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Multi-domain and complex protein structure
prediction using inter-domain interactions from
deep learning
Yuhao Xia1,2, Kailong Zhao1,2, Dong Liu1, Xiaogen Zhou 1 & Guijun Zhang 1✉

Accurately capturing domain-domain interactions is key to understanding protein function

and designing structure-based drugs. Although AlphaFold2 has made a breakthrough on

single domain, it should be noted that the structure modeling for multi-domain protein and

complex remains a challenge. In this study, we developed a multi-domain and complex

structure assembly protocol, named DeepAssembly, based on domain segmentation and

single domain modeling algorithms. Firstly, DeepAssembly uses a population-based evolu-

tionary algorithm to assemble multi-domain proteins by inter-domain interactions inferred

from a developed deep learning network. Secondly, protein complexes are assembled by

means of domains rather than chains using DeepAssembly. Experimental results show that

on 219 multi-domain proteins, the average inter-domain distance precision by DeepAssembly

is 22.7% higher than that of AlphaFold2. Moreover, DeepAssembly improves accuracy by

13.1% for 164 multi-domain structures with low confidence deposited in AlphaFold database.

We apply DeepAssembly for the prediction of 247 heterodimers. We find that Dee-

pAssembly successfully predicts the interface (DockQ ≥ 0.23) for 32.4% of the dimers,

suggesting a lighter way to assemble complex structures by treating domains as assembly

units and using inter-domain interactions learned from monomer structures.
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Most proteins in nature are composed of multiple
domains that represent compact and independent
folding units within the protein structure. Appropriate

inter-domain interactions are essential to facilitate the imple-
mentation of multiple functions in a cooperative way1,2. Mean-
while, structure-based drug design often relies on the interaction
of different domains. Capturing the domain-domain orientation
accurately is crucial to elucidate their functions and facilitate drug
discovery3. However, multi-domain proteins and complexes are
often more flexible than single domains, with a high degree of
freedom in the linker or interaction region connecting the
domain structure4. This flexibility of inter-domain orientation is a
challenge both for experimental and computational methods.

Recently, great progress has been made in protein structure
prediction due to the introduction of deep learning techniques5–8.
In particular, the end-to-end protein structure prediction fra-
mework, AlphaFold29, built on the attention-based equivariant
transformer network, was able to predict unknown structures of
proteins with an unprecedented accuracy as witnessed in the
CASP14 experiment10. With AlphaFold2, achieving a global
distance test (GDT) score of 90 or higher for most targets is
within reach, approaching experimental accuracy. Nonetheless, it
is worth noting that several of the CASP14 targets, especially
multi-domain targets, were not predicted to a 90 GDT score
suggesting that there are further improvements in multi-domain
prediction3. In fact, just about a third of proteins in the Protein
Data Bank11 (PDB) contain multi-domain structures12. The lack
of multi-domain structures makes the PDB database biased
toward proteins that are easy to crystallize and single domain
structures. This means that AlphaFold2 is more biased toward
single domain prediction as it is trained on the PDB.
AlphaFold2 structure predictions for multi-domain proteins are
thus less accurate as on the domain level3.

Fortunately, the single domain prediction is largely solved by
AlphaFold2, which provides a feasible approach to multi-domain
protein structure modeling, that is, based on a divide-and-
conquer strategy, splitting the sequence into domains, generating
models for each individual domain, and finally assembling each
domain model into a full-length model1,4. This approach may
further improve the accuracy of multi-domain protein modeling
by focusing on capturing inter-domain interactions on the basis
of high precision single domain models, and to some extent lower
the threshold of computing hardware compared to end-to-end
methods.

Often, studies in modeling multi-domain proteins by assem-
bling domain structures can be divided into two categories,
linker-based domain assembly and inter-domain rigid body
docking. Linker-based methods, such as Rosetta13 and AIDA14,
primarily focus on the construction of linker models by exploring
the conformational space, with domain orientations loosely
constrained by physical potential from generic hydrophobic
interactions. Meanwhile, domain assembly can also be perceived
as a docking problem. The previously proposed DEMO1 and
SADA15 assemble the single domain structure by rigid body
docking, which are essentially a template-based method that
guides domain assembly by detecting available templates. How-
ever, structural alignment is limited by the number of multi-
domain proteins in PDB, and the difficulty of capturing the
orientation between domains from the template may increase as
the number of domains increases15. The inter-residue distance
predicted by deep learning improves the problem of insufficient
number of multi-domain protein templates to a certain extent.
But given the fact that it is currently relatively easy to obtain high-
precision single domain structures, it may be more urgent and
important to pay more attention to the capture of inter-domain
interactions in deep learning.

In addition to multi-domain targets, could protein complex
structure prediction be achieved by domain assembly? Con-
sidering that intra-protein domain-domain interactions are not
physically different from inter-protein interactions; their struc-
ture or function may be viewed essentially as the embodiment of
inter-domain interactions. We hypothesize that inter-domain
interactions learned from intra-protein could be used to predict
the protein complex structure. In practice, many proteins that
form complexes in prokaryotes are fused into long, single-chain,
multi-domain proteins in eukaryotes16,17. The same physical
forces that drive protein folding are also responsible for protein-
protein associations16,18. Thereby, it is very likely that the deep
learning model built by learning the inter-domain interactions in
the existing PDB monomer structures have already learned the
representations necessary to model protein complexes consisting
of multiple single-chain proteins19.

Until now, there is no study for predicting the structure of
protein complexes by specifically learning inter-domain interac-
tions and using the modeling approach of domain assembly.
Conventional approaches for predicting the protein complex
structure include docking20–22 and template-based methods23–25,
which are limited by force-field accuracy and experimentally
resolved multimeric structures, respectively. Recent methods
incorporate coevolution-based contact/distance prediction and
deep learning techniques to predict complex structures. The
three-track network of the end-to-end version of RoseTTAFold5

generates protein- protein complex structure models by com-
bining features from discontinuous crops of the protein sequence.
Meanwhile, studies have been carried out whereby AlphaFold2 is
adapted to predict the protein complex structure16,26. They
demonstrate that the same network models from AlphaFold2
developed for single protein sequences can be adapted to predict
the structures of multimeric protein complexes without
retraining16. Alternatively, an AlphaFold2 model, AlphaFold-
Multimer27, trained specifically on multimeric inputs, sig-
nificantly increases the accuracy of predicted multimeric inter-
faces while maintaining high intra-chain accuracy. In fact, these
methods are performed by feeding the combined protein
sequences into the deep learning models, for some large targets,
most available GPU memory may have difficulty meeting the
requirements of its inference. Therefore, it is highly desirable to
develop a more lightweight approach, such as predicting the
structure of protein complexes through domain assembly using
domains in each chain as assembly units.

In this work, we proposed a framework, DeepAssembly, to
assemble multi-domain proteins through inter-domain interac-
tions specifically predicted by deep learning. Different from
DEMO and SADA, as a data-driven deep learning method,
DeepAssembly avoids the time-consuming template alignment
process and does not depend on templates entirely, which pay
more attention to the capture of inter-domain interactions to
improve the prediction accuracy of inter-domain orientations.
Experimental results indicate that DeepAssembly builds models
with higher accuracy than AlphaFold2 and improves the inter-
domain orientations of those multi-domain protein structures
with lower accuracy in AlphaFold Protein Structure Database28

(AlphaFold database). Furthermore, we use the same network
model trained on monomeric multi-domain proteins to predict
protein-protein complex structures with domain assembly. It
demonstrates that the proposed method, DeepAssembly, can
be applied to protein complex structure prediction by using inter-
domain interactions learned from intra-protein, and we provide
evidence of such. Meanwhile, it also provides a more lightweight
approach to assemble protein structures using domains as
units, possibly reducing the GPU memory requirements to
some extent.
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Results
Overview of the method. DeepAssembly is designed to auto-
matically construct multi-domain protein or complex structure
through inter-domain interactions from deep learning. Figure 1
shows an overview of the DeepAssembly protocol. Starting from
the input sequence of multi-domain protein (or protein complex),
DeepAssembly first generates multiple sequence alignments
(MSAs) from genetic databases and searches for templates using
our recently developed remote template recognition method,
PAthreader29. Meanwhile, the input sequence is split into single-
domain sequences by a domain boundary predictor, and then the
structure for each domain is generated by a single-domain
structure predictor (remote template-enhanced AlphaFold2).
Subsequently, features extracted from MSAs, templates and
domain boundary information are fed into a deep neural network
(AffineNet) with self-attention to predict inter-domain interac-
tions. Finally, DeepAssembly performs the creation of the initial
full-length structure using the single-domain structures, followed
by iterative population-based rotation angle optimization30–32.
The domain assembly simulation is driven by the atomic coor-
dinate deviation potential transformed from predicted inter-
domain interactions, where the best model by our in-house model
quality assessment33 is selected as the final output structure.

Accurate predictions on multi-domain proteins by domain
assembly. We first evaluate the performance of DeepAssembly on
the test set of 219 non-redundant multi-domain proteins, and
compare with the end-to-end protein structure prediction method

AlphaFold2 (Supplementary Data 1). For DeepAssembly, the
single-domains are individually predicted by the single-domain
structure predictor (PAthreader) from the segmented sequences, as
depicted in the DeepAssembly protocol. We use root-mean-square
deviation (RMSD) and template modeling score34 (TM-score) to
evaluate the accuracy of the built models. Here, the TM-score is a
metric defined to evaluate the topological similarity between pro-
tein structures (Supplementary Note 1), taking values (0,1], where a
higher value indicates closer structural similarity. Figure 2a shows
the full-chain TM-score and RMSD of the built multi-domain
protein models with respect to the PDB structures. The detailed
evaluation results are listed in Supplementary Table 1. On average,
the models built by DeepAssembly achieve a TM-score of 0.922
and RMSD of 2.91 Å, which are both better than 0.900 and 3.58 Å
of AlphaFold2. We present in Fig. 2b the accuracy comparison
between DeepAssembly and AlphaFold2 on each target. Dee-
pAssembly achieves a higher TM-score than AlphaFold2 on 66%
of the test cases, and a lower RMSD on 67% cases (Fig. 2b).
Especially, DeepAssembly has succeeded in building accurate
multi-domain protein models with TM-score > 0.9 for 81% targets.
From Fig. 2c, we can also observe that DeepAssembly constructs
more low-RMSD models, especially those with RMSD of <0.5 Å. It
demonstrated the reliability of multi-domain protein models pre-
dicted by DeepAssembly.

We then investigate the factors that contribute to the
performance of DeepAssembly. Here, we test the control version
of DeepAssembly that uses AlphaFold2-predicted domains as the
single-domain input, denoted as “DeepAssembly (AF2 domain)”.

Fig. 1 Pipeline of DeepAssembly. The input of DeepAssembly is the sequence of multi-domain protein (or protein complex), which is segmented into single-
domain sequences and generated single-domain structures by the single-domain structure predictor. Features extracted from the MSAs, templates and
domain boundary information are fed into a deep neural network to predict inter-domain interactions. In the domain assembly module, the full-length structure
is constructed using the predicted single-domain structures, and the population-based rotation angle optimization is performed under the guidance of an
energy potential transformed from the predicted inter-domain interactions. Finally, the output structure is selected by the model quality estimation.
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Even if the domains are replaced by AlphaFold2 predictions,
DeepAssembly still shows improvement compared with Alpha-
Fold2 (Supplementary Table 1). The results confirm that the
factor that contributes to DeepAssembly performance may be the
predicted inter-domain interactions applied to the domain
assembly module. This is potentially more important and more
challenging. For the AlphaFold2 model with lower prediction
accuracy, the gap in the TM-scores between the full-length model
and its single domain parts is even larger (Fig. 2d). This also
indicates that the main bottleneck for AlphaFold2 structure
prediction on multi-domain proteins is capturing the correct
inter-domain orientations, followed by modeling quality on single
domain parts.

We further analyze the performance of DeepAssembly with
single-domains generated by PAthreader and AlphaFold2 in the
case of MSA with different number of sequences. Supplementary
Fig. 1 is the scatterplot of the TM-score of models predicted by
DeepAssembly and DeepAssembly (AF2 domain) versus the
number of effective sequences (Neff) in MSAs. The fitting curves
in Supplementary Fig. 1 show that the TM-score increases as Neff
increases until it largely saturates when Neff is higher than 100. In
addition, as Neff increases, the curves representing DeepAssem-
bly and DeepAssembly (AF2 domain) gradually tend to coincide.
This indicates that when the MSA is shallow, the template
information can greatly improve the performance, while when the
MSA is deep enough, the co-evolutionary information plays a
major role.

DeepAssembly models improve more obviously on AlphaFold2
models with lower TM-score than on the higher TM-score
models (Fig. 2e). Especially for the proteins corresponding to
AlphaFold2 models with TM-score < 0.5, the average TM-score
of DeepAssembly models is increased by 45.2% compared with
AlphaFold2 (with an average increase from 0.414 to 0.601).
Similar conclusion can also be drawn from the percentage of the
improved proteins by DeepAssembly and the average TM-score
improvement rate for the improved proteins in Supplementary
Fig. 2a,b. With the lower the accuracy of models predicted by
AlphaFold2, the higher TM-score improvement rate of DeepAs-
sembly for these proteins. Specifically, DeepAssembly improves
71.4% of targets predicted by AlphaFold2 with a TM-score less
than 0.5, and achieves an average TM-score improvement rate of
72.4% on these improved proteins. The results reflect the
potential of DeepAssembly to improve the accuracy of multi-
domain proteins that inter-domain orientations are difficult to
capture correctly.

Figure 3 shows an example of ERdj5 (PDB ID: 3APO), its
J-domain and six tandem thioredoxin (Trx) domains are
contained in a single plane but divided into the N- and
C-terminal clusters (Fig. 3a). It is functionally meaningful that
the redox-active sites in both Trx3 and Trx4 are exposed on the
J-domain side of the Trx-containing plain35 (Fig. 3a, right).
Therefore, the correct inter-domain orientation between N- and
C-terminal clusters is a key structural feature in the acceleration
of ERAD by ERdj535. We built the full-length structure of ERdj5

Fig. 2 Results of assembling predicted domain structures. a Average TM-score over 219 multi-domain proteins for DeepAssembly and AlphaFold2. The
y-axis on the right represents the full-chain RMSD of proteins. Error bars are 95% confidence intervals. b Head-to-head comparison of the TM-scores (left
panel) and RMSDs (right panel) on each test case between DeepAssembly and AlphaFold2. “n” refers to the number of points on either side of the
diagonal. c Histogram of backbone RMSD for full-chain models by DeepAssembly and AlphaFold2. d TM-score comparisons between AlphaFold2 full-
length model and its single domain parts (AF2 domain) on the corresponding proteins of the models predicted by AlphaFold2 with TM-score less than each
cutoff. e TM-score comparisons between DeepAssembly and AlphaFold2 on the corresponding proteins of the models predicted by AlphaFold2 with TM-
score less than each cutoff. “cutoff” refers to a TM-score value on the x-axis, which reflects a TM-score interval less than this value.
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by AlphaFold2. We found that the C-terminal cluster composed
of Trx3 and Trx4, and the N-terminal cluster composed of the
other five domains achieve TM-scores of 0.976 and 0.951,
respectively. Nevertheless, AlphaFold2 predicts an incorrect
orientation for the C-terminal cluster in comparison to the
experimental structure, which results in a TM-score of 0.709 for
the full-length model (Fig. 3a). More importantly, in the
AlphaFold2 model, the redox-active sites in Trx3 and Trx4 are
located respectively on both sides of the Trx-containing plain,
which may make it difficult to perform normal functions. Given
domains enhanced by PAthreader, we reassemble the full-length
model through DeepAssembly. It can be seen from Fig. 3b that
DeepAssembly captures the correct orientation between the N-
and C-terminal clusters, and the model achieves a TM-score of
0.979, which increases by 38.1% compared with AlphaFold2.

DeepAssembly corrects the domain orientation of structures in
AlphaFold database. The European Bioinformatics Institute
(EBI) AlphaFold database is a very nice resource to have. How-
ever, some issues are likely to emerge in the future36. We need to
know if and how to update the AlphaFold database. Dee-
pAssembly may provide a lightweight approach to update the low
confidence multi-domain structures in AlphaFold database.

To analyze DeepAssembly’s potential to improve the quality of
multi-domain protein models with lower AlphaFold2 prediction
accuracy, we create a set of 164 multi-domain proteins from H.
sapiens proteome in AlphaFold database with the TM-scores <
0.8 for the corresponding AlphaFold2 structures and the
experimental structures in PDB contain more than 85% of solved
residues (see Methods). We predict these multi-domain proteins
using DeepAssembly and compare them with structures depos-
ited in AlphaFold database (Supplementary Data 2). We find that
DeepAssembly has outperformed AlphaFold2 on the test cases
(Fig. 4a). On average, the models predicted by DeepAssembly
achieve a TM-score of 0.690, which is 13.1% higher than that
(0.610) of AlphaFold2 structures. The reassembly of these multi-
domain proteins by DeepAssembly considerably improves the
accuracy (Fig. 4b). DeepAssembly successfully constructs more
models (47% of the cases) with TM-score >0.7 compared to
AlphaFold2 (Fig. 4a), and there are 27% of prediction models that
TM-score is improved to over 0.8 by DeepAssembly. DeepAs-
sembly also achieves a better performance than AlphaFold2 on

66% of cases (Fig. 4c). These results demonstrate that structures
with low confidence deposited in AlphaFold database can be
improved by DeepAssembly by correcting their inter-domain
orientations with large errors.

A prominent example is the soluble epoxide hydrolase (sEH)
(PDB ID: 3WK4_A), a candidate target for therapies for
hypertension or inflammation37. The structure prediction of
AlphaFold2 for the sEH has errors in the inter-domain
orientation with a full-chain TM-score of 0.689 and RMSD of
6.13 Å (Fig. 4d). In addition, we also assess the inter-domain
accuracy of AlphaFold2 structure by the predicted aligned error
(PAE) plot, which captures the model’s global inter-domain
structural errors9,28. The PAE plot for the AlphaFold2 structure is
shown in Fig. 4e. The two low-error squares correspond to the
two domains. For residues within domains, the PAE is low, with
TM-scores of 0.990 and 0.995 for the two single domains. In
contrast, the orientation of the two domains has a high PAE. The
high PAE across the whole inter-domain region indicates that in
this case AlphaFold2 does not predict relative domain orienta-
tion. For the DeepAssembly model, which shows close similarity
to the experimental structure with a TM-score of 0.996 and
RMSD of 0.54 Å (Fig. 4f). The low PAE across the whole region
reflects that DeepAssembly not only accurately models the single
domains, but also captures the correct inter-domain orientation
between them (Fig. 4g).

Another example is human complement factor B (PDB ID:
2OK5_A), the central protease of the complement system of
immune defense, consisting of five domains38. In the AlphaFold2
model, almost all domains are predicted accurately (average TM-
score is 0.961), however, there is an obvious difference in
orientation between the serine protease (SP) domain and the
other domains relative to the experimental structure (Fig. 4h). As
visible in Fig. 4i, there is a high PAE across the inter-domain
region between SP domain and the other four domains, although
the four domains have a low PAE in orientation to each other.
The difference is that the full-chain model predicted by
DeepAssembly is closely consistent with the experimental
structure (Fig. 4j). The DeepAssembly model gives low PAE in
the entire model including all domains and their inter-domain
regions (Fig. 4k). These results again demonstrate the ability of
DeepAssembly at the levels of multi-domain protein assembly,
especially in the aspect of inter-domain orientation prediction.

Fig. 3 Structure modeling results on a PDI family member protein, ERdj5 (PDB ID: 3APO). Predicted models by AlphaFold2 (green) (a) and
DeepAssembly (pink) (b) are shown along with the experimental structure (blue cartoon and surface). The side chains of the redox-active sites in Trx3 and
Trx4 of the experimental structure are shown in orange spheres (circled in red). The side chains of the redox-active sites in Trx3 and Trx4 of the
AlphaFold2 model are shown in pink spheres (circled in black). The Trx-containing plain is shown in red line.
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Although it is impressive that AlphaFold2 accurately predicts
protein structure, there are still quite a few structures in the
AlphaFold database with lower confidence in the alignment of
certain domains. This highlights the necessity for AlphaFold
database update. Importantly, the possibility to correct inter-
domain orientation by DeepAssembly can help to improve the
quality of multi-domain protein structures with low confidence,
providing an efficient way for updating of the AlphaFold
database.

Performance on the CASP14 and 15 targets. We apply Dee-
pAssembly to CASP14 and CASP15 targets to further evaluate its
performance. We selected a total of 30 multi-domain targets from
CASP14 and 15 as test proteins according to the “Domain
Definition” on the CASP official website, of which 17 are from
CASP14 and 13 are from CASP15. These targets all have known

PDB structures that been released. We assembled full-length
models by DeepAssembly on these CASP targets with single-
domains generated by PAthreader, and compared with Alpha-
Fold2 (Supplementary Data 3).

Supplementary Table 2 summarizes the results of targets from
CASP14 and CASP15 predicted by AlphaFold2 and DeepAssem-
bly. On the CASP14 targets, the average TM-score of DeepAs-
sembly is 0.850, which is higher than 0.832 for AlphaFold2.
DeepAssembly also achieved a better performance than Alpha-
Fold2 on most of the test targets (Supplementary Fig. 3a).
Especially for the target T1024, a membrane protein that consists
of two domains, DeepAssembly correctly predicted its inter-
domain orientation with a full-length TM-score of 0.957, which is
an improvement over 0.797 by AlphaFold2 (Supplementary
Fig. 4a). For the targets from CASP15, the models predicted by
DeepAssembly achieved an average TM-score of 0.584, which is

Fig. 4 DeepAssembly corrects the inter-domain orientation of multi-domain protein structures in AlphaFold database. a Average TM-score over 164
multi-domain proteins for DeepAssembly and AlphaFold2. The y-axis on the right represents the percentage of targets with TM-score>0.7. Error bars are
95% confidence intervals. b Distribution of the full-chain TM-score for the predicted models. c Head-to-head comparison of the TM-score value on each
test case between DeepAssembly and AlphaFold2. “n” refers to the number of points on either side of the diagonal. Predicted models of AlphaFold2 (d, h)
and DeepAssembly (f, j) for soluble epoxide hydrolase (PDB ID: 3WK4_A) and human complement factor B (PDB ID: 2OK5_A). Experimentally
determined structures are colored in blue, and the predicted models are colored in green. PAE plots for the predicted models by AlphaFold2 (e, i) and
DeepAssembly (g, k). The color at (x, y) corresponds to the expected distance error in residue y’s position, when the prediction and true structure are
aligned on residue x.
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slightly higher than 0.567 for AlphaFold2. Specifically, DeepAs-
sembly obtained models with a higher TM-score than AlphaFold2
on 62% of the targets (Supplementary Fig. 3b). Supplementary
Fig. 4b shows an example of target T1121. AlphaFold2 accurately
predicted its two individual domains (T1121-D1 and T1121-D2)
with TM-scores of 0.944 and 0.953, respectively. However, the
full-length models directly predicted by AlphaFold2 obtained a
lower TM-score (0.743). In this case, DeepAssembly generated a
highly accurate model with a TM-score of 0.925, demonstrating
its ability to improve the accuracy of multi-domain protein
structure prediction by capturing the correct inter-domain
orientation.

Furthermore, in order to analyze the effect of the single-
domain structures used on the final full-length model accuracy,
we further assembled the model through DeepAssembly with the
experimental domain structures. The results show that the
average TM-score on the CASP14 and CASP15 targets by using
the experimental domain structures achieved 0.903 and 0.778,
respectively. The example, T1137s1, is a challenging target as its
second domain (T1137s1-D2) is relatively difficult to predict. As
illustrated in Supplementary Fig. 4c, the TM-score of AlphaFold2
model is 0.446. In this target, the two predicted single-domain
structures used by DeepAssembly have TM-scores of 0.870 and
0.503, respectively, where the lower accuracy of the second
domain affects the quality of full-length model, resulting in a TM-
score of 0.474. However, by using experimental single-domain
structures, DeepAssembly generated a highly accurate model with
a TM-score of 0.949 (Supplementary Fig. 4c). This indicates that
predicted accuracy of the assembled full-length model could be
further improved if the high-quality single-domain models are
obtained. Meanwhile, the quality of single-domain model is also
an important factor in the accurate multi-domain protein
structure prediction in addition to inter-domain orientation.

Applying DeepAssembly to protein complex structure predic-
tion. It is well known that domains, as independent folding and
functional units, reappear across species in protein structure. For
some specific inter-domain interactions, they are not only present
in monomeric proteins, but also implicit in protein complexes.
We find an example of the Cdc42/Cdc42GAP/ALF3 complex
(PDB ID: 1GRN), consisting of two protein chains (Supplemen-
tary Fig. 5a), to support our hypothesis. There is a fusion protein
linked by RhoA and the GAP domain of MgcRacGAP (PDB ID:
5C2K) (Supplementary Fig. 5b). Interestingly, the crystal struc-
ture of the fusion protein is very close to that of complex 1GRN
(TM-score = 0.93), although its sequence similarity to complex
1GRN is less than 40%. This fusion protein may be derived from
the fusion of two unique protein chains. The original chains form
the domains of the fusion protein, but the relative orientation
between domains remains largely unchanged. It may be that
specific interactions between the two chains of the complex have
been preserved during evolution, emerging as a relatively stable
inter-domain pattern in other protein structures. Inspired by this,
we further conclude that there is essentially no difference between
the prediction of protein complexes and multi-domain proteins,
and the inter-domain interactions learned from monomeric
multi-domain proteins could be applied to protein complex
structure prediction through domain-level assembly.

Based on the above conclusion, we test the potential of
DeepAssembly for assembling complexes of known structures
over a test set of 247 heterodimeric protein complexes. Here, the
structure of complex is constructed using DeepAssembly, in
which each sequence is split into single-domain sequences to
construct the inter-domain paired MSAs, and all domains in each
chain are treated as assembly units that are predicted separately

by single-domain structure predictor. It should be noted that the
inter-domain interactions used here are from the same deep
learning model trained by monomeric proteins as when
assembling multi-domain proteins. In addition, the built models
are evaluated using DockQ score39. DockQ measures the interface
quality (Supplementary Note 1), interfaces with score >0.23 are
considered correct. The success rate (SR) represents the
percentage of cases whose DockQ are greater than 0.23.

In the test set, DeepAssembly successfully predicted the
interface (DockQ ≥ 0.23) in 32.4% of cases (Supplementary
Data 4). We compared its performance with RoseTTAFold and
AlphaFold-linker (Supplementary Table 3). The RoseTTAFold
models are obtained by running its end-to-end version, and
AlphaFold-linker models are obtained by adding a 21-residue
repeated Glycine-Glycine-Serine linker between each chain and
then running it as a single chain through the AlphaFold227.
Overall, DeepAssembly has an improvement of 74.2% compared
to RoseTTAFold (SR= 18.6%), is better than RoseTTAFold for
66% cases, and generates more high-quality models (Fig. 5a).
Meanwhile, our method can almost achieve the performance of
AlphaFold-linker (SR= 40.9%) with less computational resource
requirements. The number of medium models generated by
DeepAssembly is close to AlphaFold-linker (Fig. 5a), especially it
is superior to AlphaFold-linker on 36% cases. This validated the
effectiveness of our method that is based on domain assembly and
demonstrated that the deep learning model built by learning the
inter-domain interactions in the existing PDB monomer
structures can capture the protein-protein interactions as well.
In addition, we tested the performance of AlphaFold-Multimer
(version 2.1.1) with the default settings. It is currently the state-
of-art method for multimer structure prediction, achieving an SR
of 65.2% on the test set. However, this method was trained on the
entire PDB, and the redundancy between the test set and its
training set is not removed, which makes a direct comparison
difficult26,40. Nevertheless, DeepAssembly has higher interface
accuracy than AlphaFold-Multimer on 21% cases. Figure 5b
shows an example of a heterodimer composed of chains E and G
of the viral RNA polymerase (PDB ID: 4Q7J). We successfully
predict the interface (DockQ = 0.64), showing a low inter-chain
predicted error in the PAE map. For the model built by
AlphaFold-Multimer, the individual chains are predicted to be
correct, while their relative position is wrong (DockQ = 0.003), as
can be seen from the blocks with a high predicted error in the
PAE map. This shows that DeepAssembly is complementary with
AlphaFold-Multimer. On the other hand, there are three of the
complexes could not be successfully modeled by AlphaFold-
Multimer due to the GPU memory limitations. DeepAssembly
may provide a more lightweight way to assemble complex
structures by treating domains as assembly units.

We continue to analyze the performance for different subsets
of the test set. We first investigated the effect of the number of
effective sequences (Neff) in paired MSAs on the outcome. It is
obvious that MSA Neff has a large impact on the performance,
the proportion of proteins that are correctly predicted to interface
increases with deeper MSA (Fig. 5c). Too shallow MSAs do not
provide sufficient co-evolutionary signals, while too deep
alignments might contain false positives resulting in noise
masking the sought after co-evolutionary signal26. It can be seen
from Fig. 5c that the performance gradually tends to saturation
with larger Neff scores; even, for the subset with Neff > 512, the
fraction of models with DockQ score > 0.6 is reduced compared
to the subset with fewer Neff. We then divided the proteins by
kingdom (Fig. 5d). The SRs for each kingdom is: 28.8% for
eukaryotes, 42.5% for bacteria, 50.0% for archaea, 33.3% for virus,
and 10.5% for mixed kingdoms (e.g., one viral protein interacting
with one eukaryotic). The higher performance on bacteria and
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archaea is consistent with the observation that more evolutionary
information is available for them than others (Supplementary
Fig. 6). It is relatively difficult to predict protein interactions in
eukaryotes due to the smaller number of sequenced genomes and
higher numbers of paralogous genes compared to prokaryotes41.
Similarly, the lower SRs of mixed kingdoms is due to the lack of
inter-chain co-evolutionary signals, since paired MSAs are
generated by hits pairing of the interacting chains from the same
organism26,42.

Further, through several cases of predicted outcomes, we
examine the complementarity between co-evolutionary informa-
tion and structural templates. Figure 6a, b display two cases
(3F3F_B-D and 3MML_A-B) with sufficient co-evolutionary
signals, the DockQ scores achieve 0.611 and 0.699, respectively,
by using remote template information. This suggests that
structural templates can jointly promote the performance
improvement with co-evolutionary information. In the absence
of remote templates, co-evolutionary information is the main
driver. Two models built without structural templates are
displayed in Fig. 6c (2Y69_A-B) and Fig. 6d (4Q35_A-B), with
DockQ scores of 0.790 and 0.685 respectively. However,
generating paired MSAs is impractical in many cases because
there are few co-evolutionary signals across species, e.g.,
pathogen-host interactions16. An interesting successful assembly
is obtained modelling chains A and B from the complex with
PDB ID 3ALZ (Fig. 6e), the measles virus hemagglutinin bound
to its cellular receptor SLAM. As a complex with chains from
mixed kingdoms, we found that its paired MSA depth was almost
0, implying that it is quite difficult to predict the interface using
only such insufficient co-evolutionary signals. Even then we
correctly predicted its interface with a DockQ score of 0.675,
through the interactions learned from the structural template.
Similarly, for 4Q7J_E-G (Fig. 5b), in the absence of co-

evolutionary signals, its interface is also successfully predicted
(DockQ = 0.64). In the one remaining incorrect model (1JMU_I-
F, Fig. 6f), there is not sufficient inter-chain co-evolutionary
information and suitable templates, making the assembly difficult
and resulting in a DockQ score close to 0. These suggest that the
roles of co-evolutionary information and structural templates are
complementary. Especially for scenarios without co-evolutionary
signals, our method can identify the correct inter-chain interface
through the inter-domain interactions learned from the remote
templates, it could reduce the dependence on MSA to a certain
extent. After all, in nature, the protein folding process is
inherently driven by physical force fields, which itself does not
consider whether there is a co-evolutionary relationship.

We also applied DeepAssembly to generate models of the
heterotrimer Survivin-Borealin-INCENP core complex (PDB ID:
2QFA) and the heterotetramer NuA4 core complex (PDB ID:
5J9T). As illustrated in Supplementary Fig. 7a, DeepAssembly
generated a highly-quality model with a DockQ score of 0.828 for
three-chain hetero-complex 2QFA. In addition, for the four-chain
hetero-complex 5J9T, the complex model built by DeepAssembly
also achieved a DockQ score of 0.760 (Supplementary Fig. 7b),
showing the potential that DeepAssembly could also be applied to
hetero-complexes with more than two chains.

Application to transmembrane protein structure prediction.
Membrane proteins are involved in a variety of essential cellular
functions including molecular transporters, ion channels and
signal receptors, which constitute about half of current drug
targets43. Therefore, the structural determination of membrane
proteins is critical to advancing our understanding of their
function as well as the drug design. Here, we apply DeepAssembly
to transmembrane protein structure prediction.

Fig. 5 Results of protein complex prediction. a The number of models by DeepAssembly, AlphaFold-linker and RoseTTAFold within each DockQ score
threshold. b Example of a heterodimer of viral RNA polymerase (PDB ID: 4Q7J) predicted by DeepAssembly and AlphaFold-Multimer. Experimentally
determined structure is colored in gray, and the predicted model is colored by chain. Below are PAE heat maps showing the predicted error. c Fraction of
proteins with DockQ score higher than each cutoff for different paired MSA depths. d Fraction of proteins with DockQ score higher than each cutoff for
different kingdoms.
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Figure 7 displays several examples of the transmembrane
protein models predicted by DeepAssembly. The first example is
Monocarboxylate transporter 1 (MCT1) (PDB ID: 7CKR_A),
which is a multi-domain protein that catalyzes the movement of
many monocarboxylates across the plasma membrane through an
ordered mechanism44. The model built by DeepAssembly had the
correct inter-domain orientation, yielded a TM-score of 0.882
(Fig. 7a). In addition, the target T1024 in CASP14 (PDB ID:
6T1Z_A) is also a transmembrane protein, which consists of two
domains. In this case, DeepAssembly generated a more accurate
model with a TM-score of 0.957, compared to AlphaFold2’s 0.797
(Supplementary Fig. 4a).

Figure 7b, c show the results of DeepAssembly on two homo-
oligomeric proteins with C2-symmetry type. The models
predicted by DeepAssembly achieved DockQ scores of 0.881
(Fig. 7b) and 0.796 (Fig. 7c), respectively. Furthermore, for
OmpU, an outer membrane protein of Vibrio cholerae45 (PDB
ID: 6EHB), DeepAssembly correctly predicted the structures of its
three channels (average TM-score = 0.985), as well as their
interfaces (DockQ = 0.591) (Fig. 7d). Figure 7e displays an
example of tetrameric potassium channel KcsA (PDB ID: 2QTO),
which is an ion channel that is capable of selecting potassium
ions. The tetramer model for KcsA built by DeepAssembly

achieved a DockQ score of 0.756, and the model gave the correct
overall shape of the pore used to filter out potassium ions (shown
as sphere in Fig. 7e). These examples demonstrate the potential of
DeepAssembly on transmembrane proteins, which may help to
understand the function of transmembrane proteins, and provide
insights into their molecular interaction mechanism.

However, there is still room for further improvement. Since
our deep learning model is only trained on the data set of mainly
soluble multi-domain proteins, which are different from the
structural characteristics of membrane proteins, our method still
has some limitations for the assembly of some membrane
proteins that are large or flexible across transmembrane regions.
For example, for the target of acid-sensing ion channel (PDB ID:
2QTS) with three chains, there is a deviation between experi-
mental structure and predicted model (DockQ= 0.402), espe-
cially in the transmembrane region (Fig. 7f). This may be due to
the highly flexible structures within the transmembrane region,
with each subunit in the PDB structure of the chalice-shaped
homotrimer having a different orientation between its transmem-
brane helices and extracellular region, even though they share the
same amino acid sequence.

Moreover, the number of membrane proteins is rather limited
compared with a great deal of soluble protein structures resolved

Fig. 6 Examples of the protein complex structures built by DeepAssembly. a Nucleoporin pair Nup85-Seh1 (PDB ID: 3F3F) (DockQ = 0.611).
b Allophanate hydrolase (PDB ID: 3MML) (DockQ = 0.699). c Cytochrome c oxidase (PDB ID: 2Y69) (DockQ = 0.790). d Membrane protein (PDB ID:
4Q35) (DockQ = 0.685). e Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM (PDB ID: 3ALZ) (DockQ = 0.675). f Reovirus
mu1/sigma3 complex (PDB ID: 1JMU) (DockQ = 0.008). Experimentally determined structure is colored in gray, and the predicted model is colored
by chain.
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in PDB, as their experimental determination is subject to the
complicated membrane environment. This poses a major obstacle
to training deep learning model directly on such a small dataset of
membrane proteins43. To address the challenge, some statistical
and transfer learning-based methods may be promising, such as
DeepTMP43, which predicts the transmembrane protein inter-
chain contact by transferring the knowledge learned from the
initial model trained on a large dataset of soluble protein
complexes. This approach alleviates the limitation of training
deep learning model directly on few membrane proteins, and
simultaneously provides insights into how we further improve the
complex structure prediction by leveraging multi-domain protein
data.

Assembling multi-domain proteins with experimental
domains. In order to rigorously test the model performance of
DeepAssembly, we assemble multi-domain proteins with
experimental domains to exclude the influence of single-domains
on the final structure. In this experiment, DeepAssembly is
compared with SADA, DEMO and AIDA (Supplementary
Data 1), and for a fair comparison, we here exclude templates in
DeepAssembly with a sequence identity >30%, as done in SADA
and DEMO. Figure 8 presents a summary of the models

assembled by DeepAssembly, SADA, DEMO and AIDA. The
detailed data are listed in Supplementary Table 4. It can be seen
from Fig. 8a that DeepAssembly outperformed the other meth-
ods. The models built by DeepAssembly achieve an average TM-
score of 0.856, which is higher than 0.763 for SADA, 0.702 for
DEMO, and 0.589 for AIDA. Figure 8b provides a comparison
between DeepAssembly and other methods, which suggests that
DeepAssembly generates the highest number of models with each
TM-score cutoff. In particular, DeepAssembly builds models with
TM-score > 0.9 for 64% out of the 219 targets. In Fig. 8c, we list a
head-to-head TM-score comparison of DeepAssembly with other
methods, which shows that DeepAssembly has 70%, 78% and
87% of models with higher TM-score than SADA, DEMO and
AIDA, respectively. We can imagine that, under the condition
that single-domain structure is relatively easy to be resolved, our
method with the way of domain assembly could help experi-
mental scientists accelerate the analysis of the structure of multi-
domain proteins or protein complexes, and help to further pro-
mote the progress of experimental techniques.

Figure 8d, e show two representative examples of multi-
domain proteins assembled by DeepAssembly using experimental
domain structures. The first example is the 30 S ribosomal protein
S4e from Thermoplasma acidophilum (PDB ID: 3KBG_A), which

Fig. 7 Examples of the transmembrane protein structures predicted by DeepAssembly. The reference PDB structures are colored in gray, and the
different domains or chains of the predicted models are colored by blue, green, orange, and purple. a Monocarboxylate transporter 1 (MCT1) (PDB ID:
7CKR_A). b CDP-alcohol phosphotransferase (PDB ID: 4O6M). c magnesium transporter (PDB ID: 2ZY9). d OmpU, an outer membrane protein of Vibrio
cholerae (PDB ID: 6EHB). e potassium channel KcsA (PDB ID: 2QTO). The potassium ion in the ion channel is shown as sphere. f acid-sensing ion channel
(PDB ID: 2QTS).
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contains three continuous domains. It can be seen from the
Fig. 8d that the template detected by PAthreader achieves a TM-
score of 0.817, even though its sequence similarity is only 30%,
compared to the TM-score of 0.589 for template obtained by
HHsearch46 (see Supplementary Fig. 8a). The model predicted by
DeepAssembly using the PAthreader templates achieves the best
quality among different methods with a TM-score of 0.956.
Another example of multi-domain protein is TT0538 protein
from Thermus thermophilus HB8 (PDB ID: 2D1C_A) compris-
ing two domains. Different from the previous example, for this
case, we only identify the template of one of its domains (domain
1) through PAthreader, and the structure of the other domain
(domain 2) is missing in the template, even if the template
achieves a TM-score of 0.914 (Fig. 8e). Similarly, the same
domain is also missing from the template found using HHsearch
(Supplementary Fig. 8b). Disappointingly, these templates con-
tain information within only one of the domains, which is a
limited contribution to capturing interactions between the
domains. Nevertheless, DeepAssembly successfully assembles
the full-length model with a TM-score of 0.944. Overall, as in
the above two case studies, it is shown that the remote template

from our PAthreader plays a critical role in the model quality
improvement, however, the performance of DeepAssembly is not
entirely template dependent. When the template provided is of
poor quality, DeepAssembly can still capture the correct inter-
domain interactions.

Inter-domain interactions prediction. A key component of
DeepAssembly is the deep neural network-based inter-domain
interactions prediction, which is used to guide the domain
assembly procedure. Our predicted inter-domain interactions are
represented by affine transformations between inter-domain
residues, which contain rotations and translations between
domains. Here, we devise an affine transformation-based poten-
tial called atomic coordinate deviation (ACD), which is mini-
mized in domain assembly simulations to make the domain
relative positions of the conformation gradually satisfy the pre-
dicted inter-domain interactions (see details in Methods section).
Figure 9a presents a strong correlation (Pearson r= 0.80,
R2= 0.63) between predicted atomic coordinate deviation
(pACD) and true atomic coordinate deviation (tACD) on 2,190
models (10 models for each protein) assembled by DeepAssembly

Fig. 8 Results of assembling experimental domain structures. a Average TM-scores of the assembly models by DeepAssembly, SADA, DEMO and AIDA
(n= 219 proteins). Error bars are 95% confidence intervals. b Comparison between DeepAssembly, SADA, DEMO and AIDA on 219 multi-domain proteins
based on the fraction of proteins with TM-score higher than each TM-score cutoff. c Head-to-head comparison of the TM-scores on each test case
between DeepAssembly and other methods. Examples of the assembly structures built by DeepAssembly for 3KBG_A (d) and 2D1C_A (e). Experimental
structures are colored in blue, the predicted models are colored in green, and the remote templates searched by PAthreader are colored in pink.
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using experimental domain structures. Where, pACD represents
the coordinate deviation under the predicted inter-domain
interactions, and tACD is for the true interactions from experi-
mental structure. Furthermore, in Supplementary Fig. 9a, b, we
observe a strong correlation between pACD and accuracy for
these models as well. This indicates the potential of Dee-
pAssembly to capture the correct domain relative positions in the
optimization of pACD based on predicted inter-domain
interactions.

Predicted inter-domain interactions include inter-residue
distance between domains. We compare the DeepAssembly with
AlphaFold2 and RoseTTAFold according to the predicted inter-
domain distances (Supplementary Data 1). The inter-domain
distance of DeepAssembly is directly from AffineNet, and
distances predicted by AlphaFold2 and RoseTTAFold are
extracted from their output pkl and npz files, respectively. Here
we define the inter-domain distance error to evaluate the
predicted distance precision (Supplementary Note 1), which is
calculated as the errors (Å) between the predicted and true inter-
domain distances. We present in Fig. 9b the comparison of the
inter-domain distance errors of DeepAssembly, AlphaFold2 and
RoseTTAFold. For all the methods, the input MSAs are the same,
which are generated by HHblits46 searching Uniclust3047 and
BFD48 databases, and only the distance between inter-domain
residues is considered when the error is calculated. On average,
the inter-domain distance error of DeepAssembly is 0.560 Å,
which is 22.7% less than AlphaFold2 (0.724 Å) and 51.3% less
than RoseTTAFold (1.151 Å). In addition, the data list in
Supplementary Table 5 indicates that the average and median
errors of our method are all less than other methods for different
categories of domain count. Especially for targets with more than
four domains, the average distance error of DeepAssembly is
reduced by ~30% compared with AlphaFold2. The above
improvements may come from such aspects as the DeepAssembly
network trained specifically by multi-domain proteins from the
MPDB, the inter-domain features embedded in the network, and
higher quality templates from our remote template recognition
algorithm. On the other hand, the prediction about orientation
may improve the prediction accuracy of inter-domain distance to
some extent, because they may promote each other.

Figure 9c shows an ablation study to estimate the contributions
to the improved performance of the different components of our
approach (Supplementary Table 6 provides detailed results). We
trained a variety of neural network models on the MPDB data
using the same procedure over different input features. Under
each setting, the test set is the 219 proteins above. When inter-
domain features are removed from the baseline network (the full
information is used; “Baseline” in Fig. 9c), the average error of
inter-domain distance increases from 0.560 Å to 0.580 Å. This
difference implies that inter-domain features are instrumental in
capturing the correct inter-domain interactions, perhaps because
they encourage the network to be more concerned with learning
the covariation relationships between domains. A comparison of
“Baseline” and “No PAthreader” suggests that the network using
PAthreader templates may decrease the error over using
HHsearch templates by ~14.5% (from 0.655 Å to 0.560 Å). The
improvement is mainly due to the higher quality templates
provided by PAthreader (see Methods). When template features
are not used, the model performance is reduced, with an average
error increased from the baseline network to 1.621 Å. This
suggests that the template itself plays an important role in
improving interaction prediction. In summary, all of the above
factors have contributed to the improvement over our network,
and templates may be an area that deserves continued attention.

Finally, we investigated the performance of AffineNet in the
intra-domain distance and orientation. We present in Supple-
mentary Table 7 the errors of intra- and inter-domain distance
and orientation predicted by AffineNet. The results show that
AffineNet has higher prediction accuracy in the intra-domain
than inter-domain, which may be due to the flexibility of inter-
domain orientation that makes the inter-domain interaction
more difficult to be accurately captured than that of intra-
domain. This also reflects that the inter-domain distance and
orientation prediction is more challenging than intra-domain.

Discussion
Since the structure predictions for multi-domain proteins are less
accurate as on the domain level, it is a significant challenge to
accurately capture the inter-domain orientation and thus

Fig. 9 Evaluation of predicted inter-domain interactions. a Correlation between predicted atomic coordinate deviation (pACD) and true atomic coordinate
deviation (tACD) (Pearson r= 0.80, R2= 0.63, n= 2,190). b Swarm plots displaying the errors (n= 219) of predicted inter-domain distance obtained from
different methods. Each point represents one sample with the mean errors marked by a black “|”. The averages are 0.560, 0.724 and 1.151 Å for
DeepAssembly, AlphaFold2 and RoseTTAFold, respectively. c Ablation study of inter-domain distance prediction accuracy. “Baseline” denotes the full
information is used. “No inter-domain features” denotes a version of DeepAssembly without inter-domain features. “No PAthreader” means that the
PAthreader templates are replaced with those searched by HHsearch. “No templates” represents a model without template features. The averages are
0.560, 0.580, 0.655 and 1.621 Å, respectively.
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determine the multi-domain protein structure. In this work, we
have proposed DeepAssembly, an automatic domain assembly
protocol for multi-domain protein through inter-domain inter-
actions predicted by a deep learning network. The results show
that DeepAssembly is able to capture the correct inter-domain
orientation, especially for the inter-domain distance, the average
prediction error is lower than that of AlphaFold2.

In general, DeepAssembly performs best on the test set of
multi-domain proteins because this deep learning model is
trained specifically on multi-domain proteins to accurately cap-
ture domain-domain interactions. Combined with the single-
domain enhanced by our PAthreader, DeepAssembly constructs
multi-domain protein structure with higher average accuracy
than that modeled directly by AlphaFold2 on the given set. We
found that AlphaFold2’s inaccurate prediction for multi-domain
protein structures is mainly due to the incorrect inter-domain
orientation. For cases where the AlphaFold2-predicted structure
is not accurate, DeepAssembly tends to perform more satisfac-
torily. Meanwhile, DeepAssembly shows the potential to improve
the accuracy of structures with low confidence deposited in
AlphaFold database, providing an important solution for
AlphaFold database update. In addition, DeepAssembly exhibits
more excellent performance for assembling multi-domain pro-
teins with experimental domain structures.

Moreover, we demonstrate that DeepAssembly can be applied
to protein complex structure prediction by using inter-domain
interactions learned on multi-domain proteins. It provides a
more lightweight way to assemble protein structures by treating
domains as assembly units, reducing the requirements for
computational resources to some extent. Despite the promising
assembly results, the applicability and accuracy of DeepAssembly
could be further improved in several aspects. Firstly, in the
absence of sufficient co-evolutionary signals and appropriate
templates, our method still has room for improvement in per-
formance. In this case, the introduction of physical and chemical
features, e.g., protein-protein interface preferences are also cru-
cial. Secondly, the domain-domain interaction can be further
extended, because the inter-domain interactions learned only
from monomeric multi-domain proteins are relatively limited
after all. We also apply DeepAssembly to transmembrane protein
complexes. The results show that it could correctly predict the
interface of some homo-oligomeric membrane proteins, but the
performance for targets that are large or flexible across trans-
membrane regions is still not satisfactory. This is because the
number of membrane proteins is rather limited and they have
different structural characteristics, making it difficult for the
model trained on mainly soluble proteins to effectively capture
their inter-chain interactions. Address this challenge, it may be
promising to borrow from some of the transfer learning
methods.

Methods
Development set. We collected a multi-domain protein dataset
from our previously developed multi-domain protein structure
database (MPDB) (http://zhanglab-bioinf.com/SADA/) (until
September, 2021, with 48,225 entries) to develop the pipeline.
This dataset contains a total of 10,593 multi-domain proteins,
with each protein chain having 40 to 1,000 residues, sharing
<40% sequence identity and having a resolution within 3.0 Å.
These multi-domain proteins contain between 2-9 domains,
determined by DomainParser49 or confirmed by domain infor-
mation for the corresponding entries in CATH50 and SCOPe51,52.
Specifically, there are 8,399 (79.3%) two-domain proteins, 1,681
(15.9%) three-domain proteins and 513 (4.8%) proteins with four

domains or more. In order to train a deep learning model for
predicting inter-domain interactions, 1,0064 (95%) multi-domain
proteins in this dataset are randomly selected as the training set,
and the remaining 529 (5%) are used as the validation set.

Test set. We use multi-domain proteins with known structures
from the comprehensive dataset in previous study DEMO1 to test
the developed pipeline. These proteins share <30% sequence
identity, are collected by separately clustering the proteins with
different domain types and structures from the template library1.
Here, all the proteins in the initial DEMO dataset that have >30%
sequence identity with any protein in the training set and vali-
dation set are excluded, resulting in a total of 219 structures as the
final test set.

To evaluate the performance of DeepAssembly in improving
the inter-domain orientation, we further construct an indepen-
dent test set of 164 multi-domain proteins. All entries come from
23,391 H. sapiens protein structures deposited in AlphaFold
database (https://alphafold.ebi.ac.uk/), the PDB structure for each
entry is directly downloaded from the PDB at https://www.rcsb.
org/. Of these 23,391 proteins, the protein that has any of the
following features is removed: (i) without experimental structure
in the PDB; (ii) is confirmed as containing only one domain by
DomainParser or corresponding entries in CATH and SCOPe
database; (iii) having redundancy between each other for the
UniProt primary accession; (iv) with a TM-score > 0.8 for the
corresponding structure in AlphaFold database; (v) with less than
85% of solved residues for the experimental structure in the PDB,
leading to a final set of 164 multi-domain proteins.

Further, we used 247 heterodimeric protein complexes with
known interfaces from a previous study41 to test the performance
of DeepAssembly on protein complex prediction. These com-
plexes share <30% sequence identity and have a resolution
between 1-5 Å. The dataset consists of 56% eukaryotic proteins,
30% bacterial, 4% archaea, 2% virus and 8% from mixed
kingdoms. For eukaryotic proteins, there are 36% from H.
sapiens.

Remote template recognition based on three-track alignment.
We use our recently developed remote template recognition
method, PAthreader29, to search for high-quality templates for
inter-domain interactions prediction. PAthreader finds an opti-
mal alignment between the query sequence and template
sequence by a three-track alignment algorithm (sequence align-
ment, residue pair alignment, and distance-structure profile
alignment). Specifically, the distance profiles are represented as
the probability distribution of pairwise residue distances pre-
dicted by our in-house inter-residue distance predictor, Deep-
DisPRE. The structure profiles are histogram distributions of
pairwise residue distances, which are extracted from PAcluster80,
a master structure database constructed by clustering PDB and
AlphaFold database. The templates are eventually ranked by
“rankScore” calculated with linear weighting of alignment score
and predicted DMscore by a trained deep learning model. During
training, in order to enhance the generalization ability of the
network model and avoid overfitting, we restrict the available
templates to up to 10 with the highest “rankScore” to increase the
diversity of the template features used for training. At inference
time, considering the influence of the template quality on the final
structure, we provide at most the top 5 templates with the highest
“rankScore” to the trained model according to the following
criteria: (i) the template with “rankScore” >0.6; (ii) “rankScore”
difference between the previous selected <0.03; (iii) the length of
template more than 30% of the query sequence.
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Domain parsing and single-domain structure determination.
Starting from the input sequence, we first predict the domain
boundary through our developed DomBpred53 by clustering the
spatially close residues according to the inter-residue distance
using a domain-residue clustering algorithm. Then we segment
the input sequence according to the determined domain
boundary to form several single-domain sequences. Next, the
structural model of each domain is generated using an extended
version of AlphaFold2 updated by replacing the template search
component (HHsearch46) of AlphaFold2 with PAthreader.
Specifically, remote templates for the sequence of each domain
are searched separately through PAthreader with the same
parameters used in template recognition for full-length
sequence. For the sequence of each domain, we feed the top 4
templates identified by PAthreader into AlphaFold2 model and
run the program with default parameters, selecting the first
ranked model output as the final single-domain structural
model. For single-domain with disconnected sequence, we first
concatenate its disconnected sequences into a continuous
sequence, and then input this sequence into the PAthreader
model to generate the single-domain structure (Supplementary
Fig. 10).

Inter-domain interaction representation. We represent the
inter-domain interactions by affine transformation between the
respective local coordinate system spaces of the inter-domain
residues. For an inter-domain residue, the local coordinate system
is established using three atoms Cα, C and N through the Gram-
Schmidt process (Supplementary Note 2). The affine transfor-
mation includes the rotation and translation components of the
local coordinate system transformation, reflects the relative
position of the inter-domain residue pair. Here we convert the
rotation matrix equivalently to Euler angles (α, β and γ), and
project the translation vector into the spherical coordinate system
as distance r, polar angle θ and azimuthal angle ϕ (see details in
Supplementary Note 3). The six-dimensional (6D) vector (α, β, γ,
r, θ, ϕ) fully reflects the interaction of the inter-domain residue
pair and its elements are predicted by a deep learning model we
developed.

Featurization. The input features for the network are computed
and aggregated into the following three categories: MSA features,
template features and inter-domain features. The MSA features
include one-hot encoded amino acid sequence, position-specific
scoring matrix, positional entropy and co-evolutionary informa-
tion, extracted from the MSAs generated by searching the
Uniclust3047 (version 2018_08) and the Big Fantastic Database48

(BFD) using HHblits46 (version 3.2.0) with default parameters
and e-value of 1e-3. The template features are derived directly
from the top Ntempl remote template structures searched by
PAthreader (Ntempl= 10 for training and 5 for inference). For
each template, the local coordinate system for each residue is first
establish, then the six elements (α, β, γ, r, θ, ϕ) used to represent
the interaction between residues are calculated, and finally they
are converted into bins and one-hot encoded. In addition, for the
complex, we connect its chains before search for its templates as a
single chain through PAthreader, and then extract the template
features of the connected single chain from the searched tem-
plates, which contain the features between two domains belong-
ing to different chains. In order to pay more attention to the
learning of inter-domain interaction, we especially introduce
inter-domain features, including inter-domain contact informa-
tion by pre-trained MSA Transformer54 and a mask from the
predicted domain boundary, indicating if the paired residues are

in two different domains. More detailed descriptions of the fea-
tures are listed in Supplementary Table 8.

Network architecture. We develop a deep learning model
named AffineNet to predict the inter-domain interaction from
the input features. The network architecture consists of basic
residual blocks and an axial attention module. The MSA features
are first concatenated with inter-domain features, and then the
feature number is converted to 64 by a convolution layer with
filter size 1. Next, the output is fed into the stack of 8 residual
blocks, each consisting of two 1×1 convolution layer and a
combined 3×3 convolution layer. In order to take full advantage
of the remote template information, template features are fed
into axial attention module along with the above output feature
map. The axial attention alternates attention on the rows and
columns of all features. The query, key and value are obtained
from the input feature through the linear layer, and the atten-
tion map is the product of query and key. The softmax function
is applied to the attention map to generate the weight map,
which is then multiplied with the value map to obtain the final
template features. Finally, the output template feature is con-
catenated with the feature map combined MSA and inter-
domain features, and fed into the stack of 20 residual blocks.
The convolution layer throughout the network is followed by the
instance normalization layer and the ELU activation layer. After
the last residual block, the network branches out into six inde-
pendent paths, each consisting of a convolution layer followed
by softmax activation.

Training. During the training, 95% of the proteins are ran-
domly selected from the development set as the training set and
the remaining 5% as the validation set. The sequence of large
targets with more than 368 residues is randomly cropped to 368
lengths due to the limited GPU memory. The network is
implemented in Python with Tensorflow1.14 and trained for at
most 50 epochs. The Adam optimizer is adopted to
minimize the loss of the prediction, where the total loss is a sum
over the 6 individual cross-entropy losses with equal weight.
The learning rate is initially set to 1e-4 and will gradually
decrease as the epoch increases. The network model with the
least validation loss is selected. As seen from the learning
curves, the training and validation losses converge well for our
deep learning model (Supplementary Fig. 11). It takes
about 14 days to train the network on one NVIDIA Tesla
V100s GPU.

Affine transformation-based potential conversion. To help
guide the domain orientation assembly, the predicted distribu-
tions are converted into an affine transformation-based energy
potential. For each inter-domain residue pair ði; jÞ, the interaction
between them is represented as a 6D vector
ðα i;jð Þ; β i;jð Þ; γ i;jð Þ; r i;jð Þ; θ i;jð Þ; ϕði;jÞÞ, and then the elements in the

vector are equivalently converted into the affine matrix repre-
senting the transformation from the local coordinate system
space of residue j to that of residue i, according to the following
formula:

Aði;jÞ ¼
Rði;jÞ ~tði;jÞ
0 1

" #
; 8 i; j
� � 2 Sinter domain ð1Þ

where the rotation matrix Rði;jÞ and translation vector ~tði;jÞ are
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calculated as follows:

Rði;jÞ ¼
cos γði;jÞ � sin γði;jÞ 0

sin γði;jÞ cos γði;jÞ 0

0 0 1

2
64

3
75 �

cos βði;jÞ 0 sin βði;jÞ
0 1 0

� sin βði;jÞ 0 cos βði;jÞ

2
64

3
75�

1 0 0

0 cos αði;jÞ � sin αði;jÞ
0 sin αði;jÞ cos αði;jÞ

2
64

3
75

ð2Þ

~tði;jÞ ¼ rði;jÞ sin θði;jÞ cos ϕði;jÞ; rði;jÞ sin θði;jÞ sin ϕði;jÞ; rði;jÞ cos θði;jÞ
� �T

ð3Þ
where the elements α i;jð Þ; β i;jð Þ; γ i;jð Þ; r i;jð Þ; θ i;jð Þ; ϕði;jÞ are respec-

tively derived from the values corresponding to the bin with the
maximum probability in the predicted distributions.

According to the affine matrix transformed from the predicted
distributions, an energy potential called atomic coordinate
deviation (ACD) is constructed to guide the domain assembly,
defined as:

FACD ¼ 1
N tot

∑
ði;jÞ;k

A�1
i �~xj;k � Aði;jÞ � A�1

j �~xj;k
��� ���

2
;

8ði; jÞ 2 Sinter domain; 8k 2 Satoms

ð4Þ

where N tot is the number of all the cumulative terms. Sinter domain
represents a set of all inter-domain residue pairs (note that both
ði; jÞ and ðj; iÞ are included), and Satoms is the set of backbone
atoms in the residue (Satoms ¼ fN;Cα;C;Cβg). The vector ~xj;k
represents the position of atom k in the j-th residue of the target
structure relative to ground coordinate system. The matrices Ai
and Aj represent the affine transformations from the local
coordinate system of residues i and j to the ground coordinate
system, respectively (the establishment process of the local
coordinate system and the calculation details for the affine
transformation are described in Supplementary Note 2).

Population-based domain assembly and full atom-based
refinement. We assemble the full-length protein model in the
domain assembly module. The overall architecture consists of
three stages: first initial model creation stage, followed by iterative
model update stages where a pool of multi-structures is main-
tained during the population-based rotation angle optimization,
and finally full atom-based refinement. At the initialization stage,
1,000 initial full-length models are generated where the rotation
angles φ, ψ in the eight linker residues near their domain
boundaries are set to random angles (the influence of the number
of movable residues near the domain boundaries on the final
structure is analyzed in Supplementary Note 4). To speed up the
assembly, these initial models are represented as coarse-grained
(centroid) models in Rosetta. The centroid model is a reduced
representation of protein structure, in which the backbone
remains fully atomic but each side chain is represented by a single
artificial atom (centroid). In the iterative annealing stage, series of
rotation angle sampling, new structure generation, and structure
pool selection steps are repeated iteratively with coarse-grained
representation. At each iteration, 1,000 new individuals are gen-
erated through evolution (crossover and mutation) between lin-
ker rotation angles of individuals in the current pool, and then the
lowest energy between each new individual and its original
individual is selected to be retained in the new pool according to
the optimization objective. This process is repeated for 500
iterations (the accuracy of the final models at different iteration
numbers is shown in Supplementary Fig. 12), and the objective
function is the atomic coordinate deviation potential FACD. For
the pool that reaches the maximum iteration, the top 10 centroid

models (ranked by energy) are selected to be converted to full-
atomic models by generating side chains in Rosetta, followed by
full-atom refinement by FastRelax protocol with ref2015 energy
function in Rosetta55.

Quality assessment of built models. We use a developed model
quality assessment tool, GraphCPLMQA33, a graph coupled
network based on embeddings of protein language model to
assess the quality of the model built by DeepAssembly.
GraphCPLMQA utilizes both the sequence and structure
embeddings generated by the protein language model, with var-
ious protein model structure features. They are input to the
encoder-decoder module of the graph coupling network, and the
mapping relationship among sequence, structure and quality is
obtained to predict the quality of protein models.

Evaluation metrics. We use three types of metrics to evaluate the
quality of the multi-domain protein and complex model built by
DeepAssembly, and the predicted inter-domain distance precision.
The first type of metrics is one that measure the closeness between
the built model and the experimental structure in PDB. In this
respect, we adopt the RMSD and TM-score34 between the pre-
dicted multi-domain protein model and the corresponding
experimental structure calculated by TM-score tool downloaded at
https://zhanggroup.org/TM-score/. The second type is one that
measures the interface quality of predicted protein complex model.
In this regard, we report DockQ score39 calculated by public tool
(https://github.com/bjornwallner/DockQ/). Besides the above
metrics, we also reported the inter-domain distance error to eval-
uate the predicted inter-domain distance precision. The detailed
descriptions of above metrics are given in Supplementary Note 1.

Statistics and reproducibility. All data were carefully collected
and analyzed using standard statistical methods. Comprehensive
information on the statistical analyses used is included in various
places, including the figures, figure legends and results.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
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