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Transcriptional state dynamics lead to
heterogeneity and adaptive tumor evolution in
urothelial bladder carcinoma
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Intra-tumor heterogeneity contributes to treatment failure and poor survival in urothelial

bladder carcinoma (UBC). Analyzing transcriptome from a UBC cohort, we report that intra-

tumor transcriptomic heterogeneity indicates co-existence of tumor cells in epithelial and

mesenchymal-like transcriptional states and bi-directional transition between them occurs

within and between tumor subclones. We model spontaneous and reversible transition

between these partially heritable states in cell lines and characterize their population

dynamics. SMAD3, KLF4 and PPARG emerge as key regulatory markers of the transcriptional

dynamics. Nutrient limitation, as in the core of large tumors, and radiation treatment perturb

the dynamics, initially selecting for a transiently resistant phenotype and then reconstituting

heterogeneity and growth potential, driving adaptive evolution. Dominance of transcriptional

states with low PPARG expression indicates an aggressive phenotype in UBC patients. We

propose that phenotypic plasticity and dynamic, non-genetic intra-tumor heterogeneity

modulate both the trajectory of disease progression and adaptive treatment response in UBC.
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Urothelial bladder carcinoma (UBC) is a major cause of
morbidity and mortality among adults with over 500,000
new cases and 200,000 deaths annually worldwide1,2. Due

to the costs of treatment and intensive surveillance required, UBC
has the highest lifetime treatment costs per patient from diagnosis
to death of all cancers3. Treatment efficacy, especially for muscle
invasive and metastatic urothelial cancer, is limited because the
tumors tend to be heterogeneous, which contributes to poor risk
stratification, emergence of resistance, and ultimately poor clin-
ical outcome4–6.

While genetic heterogeneity in UBC is well documented4,6,7,
single cell analysis has indicated extensive transcriptomic het-
erogeneity in tumor cell populations in UBC 8–10, which have
led to debates whether intra-tumor transcriptomic heterogeneity
is a surrogate of genetic variation between subclones, gene
expression noise, or indicate functional variations around phe-
notypically distinct transcriptional states independent of genetic
heterogeneity11–13. Intra-tumor transcriptomic state hetero-
geneity can benefit tumor adaptation by conferring phenotypic
plasticity—characterized by epigenetic remodeling in tumor cells
and their ability to acquire reversible characteristics such as EMT,
multilineage differentiation potential and self-renewal, that enable
them to cope with stresses during tumor progression, metastatic
cascade or therapy14–17. Evidence from multiple cancer types17–19

suggest that, while the above factors likely contribute to tran-
scriptomic heterogeneity, co-existence of multiple cell states may
be pervasive20–23, providing evolutionary advantage to neoplasms
via increased immune evasion, drug resistance, and
invasiveness24,25. It is unclear whether an equivalent transcrip-
tional state dynamics also contributes to clinically relevant
functional intra-tumor heterogeneity in UBC, and if a minimal
regulatory program governing this transcriptional state dynamics
can be identified.

In this study, we use single cell genomics data from patient-
derived tumors and in vitro evolution in cell line models with
targeted perturbations to deconstruct the complexity of dynamic
transcriptomic heterogeneity in UBC (Fig. 1a). Our results
highlight remarkable plasticity and dynamics of transcriptional
states and identify a core regulatory network. We further examine
the role of nutrient limitation in tumor microenvironment and
radiation treatment on transcriptional state dynamics and assess
the potential for targeting sources of variations in intra-tumor
heterogeneity and modulating overall cell population-level
growth dynamics during tumor progression to improve effective
treatment response.

Results
Transcriptional state heterogeneity within and
between tumors. To assess the extent to which patient-to-patient
variation in transcriptomic makeup could be due to heterogeneity
in cancer-associated cellular processes we first examined the bulk
transcriptomic profiles of 408 muscle invasive and/or metastatic
urothelial bladder carcinoma samples from the TCGA (TCGA-
BLCA)26–28. Single sample gene-set enrichment (ssGSEA) ana-
lyses identified an aggressive epithelial mesenchymal transition
(EMT) signature as a leading differentiating feature between
patient samples in UMAP projections (Fig. 1a–c and Supple-
mentary Fig. 1a, Supplementary Data 2). To interpret the
observations considering the major BLCA subtypes, we further
classified the tumors into luminal and basal subtypes using the
transcriptome Base47 classifier29 and found that the tumors with
predominantly basal signature had intermediate-to-high EMT
scores, while the predominantly luminal tumors had low-to-
intermediate score (Supplementary Fig. 1a). This suggests that the
transcriptomes of UBC tumors typically had admixtures of both

characteristics, irrespective of their subtypes, but some were
predominantly either epithelial- or mesenchymal-type. Since bulk
RNAseq data carries aggregated transcriptional signals from
tumor and non-tumor cells, and different tumor cell populations,
limiting our ability to identify biological variations around mul-
tiple transcriptomic states, we next examined the transcriptional
landscapes and associated contextual molecular signatures at
single-cell resolution. First, we analyzed single cell RNAseq
(scRNAseq) data of 52,721 single cells from 8 UBC tumor sam-
ples and 3 para tumor samples from a published study10 (herein
BLCA-SC dataset) and used gene expression to distinguish the
tumor cells from immune, stromal, and other cell types (Sup-
plementary Fig. 1b). Initial pan-transcriptome analysis revealed
that transcriptional states of tumor cells primarily clustered by
sample ID, suggesting that patient-specific differences dominated
the between-patient transcriptomic heterogeneity. This is likely
due to extensive genomic differences between tumors (Fig. 1d,
Supplementary Fig. 1b), as reported for other cancer-types11,19,30,
overshadowing variations in transcriptional programs associated
with oncogenic cellular processes.

Convergent epithelial and mesenchymal like transcriptional
states across tumor subclones. Next, we calculated single sample
GSEA31 scores for cancer hallmark pathways for the tumor cell
populations in this cohort at single cell resolution, and found that
in most patients, the tumor cells formed multiple comparable
clusters based on these signatures (Fig. 1e, f, Supplementary
Fig. 1c, d, Supplementary Data 2). While some differences among
the transcriptional clusters were patient-specific, other patterns of
cluster-wise differences were shared across patients, suggesting
the presence of potential, common oncogenic transcriptional
states that are utilized by the UBC cells; differences between those
states were attributed to variations in stemness, EMT, and
proliferation-related genes. These observations suggest, the cell
clusters likely represent transcriptional states with coherent and
differentially expressed oncogenic signatures, and that the
observed transcriptional states are likely proxies of tumor cell
phenotypes with different, complex malignant characteristics12.
We next sought to determine if the observed transcriptional state
clusters could be predominantly due to genetic differences
between clones, or represent recurrent utilization of tumor cell
states, at least partially independent of clonal genetic alterations.
We used single cell RNA sequencing-guided copy number
inference to reconstruct the clonal architecture for each tumor
and identify large copy number variations (CNV) between sub-
clones (Fig. 1g). Inter- and intra-tumoral heterogeneity in the
single-cell CNV patterns and clonal architectures were sub-
stantial. Nonetheless, overlaying clonal architecture and tran-
scriptional state data, we found that the transcriptional clusters,
in most cases, did not segregate by subclonal clusters and sub-
types (Fig. 1h). Instead, for each patient, the single-cell expression
profiles spanned several clusters with distinct expression patterns
discovered by unsupervised clustering showing increasing cellular
phenotypic heterogeneity (Fig. 1i). These observations suggest
that in most patients, tumor cells from the same subclones were
members of multiple distinct transcriptional states, and con-
versely, cells with different subclones converged to the same
transcriptional states. This subclone-transcriptional state pro-
miscuity was observed at any level of tumor phylogeny, sug-
gesting that transition between different transcriptional states
likely occurs along most phylogenetic lineages in tumors. How-
ever, temporal clonal dynamics involving cell state transition
in vivo cannot not be tracked for clinical samples, which only
offer a snapshot of pseudo-subclonal architecture that misses out
on intermediate states. Furthermore, understanding subclonal
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composition and predicting the innumerable interactions and
interdependencies of cancer subclones with each other and the
microenvironment is hindered by the rarity of these events within
the primary tumor lesion biopsied for sequencing. This prompted
us to examine dynamic properties of transcriptional states, and
underlying regulation in laboratory based in vitro evolution using
the cell line models.

Spontaneous cell state transition in in-vitro models. To model
key aspects of transcriptional state heterogeneity and heritability,
and study dynamics of transition between the transcriptional

states, we used two bladder cancer cell lines—T24 and UMUC3
for laboratory based in vitro evolution (Fig. 2a). These cell lines
have differential morphology and growth potential—but they
spontaneously transition between predominantly three distinct
phenotypic states—namely holoclones, meroclones and para-
clones (Fig. 2b). Holoclones were clusters of small and tightly
packed cells with smooth and defined colony borderlines. Para-
clones comprised of dispersed larger cells with undefined border,
while meroclones exhibited an intermediate morphology con-
taining a dichotomy of cell shapes and sizes with limited pro-
liferative capacity and irregular boundary. Holoclones are at the

Fig. 1 Inter- and intra-tumoral heterogeneity in urothelial bladder cancer patients. a A schematic representation of integrative analyses of cell state
dynamics in vitro and in vivo in urothelial bladder cancer. b UMAP projection of TCGA-BLCA samples (n= 408) show inter-tumor heterogeneity in
oncogenic pathways, with EMT being a major determinant. Each dot corresponds to a single sample and the color gradient is proportional to the expression
of the EMT gene signature. c Gene expression correlations between oncogenic signatures in the tumors in the TCGA-BLCA cohort. d Summary of all single
cell RNAseq (BLCA-SC) samples and UMAP plot of epithelial cells colored by sample ID. Each dot represents a single cell. e UMAP plot of epithelial cells
colored according to the expression of the EMT gene signature. f Gene expression correlations between oncogenic signatures at single cell resolution in the
BLCA-SC cohort. g RNA expression-guided copy number estimation and inference on clonal architecture in the tumors from the BLCA-SC cohort. Each
column corresponds to a cell, ordered by sample and clustered within each sample by chromosomal alteration status. Normal tissue samples are shown to
the right. h UMAP plots of single cells in transcriptomic space colored by tumor clone IDs derived from chromosomal alteration status. i Proportions of
cells in basal and luminal subtypes according to the Base47 subtype signature is shown for each clone ID in each tumor in the BLCA-SC cohort. Heatmap
shows expression levels of selected oncogenic pathways in tumor clones, as annotated by their IDs in h.
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apex of cellular hierarchy and are characterized by extensive
proliferation and cell renewal capacities, paraclones featured
minimal proliferative potential, whereas meroclones have inter-
mediate properties32–34 (Supplementary Fig. 2a). From mixed
ancestral population of T24 cell line 18% of clones were classified
as holoclones, 44% as meroclones and 38% as paraclones.

Similarly, for UMUC3, 27%, 41%, 32% were classified as holo-,
mero-, and paraclones, respectively (Supplementary Fig. 2a).
When plated as single-cells, cells displayed different abilities to
spontaneously generate morphologically heterogeneous colonies.
Holoclones and meroclones could be re-plated to generate new
mixed colonies (Supplementary Fig. 2b). However, paraclones

Fig. 2 Exploration of cell states in vitro. a A workflow illustrating the use of cell line model system to reveal transcriptional state changes by single-cell
level phenotypic analysis of large imaging datasets by live-cell tracking and image cytometry. b Representative images of holo-, mero- and paraclones
5 days following plating showing characteristic morphologies in indicated bladder cancer cell lines. Scale bars represent 300 μm. c LHS : Representative
bright-field images and corresponding scatter plots post Cell profiler image segmentation, color annotated by phenotypic classes showing T24 cells
forming monolayer and in vitro wound created by straight line scratch across the monolayer and cells’ migration to the wound region with time after initial
scratch (0) and every 2 hours post-scratch. RHS : T24 cells wound closure expressed as the cells’ occupancy in wound area and area covered by the cells
over time points analyzed with colors indicating phenotypic classes. The results are expressed as mean ± SD. Scale bar represent 300 μm. d Plots of the
number of T24 and UMUC3 cells in colony from each cell state per image with a smoothed regression line. e Dotplot showing T24 and UMUC3 cell state
transition probability rates of population to and from each state with colors purple, cyan, green and red indicating cell state transition M-M, M-E, E-M, E-E
wherein E and M are epithelial-like and is mesenchymal-like phenotypic classes respectively identified using image dataset, and size of dots indicates grid
sizes in images. f UMAP analysis of scRNAseq data of T24 cells showing main clusters colored by cell phenotypes. g & i UMAP analysis of scRNAseq data
of T24 and UMUC3 cells showing main clusters colored by Base47 tumor subtypes and signatures where each dot corresponds to a single cell. h Scatter
plot showing expression of epithelial and mesenchymal marker genes in the annotated cell populations. Imputation was used to avoid zero-inflated
representation.
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colonies were lost during cultivation for all the three cell lines
tested, whereas all the holoclones remained viable (Supplemen-
tary Fig. 2c, p < 0.0001, Log-rank Mantel-Cox test). Microscopic
examination of the seeded wells showed that failure of paraclone
cells to form colonies was due to aborted microcolonies that had
undergone a few divisions. The cell lines allowed examining cell
state dynamics in vitro, and also their underlying transcriptional
makeups and regulatory networks.

Heritability and transition dynamics of cell states during in-
vitro evolution. We used a high-definition time-lapse microscopy
system and live-cell imaging to track the dynamics of state
transition during in vitro evolution in laboratory condition. We
tracked T24 and UMUC3 cells over at least 2-3 weeks of culture.
In the largest colonies it was only feasible to track cells over 4-5
sequential rounds of cell division so multiple sets of subclones
spanning four cellular generations were tracked within each
colony. We obtained profiles of single cells from time-lapsed
images, extracted quantitative estimates of phenotypic descriptors
and used those to annotate populations of cells in the three
groups, as above (Supplementary Fig. 2d). We observed that
cellular morphologies associated with the phenotypic states were,
at least partially, heritable during short-term culturing. Given the
differences observed in transcriptional states in different pheno-
types as well as the evidence for greater proliferative properties of
holoclones, we integrated microscopy approach with functional
assay and assessed cell migration in T24 cells by conducting
wound healing experiments (Fig. 2c). We found a significant
increase in the number of cells that migrated into the wound from
the holoclone colonies compared to the meroclone colonies
(p= 0.01, Wilcox test). At the 12 hours (h) time point, the
recovery of the denuded area was recorded as ~67% and 78%, for
meroclone and holoclone colonies respectively. The percentage of
wound closure at 24 h after wounding was about 75% in mer-
oclone colonies, whereas in holoclone colonies, the percentage
was more than 90%. We also observed a significant difference in
cell count for both phenotypes in the original scratch over time
(p= 2.19e-11, Wilcox test). For individual cells identified into
holo- and meroclone type, we observed an increase in holoclone
cells and corresponding decrease in meroclone cells. A potential
mechanism concerns the possible plasticity of meroclone cells
reverting to stem-cell-like state and participating in collective
migration. These observations show that holoclone cells con-
tribute to wound healing after scratch initiation, and that cell state
dynamics are associated with tumor cell population reconstitu-
tion and expansion. Furthermore, since holoclone and meroclone
colonies consisted predominantly of cells with mesenchymal- (M)
and epithelial-like (E) characteristics, the colonies of M and E
traits are referred herein as M and E colonies respectively35,36. In
the light of evidence of transition between mesenchymal and
epithelial-like phenotypic states during in vitro evolution, we then
calculated state transition rates of T24 and UMUC3 cell lines
from live cell imaging data of monoclonally-derived phenotypi-
cally distinct colonies. We divided the cell culture plate into grids,
classifying the cells with M and E phenotypic states in respective
grids, and estimated their relative proportions at a given time
(Fig. 2d, Supplementary Fig. 2e). We hypothesized that the cell
state transition can be modeled as a continuous time Markov
chain process, and accordingly compared between consecutive
time-points to determine homo- and heterologous transition rates
between states (i.e. mesenchymal-mesenchymal, M-M;
mesenchymal-epithelial, M-E; epithelial-mesenchymal, E-M; and
epithelial-epithelial E-E; Fig. 2e).We found that in clonally
derived cell populations the phenotypic state of cell is retained
initially, but within 48 h of plating, the cells start exhibiting

phenotypic plasticity and undergo state transitions. In the T24
cell line, the cells derived from M clones showed similar
mesenchymal-mesenchymal (M-M, 0.6208 ± 0.04) and epithelial-
mesenchymal (E-M, 0.5978 ± 0.05) transition rates for all grid
sizes but the lowest rates for mesenchymal-epithelial transitions
(M-E,0.4126 ± 0.11) – indicating that cells with M initial state give
rise to more mesenchymal like cells as compared to all other
states. On the other hand, in the cells derived from E clones, the
greatest change in transition rates was observed during the initial
days of culture. They showed the strongest mesenchymal-
mesenchymal (M-M) state transition rate (0.5786 ± 0.07) fol-
lowed by that for the epithelial-epithelial (E-E, 0.5526 ± 0.09),
epithelial-mesenchymal (E-M, 0.5096 ± 0.088 and mesenchymal-
epithelial transition (M-E, 0.505 ± 0.12). Similarly, for the
UMUC3 cell line, in the cells derived from E clones, epithelial-
mesenchymal (E-M, 0.6364 ± 0.70) rate was highest as compared
to all other transitions (E-E, 0.3838 ± 0.49; M-E, 0.4528 ± 0.33; M-
M, 0.6314 ± 0.48). Nonetheless, over 2–3 generations, none of the
subpopulations maintained its original seeding state; rather all
states were reconstituted showcasing bidirectional transition
between epithelial and mesenchymal-like cell states in vitro and
suggesting a tendency towards maintaining the original equili-
brium between the states in the long term.

Transcriptome-level differences between cell states
suggest EMT. To examine transcriptomic makeups associated
with the observed cell states and identify gene regulatory network
underlying the state transition dynamics, we performed single cell
RNA sequencing of populations of cells from the T24 cell line
derived from E and M-like clones. UMAP analysis revealed that
the transcriptomes of the T24 cells of the same (E or M) phe-
notypic states tightly clustered, while minor populations of cells
therein clustered with the cells of different phenotypic states
(Fig. 2f, Supplementary Fig. 2f, g) – indicating that phenotypically
similar cells also have similar transcriptomes. Single sample
GSEA scores for bladder cancer subtype-related genesets sug-
gested that majority of the cells from both the E and M popu-
lations in the T24 cell line were basal type, indicating that the
cellular clusters are not due to cancer subtypes (Fig. 2g). Next, we
analyzed cancer hallmarks and pathway signatures of the cellular
clusters. Epithelial and mesenchymal marker genes CD24 and
CDH2 had anti-correlated expression; CD24 upregulated in E and
CDH2 upregulated in M cells (Fig. 2h). Furthermore, M cells had
relatively higher EMT and stemness gene signatures than E cells–
which is consistent with their respective phenotypic character-
istics and CD24/CDH2-based observations (Fig. 2g). The T24 cell
populations could be resolved into further subclusters (cluster 0-
4) that may reflect potentially intermediate transcriptional states
(Supplementary Fig. 2g). The cluster 0 comprised of majorly M
cells and presented with the highest EMT and stemness gene
signatures (Supplementary Fig. 2h); but the clusters 1 and 3 had
major contribution from E cells, representing 2 cell sub-
populations with different transcriptional states. While the clus-
ter 3 cells showed reduced EMT and stemness phenotypes, the
cluster 1 cells showed features of M cells with comparatively high
EMT and stemness traits, albeit less than that of the cluster 0,
suggesting E cells also harbors some transient cells which are
poised for phenotypic modulation to M transcriptomic state by
losing their epithelial identity, while acquiring mesenchymal
phenotypic markers. Interestingly cluster 4, with comparable
contribution from both M and E cells showed the lowest
expression of EMT and stemness features suggesting they might
be highly differentiated terminal cells. We also used differential
expression testing and gene set analyses and found that mediators
of EMT like TGFB and TNFA pathways and EMT pathway are
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upregulated in in cluster 0 but TNFA signaling downregulated in
cluster 437–39 (Supplementary Fig. 2i), consistent with our finding
that M cells show highest EMT phenotype. These results indicate
that the transcriptional and phenotypic clustering identify inter-
pretable cellular sub-populations with some variation in EMT
characteristics. In contrast, the overall transcriptional makeup of
UMUC3 cell line was different. UMUC3 single cell RNA
sequencing data identified substantial populations of cells with
basal and luminal subtype signatures. Based on the EMT sig-
natures we observed subpopulations of cells with E or M-like
transcriptomic states; cluster 0 showed both high EMT and
stemness signature, on the other hand clusters 3 and 4 had low
scores for EMT and stemness signatures (Fig. 2i, Supplementary
Fig. 2j, k). Again, the transcriptional states were not directly
attributable to the subtype annotation, consistent with that
observed in the T24 cell line, indicating that emergence of the E
and M-like transcriptional states are not due to subtypes. Taken
together, our imaging and single-cell RNA analyses of two
bladder cancer cell lines with distinct characteristics reveal that,
(i) cellular transcriptional and phenotypic annotations overlap,
indicating transcriptomic underpinning of morphological varia-
tions, (ii) cells are segregated in predominantly E and M-like
states, with minor intermediate cell populations and (ii) during
in vitro evolution, heritability and transition between E and
M-like cell states contribute towards population-level cell state
plasticity, reconstitution potential, and overall growth dynamics.

Regulatory network underlying transcriptional state dynamics.
We next sought to identify the gene regulatory network that
governs transition between the transcriptional states observed
above. We constructed a closed, minimalistic, core gene reg-
ulatory network based on a data-driven approach by (i) selecting
known transcription factors (TFs) that are master regulators, and
associated with epithelial and mesenchymal characteristics, (ii)
inferring their activities based on the changes in expression levels
of their targeted genes in the E and M-like transcriptional clus-
ters, (iii) identifying activating and/or repressing regulatory
interactions among them and (iv) iteratively identifying the
minimal set of TFs that satisfy these criteria. We identified a core
network of 3 key TFs - SMAD3, KLF4 and PPARG, that satisfy
the key properties, and also play more central roles in EMT
related regulation within a broader network of transcriptional
regulators (Fig. 3a, Supplementary Fig. 3a)40,41. PPARG agonists
could activate the expression of KLF4 by binding to the PPAR
binding site in the KLF4 promoter42. It is also known that
TGFB1 signaling can suppress the expression of PPARG via
SMAD binding43. On the other hand, PPARG can suppress the
activity of TGFB1/SMAD3 signaling44 thus forming a toggle
switch topology with SMAD3. KLF4 has been known to activate
the mesenchymal program in cancer stem cells through the
increased activity of the TGFB1/SMAD signaling45. Similarly,
SMAD3 and upstream TGFB1 signaling can activate the expres-
sion of KLF4 via the HIF1a pathway46,47, thus establishing a
positive feedback loop between KLF4 and SMAD3. All three of
these transcription factors are known to self-activate their own
expression via auto-regulatory loops either through direct or
indirect means (Fig. 3b). Levels of SMAD3 and KLF4 were higher
in the M cells while the level of PPARG was particularly high in
the E cells of the single cell data (Fig. 3c)44,48. We also observed
inverse relationship between expression of SMAD3/KLF4 and
PPARG in both T24 and UMUC3 cells (Fig. 3c, Supplementary
Fig. 3b). The regulatory network is analogous to the MET/
SMAD3/SNAIL/miR-323a-3p circuit reported in the context of
epithelial–mesenchymal transition in bladder cancer49. PPARG is
involved in selective suppression of SNAIL, while KLF4 and miR-

323a-3p are involved along the STAT3 axis50,51, which has
extensive crosstalk with SMAD352. While miR-323a-3p cannot be
directly detected in single cell RNA sequencing data, and the
prior work on MET/SMAD3/SNAIL/miR-323a-3p network
lacked data on dynamic state transition at single cell resolution,
consistency of the observations supported our network inference.
Furthermore, it underscores the importance of the regulome of
the transcriptional states beyond that of the individual genes in
isolation, a key focus of this study. Next, we simulated the gene
regulatory network in Fig. 3a using the computational framework
RACIPE to evaluate the steady state solutions allowed by the
network topology53. In the simulation we observed that– PPARG
high SMAD3 low phenotype (64%) and PPARG low SMAD3 high
(20%) were the most predominant states, representing the
equivalent of E and M-like transcriptional states that are seen
experimentally; moreover, the values are qualitatively like that
inferred from the single cell data (Fig. 3d, e, Supplementary
Fig. 3c). The other two transcriptional states that are present in
simulation in low abundances are PPARG low SMAD3 low (13%)
and PPARG high SMAD3 high states (3%); the double positive
and the double negative phenotypes were even less abundant in
the single cell RNA sequencing data.

Transcriptional state dynamics under regulatory network
perturbations. We performed in-silico and experimental targeted
perturbation experiments to establish whether silencing of key
regulatory genes can help alter the transcriptional state equili-
brium in mixed population of cells, by pushing the cells towards
one or the other transcriptional states. First, in silico over-
expression of SMAD3 using RACIPE framework led to an
increase in prevalence of M state from to 20% to 84% and also
variable expression of KLF4 across the entire dynamic range -
suggestive of permissive occupancy of transcriptional states
related to naïve and primed pluripotency and possible inter-
mediate states in-between (Fig. 3f, Supplementary Fig. 3d); con-
trary findings were seen upon SMAD3 under-expression. Upon
PPARG overexpression, the prevalence of the E state increased
from 64% to 91% along with concurrent downregulation of
SMAD3 and KLF4. Opposite trends were observed when PPARG
was under-expressed, and the relative abundance of the cells in E
state was reduced to 8% of the total steady state population
(Fig. 3g, Supplementary Fig. 3e). Lastly, when KLF4 was over-
expressed, M state characterized by high expression of SMAD3,
became more prevalent (20% to 62%) while its downregulation
reduced that to 4% (Fig. 3h, Supplementary Fig. 3f). These
simulations suggest that regulation of SMAD3, PPARG and KLF4
can control the prevalence of E and M-like transcriptional states
and modulate their transition dynamics. Next, treatment with
gene-specific siRNAs targeting SMAD3 and PPARG (SMAD3si,
PPARGsi) resulted in systematic downregulation of SMAD3 and
PPARG respectively in T24 cells, as observed in scRNAseq data
(Fig. 3i, Supplementary Fig. 3g; see Method for details). KLF4 had
very low baseline expression and is induced by both SMAD3 and
PPARG; hence, no KLF4 siRNAs were used. The downregulation
of SMAD3 indeed increased prevalence of E state over M state,
and led to reduced EMT and stemness, (Fig. 3i, j, Supplementary
Fig. 3h, i). Expression of EMT marker genes CD24 and CDH2 also
showed consistent pattern (Supplementary Fig. 3j). RNA velocity
analysis indicated that cells in the cluster 2, which had repre-
sentation from all treatment types and showed the lowest EMT
score, were likely in the transient transcriptional states, and cells
from other clusters were poised to head towards this state
(Fig. 3k, Supplementary Fig. 3g). Most of the other cells main-
tained steady transcriptional states. Altogether, our experimental
observations are consistent with that from the RACIPE modeling
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Fig. 3 Transcriptional regulatory network associated with cell states. a Data driven prioritization of a minimal gene regulatory network underlying the
transcriptional state dynamics. Blue lines and arrowheads represent the gene activation; red lines and blunt heads represent gene inhibition. b A schematic
representation of TGFB1/SMAD/KLF4 and PPARG pathways are shown. c UMAP plots of single cells from M and E transcriptomic states from T24 and
UMUC3 cell lines, colored by expression of regulatory marker genes. d Scatter plot showing expression of indicated genes in M and E cells. Imputation was
used to avoid zero-inflated representation. e–h Scatter plot showing scores for all RACIPE solutions. i UMAP plots showing changes in transcriptional
states of T24 cells upon targeted perturbation of the genes in the regulatory network, wherein SCR indicates control cells and SMAD3si and PPARGsi
indicate SMAD3 and PPARG siRNA treated cells, respectively. The panels below show patterns of activities of the genes using a color gradient. j Violin
plots showing expression of indicated oncogenic signatures following siRNA treatment with median values indicated on top of the plots. k Single cell RNA
velocity estimates for individual cells in targeted perturbation experiment with arrows indicating the extrapolated direction of transition to transcriptional
states projected onto the UMAP plot. Cells are colored by their cluster IDs. Lengths of the arrows indicate the velocity of transition between the clusters.
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analysis and suggest that SMAD3 and PPARG form a minimally
sufficient regulatory network with KLF4, that can explain the
transcriptional state dynamics. While we do not rule out that
other regulatory factors may impact transcriptional state
dynamics, targeted perturbation of this minimal network altered
the transcriptional state equilibrium in a predictable manner.

State dynamics under nutrient starvation in vivo and in vitro.
At the time of surgical resection, UBC patients are often pre-
sented with large tumors with a nutrient starved, hypoxic
core54,55, where stress conditions are known to modulate tumor
cell phenotypes – that motivated us to use the T24 cell line model
to examine the effects of serum starvation on transcriptional state
dynamics. We seeded each well of 24-well plates individually with
M cells, and serum deprived the cells overnight and then
replenished them with fresh serum containing medium to study
state transition and reversal of phenotypes (Fig. 4a). We profiled
gene expression data at single-cell level and observed that serum
starved cells overall steer towards a low M and low SMAD3 state
(Fig. 4b, Supplementary Fig. 4a). From 6 major clusters identified,
cluster 3, which was majorly comprised of pre-starvation cells but
with some fraction of serum replenished (0.027) and serum
starved cells (0.004), presented with the highest EMT and stem-
ness scores, further corroborating some cells do inherently confer
a survival advantage compared with other cells, and others
showing rapid extinction (Fig. 4b, Supplementary Fig. 4b, c).
Cluster 0 showed high expression of EMT, low apoptosis and
hypoxia, with high SMAD3 levels as assessed through expression
levels of a panel of gene signatures (Supplementary Fig. 4c–e). A
minor population of cells in the pre-starvation and replenished
culture also clustered with serum starved cells – suggesting that
this phenotype may be present, albeit sparingly, in nutrient-rich
conditions. We further analyzed RNA velocity of single cells and
observed the highest transitions in serum supplemented cluster 0
and lowest in serum starved cluster 1 (Fig. 4c). Overall, these data
support the notion that nutrient limitation affects the cell state
transition dynamics and may impact the overall cell population-
level phenotype. Moreover, a minor cell population with M state
may present a survival advantage during serum starvation and
could reconstitute growth and phenotypic diversity upon nutrient
replenishment. Furthermore, tumor microenvironment influ-
ences regulation of gene expression, nutrient availability, and
tumor cell phenotypes including EMT. Cancer-associated fibro-
blasts (CAFs) promote the mesenchymal phenotypes of tumor
cells10,56. Hence next we analyzed 10X spatial transcriptomic data
from 4 UBC samples at different stages of aggressiveness to
evaluate physiological relevance of our in vitro observations.
Samples included Sample 1 (S1); a high-grade invasive urothelial
transitional cell carcinoma with lymph node metastasis but no
distant metastasis, Sample 2 (S2); a high-grade invasive localized
urothelial transitional cell carcinoma without lymph node or
distant metastasis, Sample 3 (S3); a high-grade non-invasive
papillary urothelial carcinoma without lymph node or distant
metastasis, Sample 4 (S4); a high-grade invasive urothelial tran-
sitional cell carcinoma with squamous differentiation, and nega-
tive for lymph node or distant metastasis. We annotated the four
samples based on H&E staining and cell type compositions and
colored the spatially annotated barcodes in the tissue samples
accordingly, and then estimated expression of SMAD3, KLF4 and
PPARG, and pathway-level scores for EMT, stemness and
hypoxia (Fig. 4d, Supplementary Fig. 4f). SMAD3 and PPARG
expression showed complementary patterns, while SMAD3 and
KLF4 showed spatially similar patterns in invasive tumors S1, S2
and S4. In non-invasive tumor S3, all three regulatory genes were
highly expressed. We found substantial inter-tumor differences

and also intra-tumor spatial variations in EMT signature. EMT
and stemness signature were consistently a major principal
component of spatial biological variations regional variations
within tumor tissues as observed in the spatial principal com-
ponent analysis (sPCA) plots (Fig. 4e). Nonetheless, EMT and
stemness signatures were spatially associated, especially in
advanced tumors. Next, we applied a published network graph-
based multivariate analysis57 to determine whether spatial var-
iation in EMT signature can be modeled based on nutrient lim-
itation and expression of the genes in the identified regulatory
network after accounting for spatial patterns of autocorrelation.
In brief, since spatial transcriptomics had zero-inflated RNAseq
data and activities of TFs can be inferred from expression of their
target genes, we used a multivariate regression model including
expression signatures of the SMAD3, KLF4 and PPARG target
genes with a spatial lag to account for spatial autocorrelation
along the neighborhood graph (Fig. 4f). We acknowledge small
sample size, limited regional variation in hypoxia within profiled
regions, and sparse spatial transcriptomic data, and therefore
conservatively interpret the results. Though there were substantial
inter-tumor variations in the patterns of spatial heterogeneity in
tumor microenvironment characteristics, the proportion of var-
iance in pathway-level scores estimated by spatial autoregressive
parameters, explaining the abundance of different cell types was
modest. Nonetheless, spatial multivariate analysis indicated that
hypoxia and SMAD3 target genes expression were positively
associated with EMT, which, despite weak effect sizes, were in line
with our observations in vitro. Next, we modeled regional var-
iation in the pathway activities based on regional abundances of
cell types. In tumors S2 and S3 the EMT signature was sig-
nificantly associated with epithelial cell abundance, while stem-
ness signature in the other two samples (Fig. 4g, Supplementary
Fig. 4g).

Radiation treatment-associated transcriptional state dynamics
in vitro. Since a treatment modality for patients with invasive
UBC is radiation, typically concurrent with chemotherapy2, we
examined whether response to radiation treatment differed
between the transcriptional states, and whether transcriptional
state dynamics could confer transient resistance at the level of
tumor cell populations. We first compared the effect of gamma
irradiation (Gy) on DNA damage and cell survival in T24 cell line
in vitro. DNA double-strand breaks, measured by the γ-H2AX
assay, were repaired more rapidly in the cells with M than in E
phenotypes at 24 h after the treatment (Fig. 5a, Supplementary
Fig. 5a). We observed a significantly smaller number of foci in M
cells as compared to E cells with irradiation with 2 and 4 Gy. A
relative increase in foci number was exhibited at 4 Gy for both M
and E phenotypes. This shows cells with M and E states have
different DNA damage response and repair characteristics, with
M exhibiting a more rapid and efficient repair than the E state
cells. Therefore, the risk of accumulation of replication errors and
mutations induced by DNA damaging agents appears lower in M
type cells, which is consistent with published reports58,59. How-
ever, these cells were capable of transforming into E-like states
when propagated and strived towards maintaining a cell
population-scale equilibrium in transcriptional states. This sup-
ports a model where different transcriptional states confer dif-
ferent radio-sensitivity. However, owing to adaptive
transcriptional state dynamics, cell population-level radio-resis-
tance emerges instead of one population outcompeting the other.
Next, we investigated transcriptomic dynamics in radiation
treated T24 cells at single cell resolution to understand the
underlying molecular changes. We performed single-cell RNA
sequencing of colonies derived from M and E cells at 24 h
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Fig. 4 Transcriptional states in tumor microenvironments. a A schematic representation showing serum starvation and replenishment of T24 cell line
model system. b UMAP plot showing transcriptomic changes in the cell populations before and after serum starvation, and after replenishment; the panels
show patterns of activities of genes or pathway signature using a color gradient. c Single cell RNA velocity estimates for individual cells in nutrient
starvation and replenishment experiment with arrows indicating the extrapolated direction of transition to transcriptional states projected onto the UMAP
plot. Cells are colored by their cluster IDs. Lengths of the arrows indicate the velocity of transition between the clusters. d Hematoxylin and eosin (H&E)
staining, spatial scatter pie plot displaying inferred cell type composition on each spatial location from deconvolution and expression scores of genes and
relevant oncogenic pathways from spatial transcriptomics data for the four bladder cancer specimens, indicated as S1-S4. Scale bars represent 1 mm.
e Spatial principal component analysis (sPCA) plot shows the loading of different cell types along the first two principal axes. f, g Pathway or gene activity
modeled as a function of the estimated abundance of the cell types or function of expression of target genes (Tg) of relevant genes and pathway using
multivariate regression with a spatial lag to account for spatial autocorrelation, with barplots showing coefficients and heatmap showing p-value associated
with coefficients for the cell types from spatial transcriptomics data for the four bladder cancer specimens, indicated as S1-S4.
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postirradiation with 2 Gy and compared that with untreated cells
(Fig. 5b, Supplementary Fig. 5b). Overall DNA damage response
pathway (DDR) was upregulated in E cells, but homologous
recombination pathway (HR) was higher in M cells and lower in
E cells post-irradiation, increasing the DNA damage tolerance
and prolonging the survival of M type cells (Fig. 5b, c, Supple-
mentary Fig. 5c, d). We observed multiple subpopulations with
distinct phenotypes; cluster 11 showed the highest HR scores, to
which cells in M state contributed the most, with and without Gy
treatment, apart from cluster 4 and 6 which were enriched in cell
cycle genes. Transcriptional states associated with M were also
associated with up-regulated EMT and stemness signatures
(Fig. 5d). Furthermore, clusters 2 and 8 with major contributions
from treated and untreated control cells in M state respectively,
presenting with EMT and stemness phenotype and high SMAD3
expression (Supplementary Fig. 5e). However, cluster 7 harboring
mesenchymal phenotype and low DDR, were majorly contributed

by untreated E cells (0.76) and some irradiated E cells (0.17).
Cluster 10 showed a similar pattern to cluster 7. Our results
suggest cells in M state with high mesenchymal phenotype most
likely tolerate and survive radiation to repopulate the tumor later.
The clonal dynamics in E populations were more complex. Jointly
analyzing the datasets from cells in M and E states, we observe
that overall extreme cell states, which include cells with very low
EMT score in the former and very high EMT score in the latter,
went extinct upon radiation treatment, while the cells with
moderate EMT scores persisted. The results indicate that the
SMAD3 and KLF4 high M state could reduce DNA damage and
promote cell survival and EMT. Moreover, SMAD3 has been
shown to increase radiosensitivity upon downregulation60,61.
KLF4 has also been shown to be upregulated after chemotherapy,
potentially mediating therapy-related stemness phenotype62. On
the other hand, PPARG expression promotes radiosensitivity63.
Thus, our observations are consistent with the published

Fig. 5 Impact of radiation on transcriptional profiles. a Representative images and quantification of γ-h2ax foci upon irradiation in T24 cells. DAPI was
used as a nuclear counterstain. Scale bars indicate 20 μm. Barplots show differences in foci positive nuclei upon irradiation between cells at E and M states.
Error bars represent standard deviation. P-value was calculated using t-test wherein *p value < 0.05. b UMAP plot of single cell RNAseq data showing
single cells from gamma-irradiated and non-irradiated cells initiated from E and M states. The inset showing the same plot, annotated by cluster IDs.
c UMAP and corresponding violin plots show activities of homologous recombination mediated DNA repair pathway in the groups of cells. d UMAP and
corresponding violin plots show the activities of EMT and stemness gene signatures in the groups of cells, with median values on top of plot. e Single-cell
RNA velocity estimates for individual cells in gamma-irradiated and non-irradiated M and E cells with arrows indicating the extrapolated direction of
transition to transcriptional states projected onto the UMAP plot. Cells are colored by their cluster IDs as in (b). Lengths of the arrows indicate the velocity
of transition between the clusters.
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biological functions of the gatekeepers of the transcriptional state
dynamics. Analyzing velocity field in UMAP embedding of gene
expression, we further observed that E cells were poised to
transform towards cluster 3 - a low EMT state (Fig. 5e). However,
despite having limited connectivity between M and E clusters,
cells from both phenotypes were transcriptionally transforming
towards cluster 10, which is an intermediate EMT state and
stemness phenotype, and low DNA damage response activity
(DDR). Taken together, we argue that although SMAD3 and
KLF4 promote radioresistance and PPARG radiosensitivity,
radiation treatment likely eliminates extreme transcriptional
states, and/or rather surviving cells converge towards transient
equilibrium dominated by intermediate EMT scores, as a radia-
tion response.

Clinical relevance of the regulatory network. We examined the
effects of the gene-trio involved in the regulatory network
underlying the transcriptional state dynamics on prognosis and
overall survival in the UBC patients. Analyzing microarray-based
gene expression data for bladder cancer study64, we found

PPARG is strongly associated with a non-muscle invasive phe-
notype as compared to muscle-invasive phenotype in multiple
cohorts, while SMAD3 has borderline contrarian pattern in those
(Fig. 6a), which might be due to the fact that core EMT regulators
are often co-expressed in various combinations in order to
orchestrate complex EMT programs depending on the specific
biological context. Furthermore, in the TCGA-BLCA cohort,
PPARG expression was a differentiating feature between patients’
samples in UMAP projections and to a lesser extent SMAD3 and
KLF4 expression (Fig. 6b). We further performed Kaplan–Meier
analysis to evaluate the prognostic value of prevalence of the
transcriptional states and the associated gene regulatory network
(Supplementary Fig. 6a). Tumors with above median PPARG
expression had significantly longer overall survival (Supplemen-
tary Fig. 6a, p= 0.0059, median survival of PPARG-high group:
1163 days (~3.1 years), median survival of PPARG-low group:
859 days (~2.4 years)). KLF4 upregulation was associated with
poor survival, but this effect was not significant and SMAD3
showed some ambiguity. All three genes together- SMAD3 and
KLF4 high, and PPARG low expression, were associated with poor

Fig. 6 Prognosis in urothelial bladder cancer patients. a Volcano plots showing differential expression of genes, including those in the regulatory network
in bladder tumors with different invasive potentials in four independent bladder datasets. Positive and negative values of fold change indicate down- and
upregulation of invasive potential signatures, respectively. Each grey dot is a differentially expressed gene. SMAD3 and PPARG were annotated, but KLF4
was not among the significantly differentially expressed genes. b UMAP plots of the samples in the TCGA-BLCA cohort, colored by expression levels of
SMAD3, PPARG, and KLF4 and the vital status. c–e Kaplan-Meier survival analysis of the bladder cancer samples from TCGA-BLCA cohort according to (c)
subtype annotation, (d) differential expression of the genes in the regulatory network in the samples with high tumor purity, and (e) predominant
transcriptional states. p values were calculated using Log-rank test.
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survival, although not significant (Supplementary Fig. 6a). We
then used deconvolution algorithms to estimate cell-type pro-
portions from the bulk tumor gene expression data in the TCGA-
BLCA cohort as cellular compositions of tumors might be dif-
ferent. Supplementary Fig. 6b, c shows dominant cell types in
each sample inferred from deconvolution and association among
different cell types; the extent of immune infiltration showed
inverse correlation with the epithelial phenotype. The tumor
microenvironment harbors both immune-suppressive and acti-
vating cells, and the tumor infiltrates are highly heterogeneous
depending on the specific cancer type. Immune-rich phenotypes
also presented with decreased and significant hazard ratio
(R= 0.67, p= 0.028), suggesting better prognosis (Supplementary
Fig. 6d). We then correlated the cell fraction data with clinical
information from TCGA-BLCA cohort and noticed that the cell
type abundance was altered greatly across the molecular subtypes.
Upon subtype classification and cell type estimations, luminal
tumors had the best prognosis; and basal tumors with high
immune infiltration had worse prognosis (Fig. 6c). It has already
been demonstrated that PPARG pathway activation is associated
with the luminal intrinsic bladder subtype65. Also, tumors with
high EMT scores are mostly associated with high immune infil-
tration; however, high EMT and reduced infiltration of immune
cells and vice versa is also observed, albeit in few tumors (Figs 1,
6). Interestingly, in tumors high tumor abundance, SMAD3 and
KLF4 high, and PPARG low expression, were significantly asso-
ciated with poor prognosis, albeit small sample size (Fig. 6d).
When the survival analysis using EMT signature was performed,
there was a significant survival difference in tumor patients
(Fig. 6e, p= 0.0021, median survival of EMT-high group:
823 days (~2.2 years), median survival of EMT-low group:
1348 days (~3.7 years)). Altogether, our results suggest that EMT
signature has a prognostic significance in UBC patients and
supports a model that tumors dominated by transcriptional cell
states with low EMT and high PPARG expression have better
survival.

Discussion
We analyzed single-cell and spatial transcriptomics data from
urothelial bladder cancer (UBC) specimens and used live cell
imaging and single-cell genomics in bladder cancer cell lines to
characterize transcriptional heterogeneity in bladder cancer,
establish its mechanistic basis, and understand its clinical
importance. Our results show that intra-tumor transcriptomic
heterogeneity in UBC is, at least partly, due to co-existence of
tumor cells having epithelial- and mesenchymal-like transcrip-
tional states. Moreover, recurrent and reversible transition
between the transcriptional states contribute towards dynamic,
nongenetic heterogeneity both in vitro and in vivo13,66,67. Our
integrative analyses identify several key characteristics of dynamic
transcriptional heterogeneity in urothelial bladder cancer.

First, detection of these transcriptional states recurrently in
different patients and different subclones within any patient
indicates that, the phenotypes are partially independent of genetic
variations, subtype annotation, and that transition between these
recurrent transcriptional states might be frequent within and
across the branches of tumor phylogeny – an emerging pattern
across several cancer types17,21,68,69. While cancer is considered a
genetic disease, these findings collectively point towards the
nongenetic basis of the dynamic emergence of an important
cancer hallmark.

Second, transcriptional state dynamics involving epithelial-
mesenchymal transition appear to be regulated by a core reg-
ulatory network. Our data-driven approach identifies SMAD3,
KLF4 and PPARG as regulatory markers of the spontaneous

transcriptional state dynamics70–72. KLF4 is a Yamanaka factor
important for pluripotency, while SMAD3 is essential for
TGFB1 signaling, and PPARG has complex roles in tumor
metabolism and immunity; they have known roles as positive and
negative regulators of EMT and bladder carcinogenesis40,41,44,45.
We note that the complex regulation of transcriptional states
involves chromatin remodeling, as well as complex changes in
metabolism, signaling, and other cellular processes; thus, it is not
surprising that several other factors49,73–78 could also influence
epithelial-mesenchymal transition dynamics. However, at the
pathway-level, these results appear to converge implicating TGFB
and MET pathways, and metabolism in regulating EMT-
associated transcriptional state dynamics79–82. Our results are
consistent with prior reports focusing of the role of MET/SNAIL/
SMAD3/miR323a-3p circuit49 on EMT dynamics, underlining
the importance of the complex regulon governing the transcrip-
tional state dynamics, beyond the classic oncogenic functions of
these genes individually. Our data-driven unbiased analyses in the
model system, with consistent observations in the genetic and
extrinsic perturbation experiments, as well as in the single cell
and spatial transcriptomics data from human UBC tumors, and
survival data analyses suggest that the gene regulatory network
involving SMAD3-KLF4-PPARG could be minimally sufficient to
modulate the transcriptional state dynamics in vivo and in vitro,
serving as clinically informative biomarkers.

Third, despite heritability of transcriptional states, tumor cell
populations show inherent propensity to attain and maintain
dynamic equilibrium among the transcriptional states83,84. This
phenotypic plasticity likely offers evolutionary advantages and
adaptability to tumor cell populations, especially under stress.
Transition of cancer cells across a continuum of states in response
to therapy is emerging as a potential mechanism to develop drug
tolerance23,85–87 and our data suggests that exposure of cells to
stress could induce transition of some mesenchymal-low sub-
populations into mesenchymal-high subpopulations, with
SMAD3-KLF4-PPARG inducing the phenotypic switching. Our
simulation and experimental results show that feedback loops
within this core network can give rise to co-existence and stability
of different transcriptional states. Microenvironmental cues such
as nutrient starvation and clinical management strategies such as
radiation affect cell state transition dynamics, selecting for a
transiently resistant phenotype and then dynamic population-
level reconstitution of growth and heterogeneity upon removal of
stress condition. Bladder tumors are often large and nutrient-
starved; our spatial transcriptomics analyses indicates that tran-
scriptional states of tumor cells show regional autocorrelation and
may be associated with microenvironmental contexts. Our spatial
analysis also revealed that different transcriptional states with
differential EMT potency are localized in different niches and
contribute to the spatial organization of tumor subpopulations in
patients with UBC88,89. Analysis of tumor immune micro-
environment of bladder cancer at the single-cell level by Chen
et al.10 revealed distinct subpopulations and functional hetero-
geneity of cancer-associated fibroblasts (CAFs). Our single-cell
and spatial transcriptomics analyses support the idea that tran-
scriptional state heterogeneity and plasticity of tumor cells in the
microenvironment are dominated by E and M states and could be
modulated by local microenvironmental contexts. It is possible
that tissue-level coordination of transcriptional state dynamics
may involve inter-cellular signaling and non-autonomous
mechanisms; for instance, it was shown that urothelial cells
undergo epithelial-to-mesenchymal transition after exposure to
muscle-invasive bladder cancer exosomes75.

Lastly, intra-tumor heterogeneity and transient resistor phe-
notypes are difficult to target90,91. In the context of radiation
treatment, initial perturbation of transcriptional-state dynamics
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and selection of a transiently resistant phenotype, followed by
reconstitution of heterogeneity present potentially complex
challenges for clinical management of UBC92–94. Somatic evolu-
tion in tumor is classically described as Darwinian process, but
these findings contribute to the debate about Lamarckian adap-
tation during treatment95–97. Further studies are necessary to
establish detailed molecular mechanisms. Tumor subtype classi-
fication and targeting recurrently mutated cancer genes has been
a mainstay of classic cancer research and therapeutics98,99, but
limited efficacy due to emergence of resistance remains a
problem4,100,101. Intra-tumor heterogeneity and plasticity present
substrates for evolvability and treatment resistance in urothelial
bladder cancer, and other cancer types102,103. So far, limited
clinical management strategies are available to target or even
contain intra-tumor heterogeneity22,104,105. Our observations
indicate that, key biomarkers of the regulome of the transcrip-
tional state dynamic heterogeneity in cancer could be identified
and targeted to alter the overall cell population-level phenotype
and potential for treatment resistance, which may modulate intra-
tumor heterogeneity itself and help formulate mono- or combi-
nation therapy for effective management of heterogeneous
tumors.

Methods
Bladder cancer cell lines. Bladder cancer cell lines T24 and
UMUC3 were purchased from the American Type Culture Col-
lection (ATCC, USA) and were regularly tested for mycoplasma
contamination. They have different growth potentials and were
cultured in Dulbecco’s modified eagle’s medium (D6429, Sigma-
Aldrich) supplemented with 10% fetal bovine serum (97068085,
VWR) and 1% Penicillin-Streptomycin solution (97063708,
VWR), at 37°C in a humidified incubator with 5% CO2, and
harvested using trypsin-EDTA solution (25200056, GIBCO) or
rubber-tipped cell scraper.

Monoclonal selection and secondary cloning. Two methods
were used to characterize the clonal composition of bladder
cancer cell lines- cloning rings and limited dilution. For plating by
limited dilution, cells were plated at very low cell densities (<1
well per well in 96 well plates) with 50% conditioned medium and
after a day when the cells were attached, wells containing a single
cell were marked; empty wells and wells containing >1 cell were
excluded. Seven days following plating, colonies derived from
single cells were designated as holo-, mero-, and paraclones by
morphological characterization. The colonies were grown to
confluence and transferred to twenty-four-well plates where they
were maintained until near ~80% confluent, at which time they
were subjected to various treatments. For cloning ring method,
~20 cells per seeded per 100 mm dishes and monitored for clonal
expansion. Once colonies reached density of at least 50 cells,
colonies were isolated from the culture dish using clonal discs.
Briefly, colonies from the parental population were classified as
holo-, mero-, and paraclones based on colony morphology and
well-spaced colonies of each type were selected, ring-cloned and
further propagated until reaching ~80% confluency. The number
and types of each type of colony produced were determined for
clonogenicity assessment. Automated cell counter Vi-CELL cell
analyzer (Beckman Coulter) was used to determine the cell via-
bility of each colony type.

Incucyte time-lapse microscopy and analysis of clonal growth.
Cells were plated at low cell densities, in the range of 25-100 cells
per well in 24-well plates and allowed to give rise to colonies over
a period up to 2 weeks. Colony growth from single cells/few cells
was monitored using the Incucyte® Live Cell Analysis System to

capture time-lapse phase contrast images of each well. Incucyte
images were taken at intervals of 2 hours and each colony was
tracked from when cell first adhered to the plate to the end of the
growth period. The number of cells from which the colony
developed, number of colonies derived, the merging of colonies
and the colony morphology were estimated. After cells reached
~70-80% confluence, the clones were given indicated treatments
and returned to Incucyte incubator for image tracking. The
Incucyte system was also used to measure progressive wound
closure in scratched wells over time for migration assay and
generate confluence graphs for proliferation assay.

Knockdown of gene expression. ON-TARGETplus siRNAs were
used for knockdown of SMAD3 (SMAD3si) (J-020067, Horizon
Discovery), PPARG (PPARGsi) (J-003436, Horizon Discovery)
and Scrambled (SCR) was used as a negative control (D-001810,
Horizon Discovery). For gene expression knockdown, cells were
transfected with the indicated siRNAs at a final concentration of
50 nM using Lipofectamine (13778075, Thermo Fisher Scientific)
following standard protocols for cell lines.

Serum starvation and irradiation treatment. After cells reached
~80% confluence, the medium was replaced, and the cells were
irradiated with 2 and/or 4 grays (Gy) of γ-radiation using
Gammacell 40 Extractor (MDS Nordion) at an average dose rate
of 91 cGy/min. Following irradiation, cells were immediately
returned to the incubator and allowed to recover for 24 h. For
serum starvation, the growth medium was replaced with medium
completely devoid of FBS and cells were cultured overnight
(~15 h), after which serum was re-supplemented, and cells were
allowed to recover for 24 h. Parental cells and untreated mono-
clonal cells were used as controls and were counted and passaged
under the same conditions without irradiation or serum starva-
tion. Recovered cells were then harvested for scRNAseq and/
or IF.

Quantification of γ-H2AX stained foci. Each well of 24-well
plates was individually seeded with a single cell derived from
either an epithelial-like (meroclone) or a mesenchymal-like
(holoclone) cell. For immunofluorescence (IF) experiments cells
were seeded onto coverslips in 24-wells plate. Post appropriate
treatments, at the experimental end-points, cells were washed
with PBS, fixed with 3% paraformaldehyde and permeabilized
with 0.5% Triton X-100. Cells were blocked with 1% BSA for 1 h,
then incubated sequentially with primary antibody (γ-H2AX,
Millipore, 05–636) and secondary antibody (Alexa Fluor 488-
conjugated goat anti-mouse antibody, Life Technologies, A21121)
for 1 h each at 37°C, with three PBS washes in between. Cover-
slips were mounted onto glass slides with VECTASHIELD
Mounting Medium with DAPI (Vector Labs, H-1200). Images
were captured at 20× objective using a Nikon Eclipse TE2000-U
microscope. Images of the same group were captured with
identical exposure time. Images were processed using ImageJ
software, and cells were scored as displaying either diffused or
punctuated staining. Cells with punctuated staining were further
analyzed for calculation of the number of foci. The experiment
was performed at least thrice, and data analyzed using a two-tail
t-test.

Image cytometry of cell lines. For the assessment of single-cell
variation in a population of cells Cell Profiler software (https://
cellprofiler.org/) was used to extract quantitative feature infor-
mation from images. TIFFs images were exported from IncuCyte
ZOOMTM to Cell Profiler software106. The Cell Profiler pipeline
included: pre-processing, smoothing using smooth-keeping edges
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method, primary object identification from smoothed image
using the global thresholding otsu method and all measurements
describing state of every single cell, including primary object area,
shape and intensity were exported. The measured features were
then analyzed using dimension reduction methods to project the
high dimensional data in 2D-plane. Single cells were scored by
cellular radius, area, perimeter, solidity, formfactor, eccentricity
and compactness to describe the morphological state and classify
into holoclone-and meroclone-like morphologies. Two distinct
classes of cells were identified based on cell morphology, termed E
and M. E cells were flattened cells with irregular boundaries, more
like epithelial-like cells comprising meroclone colonies. M cells
were relatively small, circular and compact in shape, more like
mesenchymal-like cells comprising holoclone colonies. Cell
identities were then mapped onto X vs Y location dot plots called
phenotype state maps.

Scratch wound assay. Cells were grown to confluence in 24-well
plates in IncuCyte ZOOMTM system and the monolayer was
scratched manually using a 10 µL Pipette tip. Plates were placed
back in IncuCyte ZOOMTM system and photographed every
2 hours for 48 hours to monitor wound closure as cells move to
fill in the denuded region. Cell Profiler software was then used to
extract quantitative feature information from images106. The Cell
Profiler pipeline included: pre-processing, smoothing using
smooth-keeping edges method, primary object identification from
smoothed image using the global thresholding otsu method and
all measurements describing state of every single cell, including
primary object area, shape and intensity were exported. For
wound closure measurement, in the Cell Profiler pipeline for
image cytometry, we added MeasureImageAreaOccupied module.

Clonogenic assay. Clonogenic assay was used to evaluate the
proliferation of the holoclones and meroclones compared to the
parental cells. The clonogenic assay is based on the growth of
colonies from single cells, and IncuCyte ZOOMTM system was
used to detect colonies in label-free assay using time-lapse ima-
ging. Colonies were inspected and scored on morphology and the
size and number of cells per colony. The percentage of successful
colonies observed in comparison with cells seeded (termed as
clonal efficiency) was calculated by the following Eq. (1):

Clonal efficiency ¼ number of colonies observed
number of colonies seeded

´ 100 ð1Þ

The results were analyzed statistically using GraphPad Prism
5.01 software (GraphPad Software, Inc.).

Single cell transcriptomic profiling of bladder cancer cell line.
Monoclonally-derived holoclone and meroclone colonies of T24
cells, treated or untreated control, were trypsinized and resus-
pended in culture medium only (without FBS and antibiotics).
Cell viability and numbers were determined using a cell counter,
with viability <80% and numbers adjusted to 1×106 cells/ml.
Single cells were profiled using 10X single-cell RNAseq and Cell
Ranger was used to generate expression matrix. Standard single-
cell transcriptomic analysis was performed using Seurat107.
Velocity analysis was performed using Velocyto software108.
MAGIC109 algorithm was used for expression recovery or
imputation which replaces zeros with imputed expression values
for respective genes in dropout events of single‐cell tran-
scriptomic data. For hallmark pathway analysis, hallmark gene-
sets were used (http://www.broad.mit.edu/gsea/).

Analysis of single-cell transcriptomic data of bladder tumors
and cell lines. The single-cell RNA sequencing (scRNA-seq) data

for UMUC3 cell line was obtained from the Gene Expression
Omnibus (GEO) (GSE164041)107. The single cell transcriptomic
dataset of patients with UBC were obtained from Chen et al.
paper along with cell type annotations, which we refer to as the
BLCA-SC dataset10. Standard single-cell transcriptomic analysis
was performed using Seurat107 and only epithelial cells were used
for further steps of Seurat SCTransform workflow, followed by
principal component analysis (PCA), Uniform Manifold
Approximation and Projection (UMAP) dimensionality reduc-
tion, clustering, pathway level activity scores, and subclonal
inference to detect heterogeneity at genetic and non-genetic
levels.

Inference in clonal architecture. We used InferCNV (InferCNV
of the Trinity CTAT Project. https://github.com/broadinstitute/
inferCNV) package to estimate copy number status from single-
cell transcriptomic data in tumors tissue samples, using normal
tissue samples as reference. We used HMM-based prediction to
determine subclonal events, which provides altered region coor-
dinates, state assignments and clustering30,57. From the inferred
copy number status, the cells were ordered by hierarchically
clustering, major subclones were annotated and phylogeny tree
was constructed. The copy number status was visualized in a
heatmap illustrating the relative expression intensities across each
chromosome with respect to the normal reference cells.

Spatial transcriptomic profiling of bladder cancer tumors.
Deidentified human tumor tissue samples subjected to spatial
transcriptomic profiling were collected with written informed
consent and ethics approval by the Rutgers Cancer Institute of
New Jersey Institutional Review Board under protocol no.
Pro2019002924 (PI: De). Briefly, 5 μm tissue sections were placed
on the Visium Spatial Gene Expression Slide for FFPE following
Visium Spatial Gene Expression for FFPE-Tissue Preparation
Guide (10X Genomics, CG000408). Each slide had 4 capture
areas and each capture area was 6.5 x 6.5 mm with ~5000 spots
per capture area. Each spot was 55 µm in diameter with a 100 µm
center to center distance between spots. Slides containing the
tissue sections were incubated at 42 °C for 3 h and dried overnight
at room temperature. Deparaffinization was then performed fol-
lowing Visium Spatial for FFPE – Deparaffinization, H&E
Staining, Imaging & Decrosslinking Protocol (10X Genomics,
CG000409). Slides were then used with Visium Spatial Gene
Expression for FFPE User Guide (10X Genomics, CG000407) to
generate Visium Spatial Gene Expression – FFPE libraries and
sequenced on Illumina NovaSeq S4 300 cycle. The sequence data
(FASTQ files) were processed using Space Ranger (v2.0.1) count
pipeline for single-library analysis of fresh frozen (FF) and
formalin-fixed paraffin embedded (FFPE) samples to align tran-
scriptomic reads to the human reference genome (GRCh38), map
them to the microscopic image of the tissue from which the reads
were obtained and generate Feature Barcode matrices. The
resulting count matrices and associated H&E physiological ima-
ges were then used by the R package Seurat (v4.3.0) for standard
spatial transcriptomic analysis using default Seurat parameters107.
The four datasets were integrated using the Seurat SCTransform
integration workflow, followed by principal component analysis
(PCA), UMAP dimensionality reduction (UMAP) and clustering.
Tissue/cell types of each cluster were inferred, and clusters were
further refined by plotting clusters onto the associated histology
images and identifying marker genes. For each spatial barcode,
the gene signature activity scores were determined based on the
enrichment of the target genes of SMAD3, KLF4 and PPARG
(https://maayanlab.cloud/Harmonizome/gene_set/). We used
Spotlight for deconvolution of cell types in each spatial location
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and represented as scatter pie plots110. We represented the spatial
map of the tissues with a neighborhood graph, and then used
spatial PCA (sPCA) after taking into consideration the graph
structure and used regression with a spatial lag model (lagsarlm),
as implemented in the spatialreg R package, to perform multi-
variate regression using a published approach57.

NETACT. NETACT111 is a computational framework that con-
structs transcription factor transcription factor-based gene regulatory
networks using transcription factor activity by integrating generic
transcription factor-target relationships from literature-based data-
bases against the backdrop of related gene expression data. Through
gene grouping, topology optimization and examining the literature
for catalog of known regulatory interactions involving cancer-related
transcriptional master regulators, we can reduce the complex net-
work to derive a closed, minimalistic core network.

RACIPE algorithm. RACIPE is a mathematical modeling algo-
rithm that allows an extensive exploration of the dynamical
properties of a gene regulatory network112. Only the network
topology is provided as an input to simulation framework, which
is then modelled as a set of x ordinary differential equations
(where x is the number of nodes in the gene regulatory network).
The change in concentration of each node in the network
depends on the production rate of the node, the effect of reg-
ulatory links incident on the node (modelled as a shifted Hill’s
function) and the degradation rate of the node. Each parameter in
the set of unknown parameters for ordinary differential equations
(ODEs) is randomly sampled from a biologically relevant range.
The sampling of parameters is done so as to ensure that it gen-
erates a representative ensemble of models for a specific circuit
topology. The range for production rate varies from 1 to 100
while the range for the degradation rates varies from 0.1-1
(arbitrary units). The fold change parameter associated with each
link is assumed to be in the range of 1 to 100-fold. The Hills
coefficients sampled are assumed to vary from 1 to 6. After such
sampling, the set of parameterized ODEs is solved to get different
possible steady-state solutions. The set of ODEs can be multi-
stable, i.e., multiple sets of steady-state concentrations satisfy the
set of ODEs. The program samples 50000 different sets of para-
meters. For each parameter set, RACIPE chooses a random set of
initial conditions (n= 100) for each node in the network and
solves, using Euler’s method, with the set of coupled ODEs that
represent interactions among the different nodes in a network.
For each given parameter set and initial conditions, RACIPE
reports the steady-state values for each of the nodes in the net-
work. The steady-state values were then Z-normalized where the
z-normalized expression value Zi is given by the following Eq. (2):

Zi ¼
Ei � Emean

Estd
ð2Þ

where Ei is expression level of a given node at i-th steady state
solutions, and Emean and Estd are the mean and standard deviation
of the expression levels of a given node across all its steady state
solutions, respectively. The perturbation analyses were done by
performing RACIPE analysis on the system by either over
expressing (OE) or down expressing (DE) the given node by 20-
fold. The Z-score normalization of these perturbation data was
done with respect to the control case.

TCGA RNAseq data analysis. Gene expression data from 427
patients (408 Primary Tumor and 19 Solid Tissue Normal) with
bladder cancer (TCGA-BLCA) was downloaded from Genomic
Data Commons (GDC) using R package TCGAbiolinks (version
2.18.0). The gene expression data was normalized using Trimmed

mean of M-values (TMM) followed by voom transformation
using limma R package (version 3.46.0). Gene-level data was
obtained by computing maximum normalized expression value
for each transcript. Sample-level enrichment scores for gene
signatures and cell-specific marker genes from gene expression
profile were computed using GSVA R package (version 1.38.2).
Cellular compositions were estimated by employing a marker-
based approach by ranking enrichment scores of marker genes to
make scoring independent of the gene expression units and
represented in UMAP plots with dominant cell type. Tumor
purity (proportion of cancer cells in a sample) was estimated
from tumor gene expression profile, by calculating abundance
scores for each spatial barcode score for infiltrating immune and
stromal cells. To reduce high-dimensional transcriptomic data
into low-dimensional representations and cluster patients,
embedding of dataset into UMAP space was performed. Gene
and pathway signatures were obtained from MSigDB31.

Clinical and survival analysis. Data of 4 independent bladder
cancer microarray datasets113–115 and Sanchez-Carbayo et al.116

was obtained from a meta-analysis study by Riester et al.64.
Normalized gene expression profiles were analyzed for associa-
tion with clinical variables like invasive phenotype. In the TCGA
bladder cancer (TCGA-BLCA) cohort, for a gene-by-gene and
gene signature survival analysis, the patients with above-median
expression of the gene- or signature-of-interest were put in the
up-regulated groups, and the remaining in the down-regulated
group, and R packages survival (version 3.3-1) and survminer
(version 0.4.9) were used. Hazard ratio and p value were deter-
mined using SurvExpress tool117.

Statistics and Reproducibility. All statistical analyses were per-
formed using R version 4.2.3 (https://www.r-project.org/) and
GraphPad Prism 5.01 software. Asterisks indicate statistical sig-
nificance wherein ***P < 0.001, **P < 0.01; *P < 0.05; ns, non-
significant. Statistical tests and corresponding p values are listed
for respective analyses. Data processing relied heavily on the
Tidyverse version 2.0.0 R packages (https://www.tidyverse.org/).

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
Genomic data for the project has been deposited to the Sequence Read Archive
(BioProject: PRJNA1033657). The source data behind Figs 2c–e, 3j, 4f, 5a, c, d, and 6c–e
can be found in Supplementary Data 1. All other data are available from the
corresponding author on reasonable request.

Code availability
In-house scripts used in this manuscript for graphs and analyses, which include data
processing, downstream analysis, and the scripts used to generate figures are publicly
available on Zenodo repository118 and at https://github.com/sjdlabgroup/BLCA-
resources.
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