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A Cre-dependent massively parallel reporter assay
allows for cell-type specific assessment of the
functional effects of non-coding elements in vivo
Tomas Lagunas Jr.1,2,3, Stephen P. Plassmeyer1,2, Anthony D. Fischer1,2, Ryan Z. Friedman 1,3,

Michael A. Rieger1,2,3, Din Selmanovic1,2,3, Simona Sarafinovska 1,2, Yvette K. Sol1,2, Michael J. Kasper1,2,

Stuart B. Fass1,2, Alessandra F. Aguilar Lucero4, Joon-Yong An 5,6, Stephan J. Sanders 4,

Barak A. Cohen 1 & Joseph D. Dougherty 1,2✉

The function of regulatory elements is highly dependent on the cellular context, and thus for

understanding the function of elements associated with psychiatric diseases these would

ideally be studied in neurons in a living brain. Massively Parallel Reporter Assays (MPRAs)

are molecular genetic tools that enable functional screening of hundreds of predefined

sequences in a single experiment. These assays have not yet been adapted to query specific

cell types in vivo in a complex tissue like the mouse brain. Here, using a test-case 3′UTR
MPRA library with genomic elements containing variants from autism patients, we developed

a method to achieve reproducible measurements of element effects in vivo in a cell type-

specific manner, using excitatory cortical neurons and striatal medium spiny neurons as test

cases. This targeted technique should enable robust, functional annotation of genetic ele-

ments in the cellular contexts most relevant to psychiatric disease.
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In the current era of common and rare variant genome-wide
approaches, thousands of candidate genetic variants with
potential association to psychiatric and neurological diseases

have been uncovered, the vast majority in noncoding, presumably
regulatory, DNA elements. For common variants, large colla-
borative studies have identified dozens of genomic regions that
are significantly associated with disease1–3, but each region con-
tains hundreds to thousands of elements containing noncoding
variants, of which only a subset are thought to have a functional
consequence and potentially be causal. For rare variants, whole-
genome sequencing has identified thousands of noncoding var-
iants per individual, and efforts at associating these with disease
would benefit from knowing which are found in elements that
control gene expression in the brain, and thus might alter neu-
ronal function. However, in either case, defining the effect of
DNA elements has proven to be a major challenge given the large
number that need to be screened. Furthermore, cell-type context
plays an important role in gene-regulation studies4. For example,
as they mature, neurons express a variety of neuron-specific
transcription factors (TFs) (e.g., in ref. 5) and RNA-binding
proteins (RBPs)6, and thus elements containing their binding sites
for these would only show effects in mature neurons. Therefore,
there is a need for a high-throughput method that can be easily
adapted to functionally screen elements in a parallel fashion,
specifically in the cellular contexts relevant to diseases of the
central nervous system (CNS). For most psychiatric diseases, this
ideal cellular context would be specific classes of neurons, in vivo.

In the past decade, numerous de novo mutations have been
directly implicated in autism7,8. Initial analyses focused on
mutations in coding regions, which are more readily interpreted
for functional effects than noncoding variants9–13. However,
there is estimated to be substantial additional burden from
noncoding mutations14,15. This can include both transcriptional
regulators, like promoters and enhancers, as well as 5′/3′
untranslated regions (UTRs). UTRs contain several classes of
regulatory elements that control mRNA stability, subcellular
localization, and rate of translation for their cognate transcript16.
However, these regions pose challenges to study for functional
effects since they don’t follow a triplet code and are not easily
interpretable.

Massively Parallel Reporter Assays (MPRAs) are genetic tools
that could address these challenges since they can be used to
functionally assay several thousand predefined sequences at
once4. These assays have enabled functional annotation of
thousands of noncoding genomic elements, as well as the impact
of variants in UTRs in particular, prioritizing potentially causal
changes17–20. In addition, recent MPRA studies have begun to
dissect the role of 3′UTR variation21 in function and regulatory
activity in vitro. Unsurprisingly, there is only a modest overlap of
functional elements across six diverse human cell lines, under-
scoring the density of elements with cell type-specific regulatory
potential within UTRs. Furthermore, there are limits to the extent
to which an in vitro system, even primary cells or iPSC derived
neural systems, can recapitulate the normal gene expression and
thus regulatory landscape seen during neuronal development
in vivo. Thus, in the context of neuropsychiatric disease, elements
would ideally be assayed in the brain and in relevant cell types in
order to more accurately model the effect of these variants.

Here, we describe the development of a high-throughput cell-
type specific MPRA approach for the mouse brain, with the
sensitivity to measure the effects of individual elements, using a
Cre recombinase-dependent library design. As a test-case, we
used a 3′UTR MPRA library to functionally assay several hundred
elements containing de novo variants found in the genomes of
autism cases and sibling controls. We first piloted this in a mouse
neuroblastoma cell line, assessing total RNA and RNA paired

with a ribosome affinity purification to enable assessment of both
transcriptional and translational effects. We then optimized the
delivery of these same elements to two types of neurons in vivo.
We were indeed able to assess the functional effects of hundreds
of elements in parallel, and found effects of elements are highly
cell type-specific. We also examined the ability to test for variant
effects, and power calculations indicate this should be possible,
but will require more extensive barcoding than used here. In all,
the approach here should enable future large-scale assessment of
the functional impact of variants from psychiatric genetics in
specific cell types in the brain.

Results
Cre-dependent MPRA reproducibly measures element effects
in a mouse neuroblastoma cell line. As a proof of principle, we
examined de novo variants identified within annotated 3′UTRs
from the whole-genome sequencing of 519 families with autism,
primarily from the Simons Simplex Collection8, targeting 342
mutations from probands and 307 from unaffected siblings
within the same cohort (649 unique variants [Supplementary
Data 1] to make 1298 ref/alt pairs). For each variant we synthe-
sized an allelic pair of 3′UTR nucleotide stretches spanning
120 bp of sequence centered on the variant, which we term ele-
ments. To be able to compare biological to non-biological
sequence elements, for 322 variants, we randomly shuffled the
sequence to generate a set of GC-matched controls. Additionally,
we included 4 predicted stabilizing/destabilizing controls. We
tagged all 1624 elements with six unique barcodes to provide
internal replicates and be able to measure potential for barcode
effects. To enable eventual cell-type specific studies, we cloned the
final library of 9744 synthesized oligos into the 3′UTR of a
membrane-localized tdTomato reporter embedded in a Double-
floxed inverse Orientation (DiO) cassette22, such that the reporter
library would only express following Cre-mediated recombina-
tion [Fig. 1a, b].

To first evaluate whether our assay could detect UTR element
effects on reporter transcript abundance and translation, we co-
transfected the library into mouse neuroblastoma N2a cells with
two additional constructs–one expressing Cre recombinase, and
another expressing eGFP-tagged large ribosomal subunit protein
L10a (eGFP-RPL10a). The eGFP-RPL10a construct allows us to
employ the Translating Ribosome Affinity Purification (TRAP)
technique to measure the effects of UTR elements on ribosome
occupancy23. We harvested RNA from six replicate transfections
from both the whole-cell lysate (Input) and the polysome-bound
TRAP fraction24 [Fig. 1c]. Barcode sequencing libraries were
prepared from both Input RNA and TRAP RNA to identify
elements that alter ribosome occupancy (TRAP) on top of effects
on transcript abundance (Input). We also conducted DNAseq on
the plasmid DNA re-extracted from the transfected cells to enable
normalization of each RNA barcode to its starting abundance in
the cells.

We examined the coverage and reproducibility of the assay,
and the range of the biological activity across elements. We
sequenced to an average depth of 5388 counts per barcode. In the
DNA, 8053 barcodes had non-zero counts, suggesting a < 20%
element dropout at the cloning stage. Cloning efficiency
correlated with element GC-content, as elements with less than
40% GC content cloned less efficiently [Supplementary Fig. 1a]. A
corresponding 85% of elements were represented with at least
three barcodes and carried forward for analysis [Supplementary
Fig. 1b]. In the RNA data, correlations of barcode abundance
between replicate libraries from both Input and TRAP generally
exceeded 0.99 (Pearson’s Correlation Coefficient, PCC) [Fig. 2a],
indicating high reproducibility (read depth, correlations, etc, for
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all experiments in paper are summarized in Supplementary
Data 2). Correlations of either RNA measure with barcode
abundance in recovered plasmid libraries averaged 0.99 (PCC),
indicating that variation in reporter abundance was largely driven
by DNA copy number, as the range of differences in cloning
efficiency exceeds the magnitude of expected biological effects of
elements. Thus, we normalized input RNA counts to plasmid
DNA counts for subsequent analyses, and inter-replicate correla-
tion of this value was also high (0.9 PCC). This revealed variation
in steady state RNA abundance across elements, with 99% of
elements spanning −1.76 to 1.14 log2-normalized expression
(RNA/DNA) [Fig. 2b], indicating that the sampled UTR elements
exhibit a 7-fold range in transcript abundance as measured by our
assay.

Normalizing TRAP RNA abundance by DNA copy number
revealed a similar dynamic range in the ribosomal occupancy of
reporter transcripts. However, these differences are driven
primarily by the underlying difference in transcript abundance.
Normalizing TRAP RNA abundance to the Input RNA
abundance created a proxy for Translation Efficiency (TE),
defined here as log2 TRAP/Input counts. This showed a narrow
dynamic range from −0.46 to 0.29, indicating 3′UTR element
effects on translation regulation are more subtle than on
transcript abundance. An interesting observation arose from a
pairwise comparison of genome-derived reference elements to

GC-matched shuffled control sequences. Specifically, random
sequences had both lower transcript abundance (Wilcoxon
signed-rank p= 1.69 × 10−4) and TE (p= 1.67 × 10−4) than their
corresponding reference sequences [Fig. 2b]. This suggests that
genomic sequences generally promote higher steady-state tran-
script abundance and ribosome occupancy than random
sequences. However, the elements containing de novo variants
(alternative alleles; Alt) did not show a systematic difference from
their paired reference allele (Ref) elements. This is not
unexpected, as most are small or single base mutations, and only
a small subset of human mutations, even from probands, might
be presumed to be strongly functional a priori, and the effect of
the alternate allele might be in either direction.

Biological effects should be driven by specific sequence
elements in the UTRs, and thus activity should be somewhat
predictable from primary sequence. To establish a biological
signature of elements that increase or decrease RNA levels, we
trained k-mer support vector machines (SVMs)25 to classify the
200 highest-expressing elements from the 200 lowest-expressing
elements, pooling Ref and shuffled (Shuf) sequences. In this
framework, each sequence is represented by the frequency of all
possible k-mers as input to the SVM. We trained 4- and 5-mer
SVMs with 5-fold cross-validation. To ensure the SVM was not
overfit, we also fit SVMs on the same sequences with random
labels. The SVMs achieved an area under the receiver operating
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Fig. 1 3′UTR library design and delivery. a MPRA library constructs were designed with a CMV promoter (prom) driving the TdTomato reporter, followed
by the 3′UTR oligo reference or alternative sequence (with or without variant, respectively) that is uniquely barcoded (BC). b All elements were uniquely
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characteristic (AUROC) of between 0.707 and 0.663, for 4-mer
and 5-mer models respectively, and an area under the precision
recall curve (AUPRC) between 0.693 and 0.669 for these same
models [Fig. 2c, d]. Models fit on random labels could not classify
the data (AUROC between 0.486 and 0.521) [Supplementary
Fig. 2], indicating there are sequence-specific elements underlying
UTR activity. To understand which sequences mediated these
effects, we next scored all possible 4-mers against the 4-mer SVM.
4-mers predicted to be highly active tended to be GC rich, while
4-mers predicted to be inactive tended to be AT rich. We also
used DREME26 to identify de novo motifs enriched in the high
expressing sequences relative to the low expressing sequences and
obtained similar results. Taken together, these results indicate a
substantial fraction of the activity of UTRs is driven by sequence
features captured by small motifs, and identifies the motifs with
activity in N2a cells. It also indicates that for the effect sizes
studied here, any effects of individual barcodes on transcript
abundance were sufficiently small to not obscure the consistent
biology detected by the SVM.

To determine which sequence motifs might be driving
differences in RNA levels we screened for motifs enriched in
the highest to the lowest 10% of the elements. We identified a
variety of similar U/A rich motifs significantly enriched in the
lowest expressed elements [Supplementary Data 3, Sheet 1],
which are predicted binding targets of known negative regulators
of RNA stability and expression such as TIA127–30, QKI31, and
PCBP232,33. Likewise, we also identified two motifs found in more
highly expressed elements, CCUUUCC and CCAACCC, pre-
dicted to be bound by PCBP1 and HNRNPK respectively, or

other RBPs with affinity to these motifs. While many RBPs share
similar binding sequences it is difficult to ascertain which might
be driving the effects seen here, these findings are consistent with
the effects measured here being driven by sequence features of the
individual elements.

While more highly expressed elements tended to be GC rich,
genomic elements were clearly different from random GC
matched controls. Comparing each Ref element to its matched
Shuf control revealed that 54 were significantly different
(Benjamini-Hochberg FDR < 0.05) with a median 1.65-fold
change in expression [Fig. 2e, Supplementary Data 4]. Thus,
genomic sequences produce a specific level of activity upon which
allelic effects are expected to act. Of the 303 tested comparisons,
40 showed both a significant difference and a > 25% magnitude
change in expression. Of the significant changes, 38 were
downregulating. Assuming equal probability of up- and down-
regulation, this is more than expected by chance (hypergeometric
p= 0.0033, OR= 1.69), again reflecting the relative greater
propensity for genomic-derived UTR tiles to enhance steady-
state reporter expression. Contrasting effects on transcript
abundance with ribosome occupancy again revealed that variant
effects on TE tended to be much smaller.

Finally, we sought to determine which of these changes in RNA
level might also alter protein production. We therefore cloned 28
of these reference and variant sequences into luciferase reporters
and assessed protein production via transient transfection in N2a
cells. Across the constructs, we observed a pearson correlation
coefficient of R= 0.65, p= 0.0002 between our MPRA expression
and protein production, indicating most of the effects we observe
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Fig. 2 Screen in mouse neuroblastoma cell line identifies variants that alter steady state transcript abundance. a Scatter plots showing correlation
between replicates of Input RNA vs plasmid DNA, Input RNA vs TRAP RNA, and Expression in Biological Replicate 1 vs. Replicate 2 (Log2 Input RNA/
DNA). b Pairwise comparison of expression value distribution among Ref, Alt, and Shuf sequences in Transcript Abundance, Ribosomal Occupancy, and
Translation Efficiency data sets. **p < 0.01, ***p < 0.001 for Wilcoxon signed-rank test. Boxes on boxplots represent first quartile, median, and third quartile,
whiskers represent minimum and maximum (Q1 – 1.5 * interquartile range and Q3+ 1.5 * interquartile range, respectively). c Receiver/operator and (d)
precision recall curves for k-mer SVMs to classify high and low expressing elements. Shaded area represents 1 standard deviation based on five-fold cross-
validation. e Volcano plot for Ref vs Shuf elements (purple) in library showing significance (y-axis) vs log2 FC (x-axis). Horizontal dashed line corresponds
to FDR 0.05 and vertical dashed lines correspond to log2 FC equivalent to 25% change in expression. Figure based on n= 6 replicates. Full results list can
be found in Supplementary Data 3, worksheet 1, and QC in Supplementary Data 2.
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at the RNA level have a similar consequence on final protein
levels [Supplementary Fig. 3]. Overall, our cell line assay
confirmed reproducibility and robustness of our measurements
of element level activity by our 3′UTR MPRA design, motivating
applying the approach to specific cell types in vivo.

Cre-dependent MPRA reproducibly measures functional
effects of several hundred UTR elements in excitatory neurons
in the mouse brain. To assess the effect of these elements in vivo,
the entire element library was packaged in adeno-associated virus
serotype 9 (AAV9) for delivery into the mouse brain. We have
previously shown34 that with AAV9 delivery we get widespread
viral transduction in the neocortex and mainly target neurons and
astrocytes. We found that packaging of the library did not dras-
tically change the range of distribution or barcode recovery rates
and correlated well (PCC > 0.8) with the plasmid counts [Sup-
plementary Figure 4]. Thus, as packaging had no adverse effects
on the composition of the library we moved forward with delivery
in vivo.

Bioinformatic analysis of the expression patterns of genes
associated with autism have revealed a correlation structure of
two loose modules - a module enriched for chromatin regulators
with peak expression in immature excitatory neurons, and a
module of synaptic-related proteins, with peak expression during
critical periods of postnatal synaptogenesis and pruning7,35–37.
Therefore, we first attempted to deliver the library to two
neuronal subtypes, layer V pyramidal neurons and cortical
GABAergic interneurons, during this pruning period by using
RBP4 and VGAT Cre driver lines, respectively. However,
especially when using an untargeted P1 injection strategy, we
discovered that only a small fraction of the delivered elements
were recovered, the representation of barcodes was highly
distorted and, in many cases, favoring a small, distinct subset in
each biological replicate, resulting in low correlation between
replicates (PCC < 0.2). This could either be due to high biological
variability or a technical effect termed ‘jackpotting’ which here we
define as having barcodes whose final measurement in the MPRA
sequencing library does not reflect their starting abundance in the
sample RNA, likely because only a subset of the barcodes were
sampled at a particular step in the library preparation. We
conducted extensive experiments to determine at which step such
jackpotting might occur (see methods), and traced it to the very
first step. This indicated that having the Cre recombinase only in
a small fraction of the cells resulted in a very low ‘library density
in the total RNA, meaning only a very small fraction of the RNA
molecules in the sample came from the MPRA library.

Since RPB4-positive and VGAT-positive cells made up a small
population of cells in the mouse brain, to increase the library density
we delivered the AAV library to a well-characterized excitatory
neuron specific Cre line (Vglut1-IRES2-Cre-D38; Vglut) at P0-P2
[Fig. 3a], which makes up a larger population of cells, covering all
pyramidal cells of the cortex. We first confirmed the expression of
the library by immunofluorescence [Fig. 3b]. We saw widespread
expression of the tdTomato reporter in cells with the morphology of
pyramidal neurons with the perinatal injection yielding transduc-
tions across cortex [Fig. 3b, c]. While we did not confirm the
expression of the MPRA library here with marker colabeling, we
note that recent single-cell atlasing of this same mouse line
identified that over 99% of cells with Cre activity in cortex cluster as
excitatory pyramidal neurons39. Importantly, Cre negative litter-
mates showed no expression of the library, confirming cell-type
specificity [Fig. 3b]. Next, an additional 11 animals’ (6 males and 5
females) cortices were collected for RNA at P21. We sequenced, in
all, 11 RNA replicates and 2 replicates of viral prep DNA to obtain
RNA barcode and DNA barcode counts, respectively.

Next, we performed a similar quality control analysis as for
N2a data above. Correlations of expression between biological
replicates on average exceeded 0.70 (PCC) [Fig. 3d]. Notably,
this observed correlation is lower than our in vitro test, but
increased variability is commensurate with lower rates of
element delivery and recovery from a subset of cells in complex
tissue. (This increased variance also motivated our doubling of
the number of replicates in vivo relative to in vitro). Similar to
what was done for the N2a data, we removed elements which
were absent in the DNA counts and filtered for a minimum
sequencing depth and barcode number, resulting in 313
analyzed elements. Pairwise comparison of genome-derived
Ref elements to GC-matched Shuf control sequences again
showed that Shuf sequences had lower transcript abundance
(Wilcoxon signed-rank p= 2.99 × 10−4) than their correspond-
ing Ref sequences, as observed in N2as [Fig. 3e]. Of the 301
testable Ref-Shuf comparisons, 36 showed a significant
difference in expression. While we observed a 25:11 ratio of
downregulation:upregulation effect of the reference sequences
vs. shuffled sequences, the enrichment was not significant
(hypergeometric test, p-value= 0.14, OR= 1.19). [Fig. 3f,
Supplementary Data 4] Finally, we again used k-mer SVMs to
determine if there were sequence features that predicted in vivo
activity and achieved an AUROC between 0.696 and 0.706, for
4-mer and 5-mer models respectively [Fig. 3g], and an AUPRC
between 0.708 and 0.704 for these same models [Fig. 3k],
comparable to the SVMs trained on in vitro activity. Thus, for
the large effect sizes observed when changing all sequences in
an element, our approach was sufficiently powered.

In vivo Cre-dependent MPRA works reproducibly in more
than one cell type. We next sought to determine if the method
was effective across cell types. We returned to the VGAT
(GABAergic) mouse line but with a modifications of our prior
approach - we focused our delivery and dissection on the stria-
tum, an area that is both of high interest for autism40, but also
where > 90% of the neurons are GABAergic medium spiny
neurons, making it easier to deliver the library into a large frac-
tion of the of cells. This resulted in targeted striatal expression
[Fig. 3b] in cells with the morphology of medium spiny neurons,
which was absent from astrocytes and oligodendrocytes (GFAP
and CNPase staining, respectively) [Fig. 3c]. We saw better cor-
relations than prior experiments [Fig. 3h], and again genomic
sequences generally had greater abundance than shuffled controls
[Fig. 3i], with dozens having significant activity [Fig. 3j, Supple-
mentary Data 4]. In all, this demonstrates that the Cre-dependent
MPRA is effective across more than one cell type, and that we
were well-powered to detect the effect sizes seen when comparing
reference sequences to random sequence controls.

Thus, the Cre-dependent MPRA should allow quantification of
the impact on transcript abundance of a given element in specific
cell types in the brain. This is essential because neurons have
vastly different expression of trans-acting factors (e.g., TFs, RBPs,
miRNAs) than cell lines. This is highlighted by the low
correlation of expression values of element activity across N2As
compared to pyramidal neurons [Fig. 4a]. Furthermore, tran-
script abundance spanned a broader range in the pyramidal
neurons (Brown-Forsythe Levene-type p < 2.2 × 10−16), high-
lighting the possibility that a more complex regulatory environ-
ment may contribute to a greater dynamic range [Fig. 4b]. Finally,
the cross-validated SVM scores of the N2a activity are
uncorrelated to the observed activity in pyramidal neurons
[Fig. 4c], consistent with cell type-specific factors regulating UTR
activity through interaction with specific sequences. This high-
lights the need to assess the function of noncoding elements in
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multiple contexts, and especially focusing on contexts where
noncoding variants for a specific disease are most likely to act.
Comparing our two neuronal types together reveals a somewhat
better correlation, consistent with a somewhat shared regulatory
milieu [Fig. 4d], but with some differences in element activity
detectable between them [Fig. 4e]. As above, to determine which
sequence motifs might be driving differences in RNA levels
between medium spiny neurons and pyramidal neurons, we
screened for motifs enriched in the highest to the lowest 10% of

the elements in this comparison. We found a notable enrichment
in U rich sequences in those elements expressed higher in the
medium spiny neurons, suggesting these neurons may have lower
activity of RBPs that bind to such sequences and destabilize RNA,
such as TIA, or higher level of a stabilizing protein such as
HUR41,42 [Supplementary Data 3]. Finally we examined the effect
sizes and correlations of potential allelic effects, and noted they
were somewhat less correlated, perhaps because they were
generally smaller and more variable than element effects [Fig. 4f].
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Fig. 3 Screen in excitatory neurons in the mouse brain identifies elements that alter steady state transcript abundance. a MPRA library was packaged
into AAV9 and delivered into perinatal mouse cortices via intracranial injection or bilaterally into striatum via stereotaxic injection and later harvested at
P21 for RNA extraction. Libraries were prepared from AAV genomes and reporter mRNA, and barcodes (BC) were counted. Panel was created with
Biorender.com. b Immunofluorescence of P21 brain showing localization of tdTomato expression (from MPRA library) in Cre lines and wildtype control
(Cre-). Nuclei counterstained with DAPI(blue). Scale bars represent a distance of 1000 µm. c Immunofluorescence demonstrating expression of MPRA
library in morphological pyramidal neurons (Vglut) and medium spiny neurons (Vgat). There is no overlap with markers of astrocytes (GFAP) or
oligodendrocytes (CNPase). Scale bars represent a distance of 20 µm. d Scatter plot showing correlation between replicates for mean-normalized
expression in excitatory pyramidal neurons (Log2 RNA/DNA, barcode averaged). Shaded region indicates 95% confidence interval around linear
regression line. e Pairwise comparison of Ref, and Shuf sequence expression in excitatory neurons. ***p < 0.001 for Wilcoxon signed-rank test. Boxes on
boxplots represent first quartile, median, and third quartile, whiskers represent minimum and maximum (Q1 – 1.5 * interquartile range and Q3+ 1.5 *
interquartile range, respectively). f Volcano plot for Ref vs Shuf element expression in excitatory neurons in library showing significance (y-axis) vs log2 FC
(x-axis). Horizontal dashed line corresponds to FDR 0.05 and vertical dashed lines correspond to log2 FC equivalent to 25% change in expression. Full
results list can be found in Supplementary Data 4 and 5, worksheet 3. g Receiver/operator (upper panel) and precision/recall (lower panel) curves for
k-mer SVMs to classify high and low expressing elements in excitatory neurons. Shaded area represents 1 standard deviation based on five-fold cross-
validation. h Scatter plot showing correlation between replicates for mean-normalized expression in inhibitory neurons (Log2 RNA/DNA, barcode
averaged). Shaded region indicates 95% confidence interval around linear regression line. i Pairwise comparison of Ref, and Shuf sequence expression in
medium spiney neurons, ***p < 0.001 for Wilcoxon signed-rank test. Boxes on boxplots represent first quartile, median, and third quartile, whiskers
represent minimum and maximum (Q1 – 1.5 * interquartile range and Q3+ 1.5 * interquartile range, respectively). j Volcano plot for Ref vs Shuf element
expression in medium spiney neurons. Full results list can be found in Supplementary Data 4 and 5, worksheet 4. n= 6 Vgat, 11 Vglut animals. k Precision/
recall curves for k-mer SVMs to classify high and low expressing elements in excitatory neurons.
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Comparison of effect sizes for barcodes relative to alleles. We
next wanted to determine if our method was able to reliably
detect smaller effect sizes that might be associated with single
nucleotide variants, which comprise much of our variant set. One
concern is barcodes - while the internal replication they provide
can improve statistical power, it is possible that the effects of
changing a 8-9 nucleotide barcode on transcript abundance may
be more substantial than the 1 bp variant it tags. Including
multiple barcodes per replicate is traditionally thought to allow
correction for this by averaging or regression. Therefore, we
modeled using random sets of barcodes drawn for the controls in
a recent publication43 to determine rates of false-positive ‘allelic
effects’ driven by barcodes only [Fig. 5]. We found that linear
mixed modeling with 6 barcodes would be sufficient to remove
the majority of barcode effects for most experiment designs,
leaving a false positive rate of 8% [Fig. 5c], and generally small
effects [Fig. 5a, b]. This could be tolerable for many designs,
however, if the design of the experiment is a screen for extremely
rare functional effects (i.e., such as the rare autism variants

examined here), this 8% false positive rate produced by 6 bar-
codes may be too high. Indeed, this is similar to the number of
hits seen when testing for allelic effects here [e.g., 2–6 per assay,
Supplementary Data 5]. Thus we do not confidently report on the
allelic effects from this experiment. And while 1000’s of barcodes
per variant can be added by PCR18,44,45, the corresponding
increase in library complexity would lead to substantial jackpot-
ting in the cell-type specific in vivo context, where delivering each
barcode to enough cells for robust measurement is a challenge.
Thus, 6 barcodes might be sufficient for examining the large
effects seen when measuring large effect size changes (e.g., the
differences between elements) but more barcodes would be nee-
ded to assess smaller allelic effects, or when screening rare var-
iants where only a small fraction are expected to be functional.

Discussion
Here we describe the development of a cell-type specific in vivo
MPRA. We demonstrate that the method is sensitive enough to
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identify reproducible effects for hundreds of elements in parallel.
It should be usable for dissecting the sequence dependence of
previously identified regulatory elements with activity in neurons,
using MPRA libraries designed for saturation mutagenesis of
potential binding motifs18 and other perturbations46. It, with
additional barcoding or other solutions, can also be adapted to
examine allelic effects as well. Thus, the approach should have
both translational and basic science applications. Furthermore,
while the current library used limited UTR lengths (120 bp, due
to synthesis limits at the time), the synthesis-length of oligonu-
cleotide arrays continues to increase and new methods for
assembling these into even larger fragments have recently proven
viable47. Thus, it should be routinely applicable to even larger
elements soon.

This work and its challenges allowed us to deeply characterize
the range of conditions, from environment to sequence context,
that influence these regulatory assays. Our first attempts in deli-
vering this library to rarer cell types using RBP4 and VGAT Cre-
lines were limited by low element recovery rates, making repro-
ducible measurement of many variants in parallel intractable.
Careful analysis of all stages of RNAseq library prep revealed
jackpotting originated at cDNA synthesis, suggesting reporter
mRNA was diluted beyond the point of efficient recovery. This is
consistent with the relative sparseness of GABAergic cortical
neurons compared to cortical excitatory neurons, indicating they
will contribute less to the total RNA of the cortex. Use of neither
emulsion PCR, reaction splitting, nor UMI incorporation in
second strand synthesis could resolve this fundamental limitation.
However, when we delivered to a more abundant cell type,
increasing the barcode concentration in the final total RNA, the
jackpotting was largely resolved. We do note that variability
in vivo with AAV was still higher than when delivering to N2as in
culture (PCC of > 0.8 vs > 0.9) with transfection, where delivering
to >70% of cells at high copy number is straightforward. How-
ever, we were able to overcome this increased variability by
increasing the sample number for in vivo assays. What other
approaches might work to allow access to these rarer cell types
and overcome the low barcode abundance in the starting RNA?
Three general approaches come to mind: targeting AAV delivery
to hit a larger portion of the Cre-positive cells (for example, here,
we targeted the striatum, where a greater concentration of
GABAergic cells exist), reducing the complexity of the library
(using a smaller number of total barcodes, making each barcode
more likely to be well represented), or enriching for the barcoded
RNAs prior to cDNA synthesis, either by a targeted capture of
reporter RNAs, or potentially purifying the Cre-positive cells by
FACS or TRAP. Indeed, we did recently demonstrate the ability
to measure allelic effects using TRAP in an enhancer context,
especially when the library was delivered in a concentrated
manner to a single anatomical structure so that library density is
higher48. Any of these might further expand the current method
to rarer Cre populations. Nonetheless, the current iteration of the
technology already enables access to assessing elements in the
regulatory context of mature cortical and striatal neurons,
essential cell types for many CNS diseases. One key factor in the
design, however, is the number of barcodes, as there is a clear
tradeoff between adding more barcodes and elements which gains
in experimental efficiency per animal, yet decreases reproduci-
bility due to jackpotting, or barcode effects. For screening libraries
where only a small fraction are expected to be functional, it may
be preferred to reduce library complexity and barcode effects by
removing barcodes entirely (letting the UTR serve as the bar-
code), or for designs that require barcodes (e.g., assessing
enhancer variants) aim for ~20 barcodes per allele [Fig. 5]. Of
course, libraries with larger effect sizes than SNPs (e.g., varying
entire elements) do not need such a high level of stringency.

With regards to the role of these specific alleles in autism, we
are hesitant to make any specific claims since the number of
variants showing significant effect was similar to what would be
expected due to barcode effects in our simulation studies. Thus,
we can’t be certain which allelic effects to confidently report.
Nonetheless, there are two clear conclusions we can make. First,
we can rule out large numbers of high-effect size UTR variants as
a common cause for autism - if they were a common cause, we
would have seen an excess of functional variants coming from the
proband’s alleles relative to the unaffected sibling alleles, and we
did not. Note - this does not rule out that in some rare instances a
UTR mutation could be causal, but it will not be a frequent
occurrence. Second, we can report that the typical effect sizes of
single base mutations is small - even the significant ‘allelic’ effects
detected were typically less than 25% changes, while differences in
expression due to elements ranged over 8 fold. Thus, alleles with
large functional effects will be rare.

Regardless, for elements of large effects, these cell type-specific
MPRAs should enable in vivo identification of functional ele-
ments across Cre-defined cell types. This is important because the
function of non-coding elements is strongly impacted by the suite
of transcriptional regulators expressed in each cell type. Thus, this
method presents the opportunity to perform these regulatory
assays in the most relevant and specific biological context for a
given disease. Altogether, we anticipate these methods will aid in
the study of noncoding disease risk.

Methods
Animal models. All procedures involving animals were approved
by the Institutional Animal Care and Use Committee (IACUC) at
Washington University in St. Louis, MO. Veterinary care and
housing was provided by the veterinarians and veterinary
technicians of Washington University School of Medicine
under Dougherty lab’s approved IACUC protocol. All protocols
involving animals were completed with: Tg(RBP4-cre)KL100Gsat/
Mmcd (RRID:MMRRC_037128-UCD49), Slc32a1tm2(cre)Lowl/J
(catalog #16962, The Jackson Laboratory; RRID:IMSR_JAX:
01696250), and Vglut1-IRES2-Cre-D strain (Jackson Stock No:
023527). All mice were genotyped following a standard protocol of
taking clipped toes into lysis buffer (0.5M Tris-HCl pH 8.8, 0.25M
EDTA, 0.5% Tween-20, 4 uL/mL of 600U/mL Proteinase K
enzyme) for 1 h to overnight. This is followed by heat denaturation
at 99 C for 10min. 1 uL of the resulting lysate was used as a tem-
plate for PCR with with 500 nM froward and reverse primers, using
1x Quickload Taq Mastermix (NEB) with the following cycling
conditions: 94 1min, (94 30 s, 60 30 s, 68 30 s) x 30 cycles, 68 5min,
10 hold.

MPRA plasmid library preparation. For non-Cre-dependent
reporter expression, we used a previously described pmrPTRE-
AAV backbone which contained the following elements: CMV
promoter, T7 promoter, mtdTomato CDS, hGH terminator, and
flanking ITRs. The T7 promoter and mtdTomato CDS were
amplified from pmrPTRE-AAV using PTRE_floxed_F/R and
Phusion High-Fidelity PCR Master Mix (NEB). NotI and SalI
sites added by the primers were used to subclone this amplicon
into pRM1506_TMM432. The final pmrPTRE-floxed-AAV
backbone consists of a floxed cassette containing the T7 pro-
moter and tdTomato CDS in reverse orientation with respect to a
CAG promoter, followed by a bGH terminator, all flanked
by ITRs.

In order to determine if the elements in our library came from
genes expressed in Vglut and Vgat regions specifically in
excitatory neurons and medium spiny neurons we examined
two single cell datasets51,52 GSE171977, and GSM4471659. The
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mean expression for each gene across all cells was calculated in
both datasets, and ‘expressed’ was defined as exceeding the
median of this value The data was then subsetted to only
excitatory neurons or medium spiny neurons and the mean
expression for each gene was calculated and expression was
determined. Genes were then converted back into their mouse
orthologs using ensembl and these true false values were paired
with their respective elements on Supplementary Data 4 and 5.

The specific oligo sequences with barcodes designed for this
library are provided in [Supplementary Data 6]. The UTR
contexts for each oligo were taken from GRh37/hg19 by centering
a maximum 120 bp window around the variant position. Variant
allele sequences were substituted at the reference position to
generate the alternative allele UTR context. For indels, the UTR
context was limited to the minimum context that would fit either
allele, and padding sequences were added outside of cloning cut
sites. Additional elements with known or suspected post-
transcriptional regulatory roles were included as well: the alpha
component of the WHP posttranscriptional regulatory element
(WPRE) and synthetic elements consisting of four tandem
sequences for either the Smaug response element (SRE), Pumilio
response element (PRE), or Quaking response element (QRE).

A constant 20 bp linker sequence separates the UTR context
from a nine bp barcode sequence. Each UTR context was
repeated in the design with six unique barcodes. Barcodes were
selected to be Hamming distance of two apart and to exclude cut
sites and homopolymers longer than three bases. Priming sites
and cut sites were added to both ends to generate 210 bp oligos
which were synthesized by Agilent Technologies.

The synthesized oligos were amplified with 4 cycles of PCR
using Phusion polymerase and primers Bactin_FWD/REV.
Amplicons were PAGE purified and digested with NheI and
KpnI (NEB). Library inserts were cloned into pmrPTRE-floxed-
AAV with T4 ligase (Enzymatics) and transformed into
chemically competent DH5α (NEB). Outgrowths were plated on
LB agar plates with 100 µg/mL carbenicillin, and approximately
71,000 colonies were counted, allowing us to capture the entire
design at 95% confidence, assuming a 50% synthesis error rate.
Plates were scraped, and the collected pellets were cultured for an
additional 12 h in LB with carbenicillin before preparing glycerol
stocks and maxi preps (Qiagen).

Cell culture. Mouse neuroblastoma N2a cells (ATCC) were
maintained at 5% CO2 37 °C, and 95% relative humidity in
DMEM (Gibco) supplemented with 10% fetal bovine serum (FBS,
Atlanta Biologicals). Human neuroblastoma SH-SY5Y cells were
maintained similarly, except with DMEM/F12 (Gibco) sub-
stituted as the basal medium. Cells were also incubated with 1%
penicillin-streptomycin (Gibco). For transient transfections,
antibiotics were excluded from the transfection medium and re-
introduced upon media change 12 h post-transfection. Cells were
passaged with 0.25% Trypsin-EDTA (Gibco) every 2–3 days or
once they reached 80–90% confluency.

Cell culture TRAP. For each cell culture TRAP experiment, six
replicate T75 flasks (TPP or Sarstedt) were seeded in advance
with mouse N2a neuroblastoma cells to be 80–90% confident by
the time of transfection. As this is a Cre-inducible library, 23 µg of
total plasmid was transfected, consisting of equimolar ratios of
the MPRA library, an EF1a-DIO-EGFP-RPl10a construct, and an
Ef1a-Cre construct. Transient transfections were performed with
Lipofectamine 2000 (Invitrogen), and DNA:lipid complexes were
prepared by co-incubation in Opti-MEM I (Gibco) for 30 min
prior to transfection. Transfection medium was replaced 12 h

following transfection, and cells were harvested for TRAP after an
additional 24–36 h.

TRAP was performed as described in ref. 24 with minimal
modification. Briefly, cells were incubated in 100 µg/mL cyclo-
heximide (Sigma) for 15 min at 37 °C prior to harvest. Cells were
rinsed twice with 5 mL of DMEM 100 µg/mL cycloheximide
before being lifted into 5 mL of DMEM 100 µg/mL cyclohex-
imide. Cells were pelleted by spinning at 500 x g for 5 min at 4 °C.
The DMEM was replaced with 2 mL of ice-cold cell lysis buffer
(10 mM pH 7.4 HEPES, 1% NP-40, 150 mM KCl, 10 mM MgCl2,
0.5 mM dithiothreitol, 100 μg/ml CHX, protease inhibitors, and
RNase inhibitors) and cells were lysed on ice. Lysates were
clarified by centrifugation at 2000 x g for 10 min at 4 °C. DHPC
(Avanti) was added to a final concentration of 30 mM, and lysates
were incubated on ice for 5 min. A tenth of the volume was taken
as the Input, and the remaining volume was incubated with
protein L-conjugated magnetic beads (Invitrogen) coupled with a
mixture of two monoclonal anti-GFP antibodies53. The beads
were incubated for 4 h at 4 °C prior to four washes with a high-
salt buffer (10 mM pH 7.4 HEPES, 1% NP-40, 350 mM KCl,
10 mM MgCl2, 0.5 mM dithiothreitol, 100 μg/ml CHX, protease
inhibitors, and RNase inhibitors) before resuspension in cell-lysis
buffer.

Input and TRAP RNA was extracted using Trizol LS (Life
Technologies). Extracted RNA samples were DNase treated
(Ambion) and cleaned by column-based purification (Zymo
Research). Concentrations and RNA quality were determined
using RNA ScreenTapes and a 4200 Tapestation System (Agilent
Technologies). All RINe measurements exceeded 9.

Parallel Plasmid DNA for each replicate was recovered from
each cell pellet following lysis using the Qiagen DNeasy Blood &
Tissue Kit, and prepared for sequencing in parallel to RNA, as
below. We found that having multiple replicate DNA libraries
was critical for reducing variance in element activity measure-
ments, at the transcript abundance level in particular. As such we
recommend preparation of replicate DNA libraries, either from
the plasmid input or from recovered plasmid from each
experimental replicate of transfected cells.

AAV9 vector production. The packaging cell line, HEK293, was
maintained in Dulbecco’s modified Eagles medium (DMEM),
supplemented with 5% fetal bovine serum (FBS), 100 units/ml
penicillin, 100 mg/ml streptomycin in 37 °C incubator with 5%
CO2. The cells were plated at 30–40% confluence in CellSTACS
(Corning, Tewksbury, MA) 24 h before transfection (70–80%
confluence when transfection). 960 ug total DNA (286 ug of
pAAV2/9, 448 ug of pHelper, 226 ug of AAV transfer plasmid)
were transfected into HEK293 cells using polyethylenimine
(PEI)-based method54. The cells were incubated at 37 °C for
3 days before harvesting. The cells were then lysed by three
freeze/thaw cycles. The cell lysate was treated with 25 U/ml of
Benzonaze at 37 °C for 30 min and then purified by iodixanol
gradient centrifugation. The eluate was washed 3 times with PBS
containing 5% Sorbitol and concentrated with Vivaspin 20 100 K
concentrator (Sartorius Stedim, Bohemia, NY). Vector titer
was determined by qPCR with primers and labeled probe
targeting the ITR sequence55. Titers used here ranged from 1 to
5 × 1013 vg/ml.

in vivo MPRA. For excitatory neurons, two Vglut1-IRES2-Cre-D
litters were subjected to intracranial injections for delivery of the
library packaged in AAV9. P0-P2 pups were incubated on ice to
anesthetize by inducing hypothermia for ~10 min. An aliquot of
the MPRA library packaged in AAV9 ( ~ 1012 vg/uL) was drawn
up in a 33 G Hamilton syringe with a 1 mm needle. Pups were
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brought up to the needle and 1 uL of virus was injected at three
positions per brain hemisphere hemisphere (6 total injections per
pup). Pups were taken directly to the warming pad until pups
fully recovered (~20 min). After recovery, pups were placed back
into the cage with the mother and monitored every 24 h for one
week. At P21 brains were harvested and cortex was dissected
away from the rest of the brain for extraction of RNA.

For striatal medium spiny neurons Slc32a1tm2(cre)Lowl/J
litters were subjected to intracranial stereotaxic striatal injections
for delivery of the library packaged in AAV9. P0-P2 pups were
incubated on ice to anesthetize by inducing hypothermia for
~10 min, after which they were placed in a 3D printed adaptor, as
per Olivette et al.56. An aliquot of the MPRA library packaged in
AAV9 ( ~ 1012 vg/uL) was drawn up in a 33 G Hamilton syringe
with a 1 mm needle. 1 uL of virus was injected at one position per
brain hemisphere hemisphere (2 total injections per pup) using
coordinates x= ±1.0 mm, y=+ 0.7 mm, z=+1.5 mm at a rate
of 0.5 ul/minute, with 1 min dwell time. Pups were taken directly
to the warming pad until fully recovered (~20 min). After
recovery, pups were placed back into the cage with the mother
and monitored every 24 h for one week. At P21 brains were
harvested and striatum was dissected away from the rest of the
brain for extraction of RNA.

For our initial pilot studies in RBP4 and cortical inhibitory
neurons, injections were as conducted above for Vglut1-IRES2-
Cre-D, but these experiments showed too low of correlation
between replicates to proceed to further analysis due to
jackpotting. We aimed to determine the source of this jackpotting
and reasoned either the barcodes were all present in the starting
template of total RNA and our library preparation was not
efficient at a particular step, or the barcodes were simply too low
abundance in the starting RNA pool. To this end, we conducted a
series of technical replicates splitting a sample at each step of the
library preparation protocol: cDNA synthesis, cDNA amplifica-
tion, adapter ligation, and indexing PCR [Supplementary Fig. 5A],
and compared this to the low reproducibility observed between
biological replicates [Supplementary Fig. 5B]. Taking a single
RNA sample and doing two separate cDNA synthesis reactions
for independent sequencing libraries resulted in jackpotting
(PCC < 0.4) [Supplementary Fig. 5C]. Taking cDNA from a single
sample and amplifying it in two independent reactions for library
preparation also led to jackpotted samples (PCC < 0.4) [Supple-
mentary Fig. 5D]. However, if the amplified cDNA from a single
sample was taken into two independent reactions for adapter
ligation, then the final sequencing libraries were highly correlated
(PCC > 0.9) [Supplementary Fig. 5E]. This was the case for
reactions split at the final indexing PCR as well (PCC > 0.9)
[Supplementary Fig. 5F]. This result revealed to us that the source
of jackpotting is at the cDNA synthesis or amplification steps. To
investigate this further, we employed a variety of techniques that
included reaction splitting/repooling to boost scale and unique
molecular identifiers (UMIs) at the cDNA synthesis step in order
to precisely quantify and eliminate PCR duplicates. Resulting
technical replicates were evaluated to determine if they
suppressed jackpotted results and improved reproducibility as
measured by PCC. However, after sequencing the resulting
libraries and computationally collapsing UMIs, we found that this
did not fundamentally improve jackpotting (best PCC < 0.34).
Together, these results led us to conclude that this jackpotting
was, in fact, a representation of the barcodes present in the RNA:
for a given amount pipetted (100 ng) from our total RNA from
the brain, relatively few barcode molecules were present.
Consistent with this, increasing input RNA up to 1 ug reduced
jackpotting effects, but still resulted in relatively low sample
correlations (PCC < 0.4). The possible solutions are to 1) increase
the amount of RNA going into cDNA synthesis, which improved

things to point (from PCC < 0.2 to PCC < 0.4) or 2) increase the
library density by getting the library into a higher fraction of cells
contributing to the total RNA, which is the strategy we adopted
for the subsequent experiments.

MPRA sequencing library preparation. Libraries were prepared
by taking total RNA or TRAP RNA and performing cDNA
synthesis using Superscript III Reverse Transcriptase standard
protocol with pmrPTRE_floxed_AAV_antisense (GCATAAAA
AACAGACTACATAATACTG) for library specific priming.
Resulting cDNA or plasmid DNA, were then used for PCR to
amplify libraries using Phusion polymerase (Thermo) using library
specific primers pmrPTRE_AAV_sense (GCATGGACGAGCTG-
TACAAG) and pmrPTRE_floxed_AAV_antisense. Reactions were
purified using AMPure XP beads between each step. The purified
PCR products were then digested with NheI and KpnI restriction
enzymes for 1 h at 37 °C. The purified digested products were
ligated to 4 equimolar staggered adapters (this is to provide
sequence diversity for sequencing). Ligated products were purified
and then used for a second PCR using Illumina primers for library
indexing. The purified libraries were then QC’ed and subjected to
quality control and then 2 × 150 next generation sequencing on an
Illumina NovaSeq.

BC counting and normalization. Sequencing reads were trim-
med using cutadapt v1.1657 and aligned to the library reference
sequences using bowtie2 v2.3.558 using very sensitive settings.
Barcodes were counted from aligned reads with mapping quality
of 10 or greater using a custom Python script. Counts within each
sample were normalized to each sequencing library size using
edgeR59 as counts per million (CPM) prior to downstream
analysis.

Measures of transcript abundance were calculated as the log2-
transformation of the ratio of each barcode’s abundance, in CPM,
from Input RNA over DNA, within each replicate. Barcodes with
fewer than ten counts in either the RNA or DNA library were
excluded from analysis. Similarly, ribosomal occupancy and
translation efficiency were calculated by normalizing TRAP RNA
to DNA counts and TRAP RNA to Input RNA counts,
respectively. To calculate an element-wise measurement of
transcript abundance or translation activity, a linear mixed effect
model was fit which accounted for outlier barcode effects.
Barcode-level measurements from each replicate were fitted to the
formula Activity ~ (1 | BC) using the lmer package in R where
Activity may be either transcript abundance, ribosomal occu-
pancy, or translation efficiency. The model intercepts were taken
for each element as the summarised measure of activity.

Element filtering and differential activity analysis. Differential
effects of allele on transcript abundance and translation efficiency
were each tested using a linear mixed effects model fitting ran-
dom intercepts for barcode. This model was implemented using
the lmer package in R with the formula Activity ~ Allele +
(1 | BC), where Activity may be either transcript abundance or
translation efficiency. P-values were computed using a likelihood
ratio test (LRT) with Activity ~ (1 | BC) as the reduced model,
and corrected for multiple comparisons by using the p.adjust
function in R to apply the Benjamini-Hochberg procedure for
false discovery rate.

Before testing, thresholds for element inclusion were deter-
mined by a grid search of count, barcode number, and replicate
number thresholds that maximized the number of variants
significant at a Benjamini-Hochberg FDR < 0.05. Briefly, at
increasing count thresholds, variants within each replicate were
retained if both alleles had more than a set threshold for barcodes
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above said count threshold, and variants with both alleles passing
count and subsequently barcode thresholds in a minimum
number of replicates were selected for analysis. An arbitrary
count threshold minimum of 10 counts was enforced. For the
in vitro MPRA, variants must be present with both alleles having
three barcodes with at least 10 counts from both RNA and DNA
in at least four replicates. For the in vivo MPRA, variants must be
present with both alleles having five barcodes with at least 10
counts from both RNA and DNA in six replicates.

Fluorescent immunohistochemistry and analysis. Brains were
harvested from postnatal day 21 mice, and one hemisphere was
chosen for subsequent RNA extraction/TRAP. The remaining
hemisphere was fixed for 48 h in 4% paraformaldehyde followed
by 24 h in 15% sucrose in 1 × PBS and then 24 h in 30% sucrose
in 1 × PBS. The hemisphere was then frozen in OCT compound
(optimum cutting temperature compound; catalog #23-730-571,
Thermo Fisher Scientific). A Leica CM1950 cryostat was used to
create 40 μm sagittal sections of brain tissue. Sections were
immediately placed in a 12-well plate containing 1X PBS and
0.1% w/v sodium azide.

For immunostaining, sections were incubated in a blocking
solution (1× PBS, 5% donkey serum, 0.25% Triton-X 100) for 1 h
in a 12 well plate at room temperature, then with rabbit anti-RFP
primary antibody (1:500; Rockland catalog #600-401-379) or
rabbit anti-RFP and goat anti-GFAP (1:500; ABCAM catalog
#ab53554) and mouse IgG1 anti-CNPase (1:500; Millipore-Sigma
catalog# MAB 326 R) in blocking solution overnight in a sealed
12 well plate at 4 °C. Following three five-minute washes in PBS,
sections were incubated in donkey anti-rabbit Alexa Fluor
568 secondary antibody (1:1000, Invitrogen catalog #A10042)
or donkey anti-rabbit Alexa Fluor 568, donkey anti-goat Alexa
Fluor 488 (1:1000, Jackson Immunoresearch catalog # 705-546-
147), goat anti-mouse IgG1 Alexa Fluor 647 (Invitrogen catalog #
A21240), and DAPI (in blocking solution for 1 h. Sections were
washed as before, and during the second wash, 1 μg/mL DAPI
was added. Sections were slide mounted with Prolong Gold and
visualized for anti-RFP and DAPI staining on a Zeiss Axio Imager
Z2 four-color inverted confocal microscope. TdTomato-positive
cells were quantified by hand using FIJI60.

Machine learning. Gapped k-mer SVM models were fit using
gkmSVM25 with the parameters -l 4 -k 4 -m 1 (4-mers) and -l 5
-k 5 -m 1 (5-mers). Stratified five-fold cross-validation and
computing ROC and PR curves was performed using scikit-learn
version 0.19.161.

Luciferase validation experiments. 3’UTR elements were cloned
into a custom-designed dual luciferase reporter plasmid that con-
tains derivatives of Promega Nano-Luc and Firefly plasmids. Briefly,
the 3’UTR elements were cloned 3’ of a Nano-Luciferase CDS. The
Nano-luciferase CDS bears a PEST degradation signal and contains a
chimeric intron62, and is under the transcriptional control of the
CMV immediate early enhancer and promoter, while Firefly luci-
ferase is under control of the human PGK promoter. The Nano-Glo
Dual Luciferase Reporter Assay (Promega) was used to assess first
Firefly levels then Nano-Luciferase levels. Nano-Luciferase levels
were then normalized to Firefly levels to achieve a Nano-Luciferase
activity value relative to the amount of transfected plasmid. Control
plasmid not bearing any luciferase sequences was separately trans-
fected to control for plate background luminescence. Reference and
variant elements were assessed for statistically different activities
using mixed effect modeling from the lme4 R package, with the plate
ID being used as a random effect to account for batch effect between

biological replicates, and activity values were compared to a blank
construct bearing no inserted 3’UTR.

MEME suite motif search and comparison. Motifs in high- or
low-expression elements, or reference elements with significant
higher or lower expression in excitatory neurons, were discovered
with the MEME suite of tools. Briefly, for high vs. low expression
elements, the list was split into high and low, and 10% of the
topmost with regard to effect (most positive for positive, most
negative for negative) were given to MEME, using the opposite
list as the negative control. The differential enrichment option
was selected with -de, and the -norand option was selected to
keep the list ordered from greatest effect to least effect in the lists,
and derivatives of the following command were run in a local
installation: ./meme high.txt -neg low.txt -rna -objfun de -norand
-mod anr -minw 3 -maxw 50 -text -nmotifs 100 > results.txt

For reference elements which were significantly higher
expressed in excitatory vs. inhibitory neurons (and vice versa),
a similar command was used to search for differential enrichment
where the negative was the opposite list (all significantly higher in
inhibitory were used as the negative for excitatory searching and
vice versa). Outputs of discovered differentially enriched motifs
were submitted to the Tomtom motif comparison tool on the
meme-suite.org website, and queried for matches to human RNA
binding protein. Reverse complements were not scored.

Statistics and reproducibility. Sample sizes, sequencing depth,
etc. for all MPRA experiments are defined in Supplementary
Data 2. Biological replicates were defined as individual wells (for
cell culture experiments) or individual animals (for in vivo
experiments), and sample sizes reported here reflect biological
replicates. Technical replicates (independent preparations of the
same biological materials) were only used where reported in
figures to examine technical reproducibility of library preparation
steps (e.g., Supplementary Fig. 5). Details of statistical tests used
are provided in figure legends and methods sections above for
each experiment type.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
MPRA libraries are available upon request. MPRA data are deposited with GEO at
GSE186455. Source data underlying figures are provided in Supplementary Data 7.

Code availability
Code is available at Figshare: https://doi.org/10.6084/m9.figshare.2409394263.
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