed at other locations, suggest that transitions to
small, unicellular phototrophs and photoheterotrophs may be
emergent properties of temperate ocean warming. Such shifts can

have cascading effects across the food chain and will provide a
focus for monitoring, prediction and adaptation efforts moving
forward52.

Methods
Marine heatwave definitions. Heatwave events, defined as peri-
ods of at least five consecutive days when daily sea-surface tem-
peratures (SSTs) exceed the 90th percentile of climatological
(seasonal) SST observations (calculated between 1/1/1982 and 31/
12/2011)53 were identified at Australia’s Integrated Marine
Observing System (IMOS) Maria Island National Reference Sta-
tion (NRS) using coordinates −42.625 °S, 148.375 °E in the
“marineheatwaves.org” heatwave tracker tool. This tool uses the
daily Optimally Interpolated Sea Surface Temperature (OISST)
data from the National Oceanic and Atmospheric Administration
(NOAA), specifically the AVHRR-only v2.0 data from 1982 to
2015 and the AVHRR-only v2.1 data from 2016 to present day.
All events identified at Maria Island during the sampling period
are outlined in Supplementary Table 4.

Ocean sampling and molecular analysis and bioinformatics. All
data were collected and analysed in a standardised manner in
accordance with the protocols of the Australian Microbiome (see
the Ausmicrobiome Scientific Manual; https://confluence.csiro.
au/display/ASM). Samples from oceanographic transects in the
Pacific, Indian and Southern Oceans and the Tasman, Coral,
Arafura and Timor Seas span latitudes 0 − 66 °S, depths from
surface to ~6,000 m, (Supplementary Fig. 1) and water tempera-
tures −2 to 32 °C. Temporal samples are included from seven
near decadal Integrated Marine Observing System (IMOS)
National Reference Stations (NRS)54. These sites, located at Maria
Island (MAI; 42° 35.80 S, 148° 14.00 E), Kangaroo Island (KAI;
35° 49.93 S, 136° 26.84 E), Rottnest Island (ROT; 32° 00.00 S, 115°
25.00 E), Port Hacking (PHB; 34° 05.00 S, 151° 15.00 E), North
Stradbroke Island (27° 20.50 S, 153° 33.73 E), Yongala (19°
18.51 S, 147° 37.10 E) and Darwin Harbour (DAR; 12° 24.00 S,
130° 46.08 E) span ~30° of latitude along the Australian con-
tinental shelf, occupying temperate, subtropical and tropical
waters with minimum and maximum sea surface temperatures
(SST) ranging between 11 °C and 31 °C. They are positioned to
maximise spatial representation of Australian marine
bioregions55.

For each sample, 2 litres of seawater was collected and filtered
without pre-processing through a 0.2 μm filter. DNA was
extracted and purified using the DNeasy® PowerWater® Sterivex™
DNA Isolation Kit (Qiagen, Germany). Samples collected at
National Reference Stations underwent an additional Phenol:-
Chloroform:Isoamyl Alcohol step54. The quality and quantity of
DNA was checked using a NanoDrop™ 8000 Spectrophotometer
(Thermo Scientific™). Bacterial, archaeal and microbial eukaryote
partial small subunit ribosomal RNA genes were amplified
independently, but from the same extracted DNA sample using
primer sets bacterial 27f (AGAGTTTGATCMTGGCTCAG56)
and 519R (GWATTACCGCGGCKGCTG57); archaeal A2F/
Arch21f (TTCCGGTTGATCCYGCCGGA58) and 519 R*
(GWATTACCGCGGCKGCT56) and eukaryote TAR-
euk454FWD1 (CCAGCASCYGCGGTAATTCC59) and
TAReuk-Rev3 (ACTTTCGTTCTTGATYRATGA60). Sequencing
was carried out using either 250-bp (eukaryote 18S rRNA gene)
or 300-bp (bacterial and archaeal 16S rRNA gene) paired-end
sequencing on the Illumina platform at the Ramaciotti Centre for
Genomics (University of New South Wales, Sydney). All
environmental metadata including physical (temperature, salinity,
oxygen), biological (chlorophyll) and nutrient parameters
(nitrate/nitrite, phosphate, silicate) were collected and analysed
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following the standard procedures of the Integrated Marine
Observing System (IMOS)61.

The open-source program “R” was used for amplicon read
processing, statistical analysis, and production of figures62. All
maps and graphs were generated using the package “ggplot2”
unless otherwise stated. Map boundaries were provided by
“rnaturalearth” libraries. Illumina paired R1 and R2 reads were
processed using the DADA2 pipeline (version 1.2.0;63), adapted
slightly to ensure the highest number of merged reads after
processing (https://github.com/martinostrowski/dada2.pipeline).
Sequence data was processed using the DADA2 package to
identify unique amplicon sequence variants (ASVs). Briefly, reads
with ‘N’ bases were discarded and bacterial V1-V3 primers were
truncated using “cutadapt”64, R1 and R2 were trimmed to remove
low-quality terminal ends, then denoised, merged, and chimeras
were removed using the dada2 removeBimeraDenovo program at
a less stringent minFoldParentOverAbundance=4 (advised for
use when expecting a higher rate of less divergent distinct
amplicon sequence variants (ASVs) within the dataset). Quality
control measures resulted in the removal of ~50% of raw
sequence reads. Initial and final read numbers are provided in
Supplementary Data 1 and histograms of final read numbers are
presented in Supplementary Fig. 30. Mean number of sequences
per sample in final tables were 54484 in the bacterial table, 81231
in the archaeal table and 76985 in the eukaryotic table.

Bacterial and archaeal 16S rRNA ASVs were taxonomically
identified using the Genome Taxonomy Database Tk-v 1.5.0
(GTDB;https://gtdb.ecogenomic.org/), chloroplast 16S rRNA
ASVs and Eukaryote 18S rRNA ASVs were identified using the
PR2 databases (version 5.0.1;65). The quality ASV tables were
then secondarily filtered to remove all ASVs not annotated to the
target kingdom. Samples required > 5000 total reads to be
included in downstream analyses.

Model-based clustering and classification of assemblages based
on community indices was performed using the ‘mclust5’
package66. Standardised (zero mean, unit standard deviation)
community weighted index data were pre-processed using the
Uniform Manifold Approximation and Projection (UMAP;
version 0.5) algorithm67 for dimensional reduction. The number
of components (clusters) in each finite Gaussian mixture model
(GMM) was based on examination of Bayesian Information
Criterion (BIC) and integrated complete-data likelihood
criterion (ICL).

Statistical and reproducibility. Shannons diversity (H) was cal-
culated as -∑Sobs

i¼1
ni
N ln ni

N and Inverse Simpsons (I/D) as

1/∑Sobs
i¼1

niðni�1Þ
NðN�1Þ where Sobs = number of unique ASVs in a sample,

ni = relative abundance of the ith ASV, and N = total abundance
of ASVs in the sample.

For non-metric multidimensional scaling (nMDS) and Simi-
larity Percentage (SIMPER) analyses, observations of zero
abundance were replaced in ASV tables with a non-zero estimate
value using the count zero multiplicative (CZM) function from
the zCompositions68 package, and centred log ratio (CLR)
transformation was carried out using the CoDaSeq package69.
Resultant tables were imported with environmental data into the
Primer VX software where nMDS and SIMPER were performed
to identify ASVs differentially abundant between MHW and non-
MHW conditions in equivalent months. Taxonomic heatmaps
displaying differentially abundant taxa were generated using
Simper outputs for each month aggregated to Genus (Bacteria,
Archaea) or Class (Eukaryote, Chloroplasts) taxonomic level and
scaled by subtracting the mean and dividing by the standard
deviation using the scale function in R with default settings.

Linear models describing the relationship between community
weighted indices and in situ environmental variables at each
sample depth and outlier detection of those samples with a
Cook’s distance four times the mean of all points, were carried
out using the lm() and cooks.distance() functions.

For each ASV we calculate the optima and range of its
relationship with available environmental parameters including
temperature, salinity, nitrate/nitrite, phosphate, silicate, oxygen
and chlorophyll (see https://confluence.csiro.au/display/ASM/
meth_6.1.1+Microbial+Niche+Indices).

Relative abundance data along with associated environmental
variables were fit to a Kernel Density Estimation (KDE) function
using the density() function in the stats package. This is a non-
parametric smoothing technique used to estimate the probability
density function of a random variable. The value of the
environmental variable at the maximum point of the KD curve
(point of maximal estimated abundance), was defined as the
species optima. Species ranges were calculated as the difference
between the minimum and maximum of the environmental
parameter where kernel density = ¼ peak height. We allowed the
normal distribution of the kernel density model to continue 3 °C
each side of the minimum and maximum temperature in each
instance to allow for potentially negatively or positively skewed
range dynamics (e.g. organisms with temperature optima close to
or at the minimum or maximum range). Examples of raw data
and KD models are provided in Supplementary Fig. 31 and
Supplementary Table 10. To test robustness of the kernel density
approach we also calculated temperature optima based on the
mean temperature of the samples in which each ASV displayed its
four highest abundances in the dataset. These two methods were
highly aligned (linear model of comparison: Bacteria slope =
0.97, r2= 0.998; Archaea slope = 0.98, r2= 0.998; Eukaryote
slope = 1.04, r2= 0.995). For each index we report the mean and
standard deviation based on 1000 repeat KDE calculations. To
remove sampling bias, for each of the 1000 iterations, samples
were selected randomly with replacement from bins along the
variable gradient, based on the number of samples in the smallest
sized bin. Each ASV was required to be present in at least
100 samples in the subset for the calculation to be performed. In
all we calculated 6 indices and associated measures, which are
illustrated by the example of Temperature below.

Species Temperature Index (STI) is a measure of the optimal
temperature of the realised thermal niche of an organism
(represented by an ASV) for a given environmental variable. It
was calculated as (1) the value corresponding to the peak of the
abundance-weighted KD model (Supplementary Fig. 31) and (2)
using the mean of the value of the variable for samples containing
the top 4 relative abundances. The unit of selection in marine
microbial assemblages is often at the sub-species “eco-type“ or
clade level70,71 which requires the highest possible molecular
resolution to identify, hence the use of single nucleotide resolved
ASVs. Despite this we retain the nomenclature “species”
temperature index etc. in order to align with similar efforts in
maro-organisms and to facilitate comprehension by non-
specialists.

Species thermal range (STR) is the temperature range for a
defined species abundance, here calculated as the difference
between the minimum and maximum temperatures where kernel
density = ¼ peak height (Supplementary Fig. 31).

Species thermal bias (T-bias, STI - STinsitu) is the difference
between STI and environmental sea temperature at the point of
sampling (ST) and thus is not a static factor for any given species.
Thermal bias can also be calculated using the species maximum
temperature (Tmax; maximum temperatures where kernel
density = ¼ peak height) rather than optimum (STI), providing
an indication of periods where environmental temperatures
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approach or exceed the upper limits of a species known thermal
distribution.

Community temperature index (CTI, ∑i¼N
i¼1 STIiwi=∑wi) is the

average thermal affinity of the entire assemblage. Calculated as
the sum of the realised thermal optimum (STI) of each organism
(i) present weighted by their relative abundance (wi), divided by
total organismal abundance in the sample. Only STIs with > 100
estimates were used to calculate CTI values.

Community thermal bias (T_bias, CTI - STinsitu) is the
difference between CTI and environmental sea temperature
(ST) at the point of sampling.

To test the effect of upstream bioinformatics choices on the KD
approach to community weighted index generation, we compared
the results detailed here with those that are now output on an
ongoing basis by the Australian Microbiome (AM). The AM
generates the community weighted indices from the same sample
set using the same code as described here, but, for historical
reasons, uses different intermediate bioinfomatic protocols (see
the AM methods manual for details https://confluence.csiro.au/
display/ASM/meth_5.1+Amplicon+Analysis). The major differ-
ences between protocols are that the AM utilises the USEARCH
v11 algorithm72 to resolve ASVs (as opposed to DADA2 herein)
and species and community indices are generated using samples
rarefied to 20,000 reads (as opposed to un-rarefied sample with
>5000 reads here). Because the KD approach relativises the input
data as part of the code, these protocol changes result in almost
negligible difference in outcome (Supplementary Table 9). For
example, linear model parameters correlating CTI estimates
(using the KD approach) from here against the AM estimates for
Bacteria (Estimate = 1.006, Std. Error = 0.0007, t-value=
1427.81, r2= 0.998, F-statistic = 2.039e+ 06(1,3182), p < 2.2e-
16), Archaea (Estimate = 0.998, Std. Error = 0.002, t-value=
594.87, r2= 0.992, F-statistic = 3.539e+ 05(1,3034), p < 2.2e-16)
and Eukaryotes (Estimate = 0.995, Std. Error = 0.002,
t-value= 652.57, r2= 0.994, F-statistic = 4.258e+ 05(1,2436),
p < 2.2e-16) are all highly significant.

While independent verification of all indices is beyond the
scope of this work, we provide working examples to highlight
how our index dataset recapitulates well established baseline
patterns of critical taxa in marine environments generated for
each kingdom while supporting exploration and identification of
novel findings. Examples describe niche characteristics of clades
within the marine cyanobacteria (Supplementary Fig. 32), the
Marine Group II Archaea (Supplementary Fig. 33) and
the unicellular green algae of the Class Mamiellophyceae within
the Eukaryotes (Supplementary Fig. 34). Finally, to highlight the
discovery aspect of the data we present the niche parameters of
largely uncharacterised and uncultivated dinoflagellates in clades
I-IV within the Syndiniales, a ubiquitous group of endoparasites
(Supplementary Fig. 35). Our results highlight how these clades
are structured along oceanic gradients, with some displaying very
tight ecological constraints that could be used to track environ-
mental change.

We also provide a comparisons of the STI derived here with
those estimated for some phytoplankton species that are common
along the eastern Australian coast as estimated by light
microscopy based on whole water and continuous plankton
recorder dataset73 (Supplementary Data 2). These comparison
highlight both synergies and discrepancies between the
approaches and suggest caution should be employed when
directly comparing the two (Supplementary Data 2).

Use of TARA Oceans datasets. Using the same kernel density
code as described in the methods, we used publicly available
miTag data (16S rRNA gene sequence tag abundances) from

0.8 − 0.2um filtered metagenomic samples, downloaded from the
Tara Ocean companion website (http://ocean-microbiome.embl.
de/companion.html) as abundance values along with TARA
oceans metadata to produce community temperature indices for
each TARA metagenomic sample, as an independent test of the
global patterns in temperature bias observed using the AM data
(Supplementary Fig. 4). Additionally, again using the same code,
we used abundance of mapped reads from 236 TARA oceans
metagenomes against 204 de-replicated Archaeal Marine Group
II (MGII) metagenome-assembled genomes (MAGs; see42 for
details) along with TARA oceans metadata to derive species
indices for each MGII MAG. We display comparison between
AM amplicon derived MGII indices and MAG derived MGII
indices for phylogenetic clades42. Shapiro-Wilk normality test
was used to assess normality of untransformed or log transformed
data before Pearson correlation coefficient was used to determine
correlation between clade niche parameters derived using AM
and TARA datasets.

Examples of baseline data. To establish the robustness of our
approach, we provide examples of how using KD to define niche
parameters recapitulates established patterns of niche character-
istics within each kingdom.

The marine cyanobacteria. Marine cyanobacteria are globally
distributed and account for ~25% of ocean net primary pro-
ductivity, their success a result of the proliferation of ecotypes
adapted to the range of oceanic gradients. Our indices recapitu-
late patterns of clade niche differentiation based on thermal and
nutrient adaptions that have been well-documented previously.
For instance, Prochlorococcus display optima > 15 °C as they are
essentially absent at temperatures below this71. Prochlorococcus
high light-adapted clades (HL-I and HL-II) have niche optima
centred around low nutrient and high oxygen conditions found in
marine surface waters, while low light clades (LL-I, LL-II/III)
reside deeper in the water column where nutrient are higher and
oxygen levels lower. Interestingly our data suggest a potential
relationship between LL-II clade and silicon levels that has not to
our knowledge been reported previously. HL-I displays broader
temperature and nutrient niche characteristics than HL-II33,74,
although occupies a narrower range of salinities. HL-II clades
generally have a higher thermal optima then Hl-I clades33,71 and
the mean STI observed in our data aligns well with the funda-
mental niche temperature optima reported by Smith et al.33) (HL-
I= 22.3 °C, our data 22.2 °C; HL-II= 24.16 °C, our data =
25.1 °C.) Similarly, Synechococcus Clades I/IV (mean STI=
15.2 °C) which co-dominate polar and temperate waters are
adapted to lower temperatures and higher nutrient levels than
Clade II/III (mean STI= 23.8 °C), which inhabit warm oligo-
trophic water75–77 (Supplementary Fig. 32). Our data also reveal
differentiation between Trichodesmium clade I and III along
temperature (mean STI Clade I= 26.3 °C, Clade III= 23.8 °C)
and phosphate (mean SPI Clade I= 0.035 μmol/L, Clade III=
0.151 μmol/L) gradients as suggested by Rouco et al.78.

The Marine Group II Archaea. Planktonic marine Archaea gen-
erally fall into three main groups, the Thaumarchaeota (Marine
Group I), Marine Group II (MGII) and Marine Group III. MGII
are ubiquitous, largely photoheterotrophic organisms inhabiting
photic zone (surface to mesopelagic) waters around the globe.
Rinke et al.42 used 270 MAGs to phylogenetically describe 21
genus level MGII clades. We used our KD approach with the
values of read mapping 236 TARA oceans metagenomes27 against
these MAGS as abundance data along with TARA ocean meta-
data to estimate niche characteristics for these clades and
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compare to the values obtained using our AM amplicon dataset.
While the data are totally independent and produced in different
ways there are many commonalities in the results. Although not
all clades were observed in our dataset (missing deep-sea clades
MBIIa-J1, MBIIa-J2, MBIIa-J3 and MGIIb-Q2, surface clades
MBIIa-K2, and MGIIa-L4 which was restricted in TARA data to
Arabian Sea) both reveal MGII genus level niche partitioning
along temperature (Pearson’s correlation between AM and TARA
mean clade niche estimates r(13)= 0.51, p < 0.05), nitrogen
(r(13)= 0.68, p < 0.01), phosphate (r(13)= 0.48, p < 0.005), sili-
cate(r(13)= 0.56, p < 0.05), oxygen (r(13)= 0.64, p < 0.05).
Again, the ubiquity of these organisms in the global surface and
mesopelagic ocean is facilitated by adaptation to the wide
environmental gradients with clear distinctions between those
adapted to warm, oligotrophic waters (e.g. MGIIb-N1, MGIIb-
N2, Poseidonia sp., MGIIa-L3,) and those that inhabit cooler
temperature and broader nutrient regimes found in deeper waters
and temperate/polar oceans (e.g. MG2b-Q1 MGIIb-O2, MGIIb-P,
MGIIb-L1, MGIIa-I)

The marine Mamiellophyceae. Within the Eukaryotes the Family
Mamiellophyceae (unicellular green algae) are abundant and
widespread oceanic primary producers which, like the marine
cyanobacteria, have undergone a radiation of distinct phyloge-
netic clades adapted to different ecological gradients79. Again our
data accurately resolves the environmental niche characteristics of
these clades as recently described based on Ocean Sampling Day
datasets and historical analyses79,80. Briefly, Bathycoccus prasinos
displays generally broad niche characteristics as all known cryptic
species within this complex contain identical 18S rRNA gene
sequences and are indistinguishable using this marker. The genus
Ostreococcus is absent from very cold polar waters. O. lucimarinus
is restricted to cool-temperature (mean STI= 15.0 °C) meso-
trophic waters but is absent from tropical waters, while Ostreo-
coccus sp. Clade B inhabits warm oligotrophic subtropical and
tropical environments (mean STI 19.5 °C). Mantoniella squamata
(mean STI= 18.2 °C) and Mantoniella sp. clade B (mean STI=
25.3 °C) niche characteristics separate along temperature and
salinity gradients. The genus Micromonas separates in 9 clades
defined by temperature optima, ranging from polar and sub-polar
clades M. polaris (mean STI= 0.06 °C) and Micromonas bravo
Clade B3 (mean STI= 4.25 °C) throughout temperate conditions
(M. commode A2 mean STI= 12.7 °C, M. pusilla mean STI=
14.6 °C, Micromonas bravo B1 mean STI= 15.1 °C, Micromonas
bravo B2 mean STI= 17.8) and into subtropical and tropical
environments (Micromonas commoda A1 mean STI= 24.4 °C,
Micromonas bravo B5 mean STI= 29.7 °C).

Comparison of CTI to those derived using continuous plankton
recorder. While these examples provide evidence that the our
approach generates suitable baseline data for important marine
microorganisms, very few similar attempts to define species or
community level environmental indices for marine microbes exist
against which to benchmark our data. One of particular note,
Ajani et al.73, employed the kernel density approach to resolve
species temperature indices for 30 phytoplankton species com-
monly identifies along the east coast of Australia73. They used
phytoplankton abundance data harvested by light microscopy
identification from samples collected at IMOS NRS
( ~ 750 samples81) and by the Australian Continuous Plankton
recorder survey (~6000 samples82). They provide tables detailing
30 phytoplankton species and their STI (Supplementary Table 1
in Ajani et al.73 as well a list of common phytoplankton not
included un their analysis for various reason (Supplementary
Table 2; Ajani et al.73). We have populated these tables, reporting
results for all ASVs in our dataset that were taxonomically

identified to the species level that match each phytoplankton,
including 12 of the 30 species for which STI were calculated, and
for a further 38 species that were not analysed (Supplementary
Data 2). Where more than one ASV was identified at the species
level we also provide mean and standard deviation for the col-
lective. This provides the capacity to be built upon as more data
becomes available, as well as to see where there may be cryptic
species resolvable by our molecular markers that inhabit different
oceanic niches, or where molecular annotation databases may
need updating. Of the phytoplankton represented by only one or
a few molecular ASVs, some display STI’s very similar to those
calculated from microscopy work (e.g. Tripos fusus STI= 17.2 °C/
Ajani et al.73 STI= 17.1 °C; Meuniera membranacea 21.5 °C/
19.9 °C) while others are quite different (e.g. Asterionellopsis
glacialis 18.7 °C/12.9 °C; Phalacroma rotundatum 24.8 °C/
18.9 °C). Similarly, where taxa are represented by many ASVs the
mean of ASV STIs may equate well with the microscopy based
estimate (e.g. Cylindrotheca closterium 20.1/21.9 °C) while others
may be quite divergent, however some phytoplankton with
multiple ASVs are clearly composed of cryptic strains, such as
Proboscia alata which separates into a polar strain with an
STI= 2.2 °C, and a temperate/tropical strain with STI 23.3 °C
which compares well with Ajani et al.73 STI= 22.7 °C (Supple-
mentary Data 2).

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
Sequence data from the Australian Microbiome is available under NCBI Bioproject
number PRJNA385736. Additionally, ASV count tables and metadata are available using
the Australian Microbiome Initiative Bioplatforms Data Portal (https://data.bioplatforms.
com/bpa/out). All species and community weighted indices and diversity indices
reported here are available through the IMOS Biological Ocean Observer (shiny.csiro.au/
BioOceanObserver/) and the Australian Microbiome Github (https://github.com/
AusMicrobiome/microbial_ocean_atlas). All environmental metadata including physical
(temperature, salinity, oxygen), biological (chlorophyll), and nutrient parameter are
available via the Australian Ocean Data Network Portal (https://portal.aodn.org.au/). In
situ temperature, salinity, oxygen, turbidity, chlorophyll Water Quality Meter data for
20 m and 85 m at Maria Island (https://portal.aodn.org.au/search?uuid=8964658c-6ee1-
4015-9bae-2937dfcc6ab9). Near real-time meteorology and sea surface temperature at
Maria Island (https://portal.aodn.org.au/search?uuid=f3910f5c-c568-4af0-b773-
13c0e57ada6b). Discrete depth temperature, salinity, carbon, nitrate, phosphate, silicate,
oxygen, chlorophyll for National Reference Stations (https://portal.aodn.org.au/search?
uuid=b442c3e8-3d30-48ad-b144-680afd848167). All historical satellite data products are
available using IMOS Ocean Current (https://oceancurrent.aodn.org.au/).

Code availability
All RCode required for the calculation of microbial species and generalised community
weighted indices using the kernel density and mean abundance approach from a 3
column species x abundance x environmental-variable table is publicly available on the
Australian Microbiome Github (https://github.com/AusMicrobiome/microbial_ocean_
atlas).
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