
ARTICLE

Genome-wide epigenetic dynamics during
postnatal skeletal muscle growth in Hu sheep
Yutao Cao1,2,3,7, Yue Ai1,2,3,7, Xiaosheng Zhang4, Jinlong Zhang4, Xianlei Long5, Yaning Zhu1,2,3, Linli Wang1,2,3,

Qingyi Gu5 & Hongbing Han 1,2,3,6✉

Hypertrophy and fiber transformation are two prominent features of postnatal skeletal

muscle development. However, the role of epigenetic modifications is less understood.

ATAC-seq, whole genome bisulfite sequencing, and RNA-seq were applied to investigate the

epigenetic dynamics of muscle in Hu sheep at 3 days, 3 months, 6 months, and 12 months

after birth. All 6865 differentially expressed genes were assigned into three distinct ten-

dencies, highlighting the balanced protein synthesis, accumulated immune activities, and

restrained cell division in postnatal development. We identified 3742 differentially accessible

regions and 11799 differentially methylated regions that were associated with muscle-

development-related pathways in certain stages, like D3-M6. Transcription factor network

analysis, based on genomic loci with high chromatin accessibility and low methylation,

showed that ARID5B, MYOG, and ENO1 were associated with muscle hypertrophy, while

NR1D1, FADS1, ZFP36L2, and SLC25A1 were associated with muscle fiber transformation.

Taken together, these results suggest that DNA methylation and chromatin accessibility

contributed toward regulating the growth and fiber transformation of postnatal skeletal

muscle in Hu sheep.
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The postnatal development of skeletal muscle is character-
ized by an increase in cross-sectional area (CSA) and a
decrease in the proportion of slow-twitch muscle fibers

(also known as type I muscle fibers). Although muscle fibers can
be hypertrophic without satellite cell fusion and muscle nucleus
accretion1, sustained hypertrophy without the addition of muscle
satellite cells will be attenuated, accompanied by excessive
extracellular matrix accumulation2. Muscle satellite cells undergo
proliferation to further fuse with myoblasts to form multi-
nucleated muscle fibers. This process largely determines the
efficiency of protein synthesis and the potential of hypertrophy3.
Furthermore, it has been reported that functional 3D muscle
tissue made from human primary myoblasts shows the char-
acteristics of myotube hypertrophy and functional maturity
within 4 weeks of culture in vitro4,5.

Fast-twitch muscle fibers (also called type II muscle fibers) rely
on anaerobic respiration (glycolysis alone). Slow-twitch fibers
prefer oxidative metabolism and are fatigue-resistant6. It has been
proved that transcription factors (TF) NFATC17, MyoD, and
MEF2C8,9 regulated muscle fiber type transformation and meta-
bolic homeostasis. PGC-1α cooperates with MEF2 to activate
gene transcription and act as the target of calcineurin signal
transduction. Calcineurin signal transduction controls the
expression of genes related to slow-twitch fiber formation. Simi-
larly, FoxO1 stimulates fast-twitch fiber formation and impairs
oxidative metabolism of muscle, at least in part by inhibiting the
calcineurin pathway10.

Epigenetics can affect postnatal muscle development by reg-
ulating transcription and translation efficiency without changing
the DNA sequence. For example, miR-208b specifically targets the
E-protein family member transcription factor 12 (TCF12) to
mediate the proliferation and differentiation of myogenic cells
and targets FNIP1 to stimulate fast and slow-twitch fiber
conversion11. Acetylation of FoxO1 and FoxO3 leads to muscle
atrophy, while deacetylation promotes muscle fiber
regeneration12. Comparative epigenetics were also used to
investigate meat-quality-related methylation patterns13–15.
Despite the lack of sufficient evidence on hypertrophy and muscle
fiber type transformation, the spatiotemporal regulation of gene
transcription may be regulated by epigenetics16,17.

Studies from the model animal have focused on muscle
regeneration18, fetal muscle fiber proliferation19–21, and com-
partmentalized regulation of muscle fibers22. Although a few
studies have focused on postnatal epigenetic development of
muscle23,24, to our knowledge, there are no reports systematically
integrating DNA methylation, chromatin accessibility, tran-
scriptome, and related phenotype data to study postnatal muscle
hypertrophy and fiber transformation. With the valuable phe-
notype data and publicly available datasets, our study aims to
explore the postnatal genome-wide landscapes of DNA methy-
lation and chromatin accessibility of skeletal muscle for Hu sheep
and to analyze their interactions as well as the temporal regula-
tion of the transcription factor binding sites that are exposed via
epigenetic modification.

Results
Global changes of the transcriptome during postnatal muscle
growth. The number of myofibers is thought to remain
fixed following birth, muscle fiber hypertrophy growth is the
primaryway of muscle growth. The average CSA is generally used
to measure the hypertrophy of skeletal muscle fibers. To sys-
tematically identify the growth of postnatal skeletal muscle, the
average CSA of muscle fiber was measured from the quadriceps
femoris of six Hu sheep at 3 days (D3), 3 months (M3), 6 months
(M6) and 12 months (M12) after birth. Compared with D3, the

average CSA of M3, M6 and M12 increased significantly, P
value < 0.001, indicating that the hypertrophic growth of skeletal
muscle fibers is evident in postnatal growth. On the contrary,
there was no significant difference between the average CSA
between M3 and M6, P value > 0.05, although the CSA of some
muscle fibers increased, the CSA of some muscle fibers did not
increase significantly, indicating that the hypertrophic growth of
skeletal muscle fibers was not significant at this stage, (Fig. 1a, b).
From M6 to M12, the average CSA of fibers was increased further
(Fig. 1a, b). Muscle fibers are the main components of skeletal
muscle tissue, followed by some other components such ascon-
nective tissue. These data suggested two growth peaks of skeletal
muscle of Hu sheep occurred at D3-M3 and M6-M12. The
growth of connective tissue might predominate, and the hyper-
trophy of muscle fibers is relatively weak at M3-M6.

Next, 6865 differentially expressed genes (DEGs) were obtained
based on all six combinations of four stages (Supplementary
Fig. 1a and Supplementary Data 2). In other words, all possible
comparisons were enumerated to include genes as much as
possible. D3-M3, D3-M6, and D3-M12 shared 31.3% (2154/6865)
of total DEGs, while overlapped DEGs of any two of the three
groups shared more than 44.2%. The overlapping rate between
D3-M3 and D3-M6 was the highest (55.4%, 3066/5535, Fig. 1c),
while, interestingly, M3-M6 only had 77 DEGs. This may be due
to genes becoming more variable as muscles grow ( Statistical P
value is the only hard threshold for a DEG). When D3 acted as a
baseline (D3-M3, D3-M6, and D3-M12), the DEGs number and
muscle-related pathways outnumbered the rest comparisons.
Many pathways overlapped on the most prominent changes as
muscle matured (Fig. 1d, e), such as the citrate cycle (Fig. 1e),
actin filament organization, muscle cell differentiation, autop-
hagy, mitochondrion disassembly, etc. In addition, some signs of
functional maturity were found exclusively in D3-M6 and D3-
M12. Myofibril assembly and thin filament assembly preferred to
be in D3-M3 and D3-M6 while pathways like skeletal muscle
contraction and actin-myosin filament sliding were significant
only at D3-M12 (Fig. 1d). As for KEGG pathways, D3-M6 and
D3-M12 included signal pathways such as calcium signal
pathway, oxytocin signal pathway, and HIF-1 signal pathway,
while the adrenaline signal pathway of cardiomyocytes was only
observed in D3-M12 group (Fig. 1e).

Although consecutive comparisons within neighbor stages
(D3-M3, M3-M6, M6-M12) make sense to depict muscle
growth in part, the enrichment results had no direct clues of
muscle development as comparisons with D3. To better under-
stand the expression pattern of DEGs and the biological processes
featured in postnatal growth of skeletal muscle, all 6865 DEGs
were clustered into two groups (G1 and G2) based on the
Spearman co-efficiency between DEGs expression and CSA of
muscle fibers. These two groups of genes were further assigned
into 3 distinct tendencies (T1–T3, Fig. 2 and Supplementary
Fig. 1b), respectively, in terms of the biological processes they
were involved. Although there was no obvious difference between
the distributions of gene expression (Fig. 2) from G1 and G2 as
well as that of correlation with CSA (Supplementary Fig. 1c) to
our surprise, tendencies of G1 and G2 converged into three
similar biological pathways, with four representative terms
selected from both GO and KEGG results for each trend (Fig. 2).

After summiting at M3 in G1 and G2, the first tendency T1
decreased gradually ever since, which indicates the potential
activities of protein synthesis. Most pathways involved mRNA
and protein metabolism, like KEGG items in both groups, and
cell proliferation, like regulation of cell cycle phase transition in
GO terms of G2; The second tendency T2 kept soaring since D3,
which was involved in lymphocyte differentiation and signal
cascade in G1 and G2; the third tendency T3, a mirror image of
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D3 M3 M6 M12

Fig. 1 Global changes of the transcriptome during postnatal muscle growth. a Skeletal muscle tissues from the six Hu sheep were processed for
histological and morphometric analysis. Representative photomicrographs of WGA-stained muscle sections and their digitally processed image from D3 to
M12. Scale bar: 130 µm (n= 6). b Quantification of average muscle fiber CSA of the seven Hu sheep from D3 to M12. ***P < 0.0001; n= 6. c Upset plot
summarizing the distribution of DEGs in all comparison groups (n= 6). d The GO items related to muscle growth of comparison groups referring to D3
(D3-X) in (c). e KEGG pathways of D3-X groups DEGs in (c). Error bars represent mean values ± SD. CSA cross-sectional area, WGA Wheat Germ
Agglutinin, DEGs differentially expressed genes, SD standard deviation.
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T1, exhibited a complementary relationship between cell
proliferation and cell respiration: the T3 in G1 was contributed
to energy-consuming processes such as organelle division, mitotic
sister chromatid segregation, and nucleoside bisphosphate
metabolic process, while its counterpart in G2 was mainly
involved in the organic acid catabolic process, cell respiration,
and NADH dehydrogenase complex assembly, etc.

Chromatin accessibility dynamics during the growth of post-
natal muscle. To capture chromatin accessibility changes during

postnatal muscle development, the assay for targeting accessible
chromatin with high-throughput sequencing (ATAC-seq) was
used. The average number of accessible peaks at four develop-
mental stages (D3-M12) were, respectively, 30779 ± 11995,
22647 ± 1416, 18553 ± 8942 and 24185 ± 5981. To obtain high-
quality data, the irreproducibility discovery rate method (IDR) was
used to screen high-confidence open chromatin peaks in three
replicate samples, with a total of 461 annotated genes (Supple-
mentary Fig. 2a and Supplementary Data 3). Interestingly, the open
chromatin peaks decreased gradually from 50% to 10% with the
development of postnatal muscle in CpG island (Supplementary

Fig. 2 Main biological processes involved in postnatal muscle growth. Expression distribution of G1 and G2 group and first 4 significant items of each
tendency (T1–T3) within the two groups. The x axis represented scaled expression levels and the y axis represented density in the line plot, with the orange
color mapping membership scores of the member genes indicating their distance.
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Fig. 2b). The principal components analysis (PCA) showed the four
stages (D3, M3,M6, andM12) were distinguished completely based
on all 3742 differentially accessible regions (DARs) (Fig. 3a).
Similar to DEGs, six comparison groups of DARs were obtained
from all six possible combinations of four stages (Fig. 3b, c). As
expected, D3 had the most peaks, while the difference in peak
counts was the least between M6 and M12.

We calculated the log fold changes of mean read counts
between comparison groups and displayed the distribution of
DARs which gain or lose accessibility as muscle grew. Taking D3-
M3 as an example, the increased red area curve indicates stronger
accessibility of the DARs in M3, while the decreased cyan area
curve indicates weaker accessibility of the DARs in M3. Decreased
DARs of all six possible comparison groups accounted for
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64–97% of the total differential open signal peaks (Fig. 3b). By
contrast, 3–36% of the DARs increased their accessibility as
muscle growth (Fig. 3b). To analyze the source of DAR, we
divided the genome into four regions: upstream regions
(including 3 kb upstream of the transcription start site (TSS-
3kb) and 5’ untranslated regions (UTR)), gene body (gene-coding
regions), downstream regions (Downstream and 3’ UTR above),
and distal regions (distal intergenic regions). The distribution
proportion of DARs on the genome was calculated for six
comparison groups: distal regions (31–52%), gene body (35-43%),
upstream regulatory regions (11–31%), and the downstream
counterpart (3%) with the lowest enrichment level (Fig. 3b). Inter-
estingly, when compared to the D3 stage, the DARs located in
upstream regions of genes exhibited greater accessibility differ-
ences as muscle grew, while the relative proportion of DARs
located in distal intergenic regions decreased.

Significant GO pathways of DARs, were only found in the D3-
M3, M3-M6, and M3-M12 groups (Fig. 3d). Muscle-related
pathways were found in D3-M3 and M3-M12 groups, especially
the muscle organ development in M3-M12. Besides, the
regulation of steroid and insulin hormone, neuron activities
and kinase activities could be found in D3-M3, M3-M6, and M3-
M12 groups, respectively. These data highlighted the important
roles of epigenetic modifications in the regulation of hormone
secretion, neuron activities, and muscle systems during the
growth of postnatal muscle.

The chromatin accessibility can directly contribute to gene
transcription. The genes regulated by chromatin accessibility (or
transcriptionally consistent DARs) were defined as genes that
shared the same sign of fold change between DARs and DEGs in
the same comparison group (Fig. 3e). For example, in the first
quadrant, the co-upregulation genes in a triangle shape exhibited
stronger accessibility and increased transcription levels in certain
groups. Most co-upregulated genes came from D3-M3 groups. In
addition, according to the expression tendencies of DEG,
transcriptionally consistent DAR has a majority in the T3, whose
significant pathways were related to cell proliferation and cell
respiration(Fig. 4a).

Despite various genes in different facets, co-downregulated
genes outnumbered their counterparts: most of the genes
regulated by chromatin accessibility decreased their DAR signal
intensity and downregulated gene expression; only a few genes
showed DAR signal enhancement and gene expression upregula-
tion; Next, their GO enrichment results (Fig. 4b) showed the co-
downregulated genes in D3-M6 and M3-M12 groups are involved
in establishment or maintenance of cell polarity. Although
accounting for a smaller proportion, transcriptionally co-
upregulated genes accounted for most of the significant pathways
as well as muscle structure-related pathways (blue text), such as
sarcomere, A band, M band, and actomyosin structure
organization.

To explore the effect of TF on postnatal muscle development, a
regulatory network of TF-target genes (IDR network) was

constructed for chromatin accessibility-regulated genes according
to the motif results (Fig. 4c) and the TF database. To reduce the
false positive, the TF was predicted by the ab initio method and
further validated by the RNA-seq expression data. A total of 18
pairs of regulatory relationships between 7 TF and 74 targets were
obtained (Fig. 4d): IFRD1 was found in the muscle cell
differentiation pathway; ADORA2B, ANXA6, FOXO1 were found
in the muscle system process; TLL2, ARID5B, and SMAD7 were
found in muscle organ development pathways (Fig. 4b). Among
these highlighted genes, the transcription level of ARID5B in the
M6 stage received maximum upregulation and was roughly 5.7
times (log2(M6/D3) ≈ 2.5) higher than that in the D3 stage
(Fig. 3e). The most significant open chromatin peak of the
ARID5B gene is on the 5’UTR of XM_004021393.3 transcripts
(Fig. 4e).

Genome-wide DNA methylation pattern during postnatal
muscle growth. To discover the effects of DNA methylation on
postnatal muscle development, whole-genome bisulfite sequen-
cing (WGBS) was applied to evaluate DNA methylation levels of
the global genome. The WGBS data achieved a 95% conversion
rate, over 94% of the whole-genome coverage rate, and 89% of the
alignment rate. The correlation degree among all samples could
be well-distinguished by the four developmental stages (D3-M12)
(Supplementary Fig. 3a). In other words, the intra-group corre-
lation coefficient of repeated samples is higher than that of the
within-group. The significant tendency in DNA methylation level
could be found among D3, M6, and M12 (Fig. 5a, adjust P value
0.18); the average DNA methylation rates of the three contexts of
methylated cytosine (mC) were 84.56 ± 0.55% (CG), 3.62 ± 0.09%
(CHH) and 11.81 ± 0.46% (CHG) (Fig. 5b). However, there are
significant differences in chromosome level, and most of them
occur in the D3-M3 stage (Fig. 5c).

Three DNA methylation types were further assigned according
to the genome-wide DNA methylation level (Supplementary
Fig. 3b): high methylated domains (HMD), partially methylated
domains (PMD), and low methylated regions (LMR). In
summary, as muscle grew, DNA methylation levels went up
except for the drops of PMD in M3 and HMD in M12. The
results showed that the same DNA methylation type was changed
significantly in the four developmental stages, such as HMD
(Fig. 5d) and LMR (Fig. 5e). The median DNA methylation of
HMD increased steadily and fell at M12. The LMR also showed a
similar trend, but there was no significant drop at M12 (Fig. 5d).
In addition, there was a weak negative correlation between the
median DNA methylation and the expression of genes in LMR
(spearman coefficient–0.1, P value 0.0026) (Fig. 5e).

Differential methylation regions (DMR) were defined as
consecutive sections with significantly different methylation
among comparison groups and were identified for all six possible
combinations of four stages. The average DNA methylation of
DMR (n= 11,799) was generally lower than that of its adjacent
region (DMR ± 500 bp); Besides, the average methylation of DMR

Fig. 3 Chromatin accessibility dynamics during the growth of postnatal muscle. a PCA plot summarizes the relationship among ATAC-seq samples.
b The density plot summarizes the signal difference (of mean read counts) of DAR and a pie plot for their distribution on different genomic features (gene
body, distal regions, downstream and upstream of the gene) in all comparison groups. The genome was divided into four regions: upstream region
(including TSS-3kb and 5’ UTR), gene body, downstream region (downstream and 3’ UTR), and distal region (distal intergenic region). Taking D3-M3 as an
example, the increased red area curve indicates stronger accessibility of the DARs in M3 (logM3-logD3 > 0) and, 41.2% DAR lies in distal intergenic
regions. c Upset plot summarizing the distribution of DAG in all comparison groups. d GO items for all comparison groups in (c). The same category was
grouped and labeled aside. e Genes regulated by chromatin accessibility (or transcriptionally consistent DAR) were divided into two groups: co-
upregulated genes (in the first quadrant) and co-downregulated genes (in the third quadrant) at different genomic feature facets. Co-regulated genes at
specific stages (D3-M3, D3-M6, and D3-M12) were in different colors. DAR differentially accessible regions, DAG differential accessible genes, TSS
transcription start site, UTR untranslated region.
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increased at a decelerated speed since D3 (Fig. 5f). Besides, the
GO enrichment results of the annotation genes of DMR showed
that the host genes of DMR were closely related to muscle
development (Supplementary Fig. 4). In particular, the D3-X
groups (D3 served as the reference, including D3-M3, D3-M6,
and D3-M12) enriched pathways such as muscle system process,
actin filament organization, and myofibril assembly.

To explore the relationship between DMR and their host genes’
expression, the intersection of the host genes of DMR and DEGs
were defined as DMR-regulated genes and selected from D3-X
comparison groups. Their DNA methylation and transcription
levels were depicted as muscle development (Fig. 6a). The results
showed that despite the level of DMR generally increasing as
muscle grew, the expression level of the corresponding genes was
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Fig. 4 Gene network regulated muscle growth via chromosome accessibility. a Bar plot summarizing the distribution of genes regulated by enhancers on
three expression tendencies (T1–T3). b GO results for co-upregulated and co-down-regulated genes. Muscle-related pathways were highlighted in blue.
c Identification of potential TF binding to the motif of IDR peaks at different stages. Each TF was validated by the expression matrix of RNA-seq. The dot
size represents the significance of TF. TF found in TF-target pairs were in the red. d TF-targets networks of IDR (IDR network) based on (c) (first-level
nodes, in blue) and genes (second-level nodes, in red or black) from (a). Red targets represent genes in muscle-related pathways of (a). e Genome
browser of ARID5B in IDR network, showing accessible peak signal tracks of four stages, gene structure, as well as the annotations of histone modifications.
GCF_000298735.2 was used for genome annotation. Dashed lines indicated where DAR lay (n= 3). IDR irreproducible discovery rate, TF transcription
factor, DAR differentially accessible regions.
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not linearly negatively correlated with the average DNA
methylation level of their DMR. Most genes followed higher
methylation and lower transcription patterns along with the
development of muscle. However, the upregulated genes are also
accompanied by increased DNA methylation of DMR (Fig. 6a),
which may indicate that other regulatory mechanisms are
involved. Similarly, the correlation between gene expression and

DNA methylation of DMR was depicted for the M3-M6, M3-
M12, and M6-M12 groups (Supplementary Fig. 5a-c). GO
enrichment further highlighted the roles of these genes in
postnatal muscle development. In D3-M3, D3-M6, and D3-M12
groups, the enrichment biological processes were directly related
to muscle development including the contractile fiber, contractile
fiber part, myofibril, sarcomere and so on (Fig. 6b). The muscle
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system process, muscle cell differentiation, and muscle organ
development appeared simultaneously in the D3-M6 and D3-
M12 groups, respectively (Fig. 6b). In addition, the ubiquitin
ligase binding and ubiquitin-like protein ligase binding pathways
closely related to protein degradation were only involved in the
M6-M12 group. Taken together, the genes regulated by DNA
methylation were integrated with the biological processes of
muscle development and protein degradation, and so on to
influence the growth of postnatal muscle.

To further study the possible binding of TF in LMR and the
regulatory network of those genes in muscle development-related
pathways, a similar strategy was adopted to construct the TF-
targets regulatory network (LMR network): TFs were first
predicted by the motif of LMR, and the relationship with the
DMR-regulated genes, which were found in TF database as target
genes of the predicted TFs, were then visualized in a network.
Many stage-specific TFs including CTCF, STAT5A, ELK4, and so
on were found (Fig. 6c). To narrow down candidate genes, the
targets in D3-M6 and D3-M12, which covered most pathways
related to muscle development in Fig. 6b, were considered. Any
TF found in LMR network was marked in red (Fig. 6c). Similarly,
targets in muscle-related pathways were labeled in red (Fig. 6d)
according to the GO enrichment results of the network genes
which were observed in the muscle system process, striated
muscle cell differentiation, skeletal muscle organ development,
and muscle atrophy (Fig. 6e). In the network, ENO1 is regulated
by three kinds of TFs: CTCF, ELK4, and MAZ at the D3 stage and
CTCF at the M3 stage. In the genome browser, there is a
significant change in the DNA methylation level of ENO1 in the
anterior part of exon 10 during muscle development: D3, M3
methylation level is close to 0, while M6, M12 is about 50%
(Fig. 6f and Supplementary Fig. 6a). The negative correlation of
methylation and expression of ENO1 has not reached a significant
level yet (Rho: 0.8, P value: 0.3, Supplementary Fig. 6b and
Supplementary Data 4).

Interaction between DNA methylation and chromatin acces-
sibility. To explore the interaction between DNA methylation
and chromatin accessibility during skeletal muscle growth,
TSS ± 3 kb was considered due to the high variation of IDR sig-
nals and average methylation near TSS across four stages
(Fig. 7a). In the four stages (D3, M3, M6, M12), 24, 10, 25, and 8
loci with possible interaction effects were respectively identified
by the intersection of genes with DAR or DNA methylation
signals on TSS± 3 kb region, of which 14, 4, 10, and 2 genes were
annotated (Fig. 7b).

Those genes were displayed according to their gene expression
in corresponding stages. For clarity, intersection (green line in
Fig. 7c) refers to genes that were subjected to the effects of both
DAR signals and DNA methylation, while IDR (orange line in
Fig. 7c) and methylation (blue line in Fig. 7c) refer to which were
independently affected by open chromatin signals (or IDR peaks)
and DNA methylation, respectively. First of all, the expression
pattern of genes of the intersection line (green line) fell
somewhere between the IDR and DNA methylation sides, which

means the expression of genes possibly mediated by IDR and
DNA methylation was higher than genes affected by methylation
but lower than genes affected by IDR (Fig. 7c) Then, in specific
stages, the middle curve subjected to both epigenetic effects were
closer to the IDR curve in D3 and M6 stage; while in the rest
stages (M3 and M12 stages), it was closer to the methylation
curve (Fig. 7c). This indicated that the effect size of IDR and
DNA methylation on their host gene’s expression may differ as
muscle grew. The IDR effect tended to have a stronger effect on
their host genes than DNA methylation in D3 and M6, while
weaker in M3 and M12. Interestingly, it was similar to the trend
of IDR signals on CpG islands, which displayed a relatively high
overlapping rate of IDR peak on CpG islands in D3 and M6
(Supplementary Fig. 2b). Interestingly, it was similar to the trend
of IDR signals on CpG islands (Supplementary Fig. 2b). Secondly,
these genes of IDR and DNA methylation sides were selected for
GO enrichment analysis (Fig. 7d, e), and the genes mediated by
both effects were annotated by the biological processes category
of GO pathways (www.genecards.org, Fig. 8a). The genes
regulated only by IDR peaks involved in translation activities
and cytoskeleton organization (Fig. 7d), while the DNA
methylation-regulated genes were mainly enriched in mRNA
splicing and protein serine/threonine kinase activities (Fig. 7e). In
the four stages, 17 genes were identified with the overlap of IDR
and DNA methylation in TSS ± 3 kb, with “*” denoted in the
corresponding stages of expression heatmap and noted with the
pathways of biological process from GO database labeled aside.
The first seven out of these (CALCOCO1, DNAJC13, FRYL,
HNRNPA1, KIAA0907, PHF14, TSNAX) were found in DEGs.
These genes are involved in mRNA alternative splicing, cell
differentiation, metabolism as well as autophagy, etc. (Fig. 8a).
Taking PHF14 as an example, the expression of PHF14 decreased
since D3 and there was no IDR peak near TSS except D3 (an
asterisk labeled in D3, Fig. 8a). Accordingly, in the D3 stage, there
is a high open signal on the upstream of PHF14, so its
transcription was the most activated (Fig. 8b). This might be
because the weak open signal or no IDR peaks existed in the other
stages, and the overall DNA methylation level in the adjacent
regions was lifted.

The transcriptional level of TSNAX is another case, whose
expression increased with the development of postnatal muscle.
Consistent with the trend of transcription, there is an IDR peak
near the TSS of TSNAX at all stages, and the open signal increases
gradually. Among them, the open degree of D3 and M3 were
comparable, but the methylation level in the upper reaches
decreased in M3, which may promote the expression of TSNAX
(Fig. 8c). In addition, the other genes can be found in
Supplementary Fig. 7a-e.

The effects of epigenetic modification on postnatal muscle
fiber transformation. The composition of muscle fiber types is
dynamic after birth. The proportion of slow-twitch muscle
fibers decreased sharply from D3 to M3 by myosin ATPase
staining. (Fig. 9a, b). A total of 1847 DEGs in D3-M3, with an
absolute value of Rho greater than 0.7, were significantly related

Fig. 5 Genome-wide dynamic patterns of DNA methylation during postnatal muscle growth. a Box plot summarizing mean genome-wide methylation at
the sample level. b Proportion of three types of methylated cytosine contexts across four stages: CHG, CHH, and CpG. c Box plot summarizing mean
genome-wide methylation at the chromosome level. “*” means a significant difference (P < 0.05, adjusted by FDR) between the two stages. Violin plot for
methylation of high methylation domains (HMD, d) and low methylation regions (LMR, e). The line in the LMR violin plot represents the median expression
of genes with LMR (right y axis). Groups showing a significant difference were labeled with exact P value. f Line plot exhibiting mean methylation of flank
sequence (DMR ± 500 bp) and DMR across four stages. Boxes or violin represent 25th to 75th percentile and whiskers represent minimum-maximum.
Horizontal lines and points within boxes represent the median and mean respectively (n= 3). DMR differential methylation regions, HMD high methylation
domains, LMR low methylation regions.
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to the proportion of slow-twitch muscle fibers, and displayed in
two dimensions: Spearman correlation coefficient (Rho) and
their expression level at D3. (Fig. 9c). Retrieved from the
Human Molecular Signatures Database (MSigDB), 229 out of
1847 genes involved in metabolism activities including energy
derivation by oxidation of organic compounds, positive reg-
ulation of ATP metabolic process, ATP biosynthetic process,

fatty acid oxidation, oxidative phosphorylation, etc. (Fig. 9d).
Meanwhile, these genes were involved in the electron transport
chain, cellular respiration, ATP metabolic process, and regula-
tion of fatty acid oxidation, which was reflected in KEGG items
such as the tricarboxylic acid cycle (TCA) cycle and fatty acid
metabolism (Fig. 9e). In addition, KEGG enrichment also
highlighted the biosynthesis of unsaturated fatty acids,
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glycolysis/gluconeogenesis, and PPAR, AMPK, p53, Foxo, and
HIF signal pathways (Fig. 9e).

Next, we mapped the TF, inferred previously from IDR and
LMR, and the above 229 metabolism-related genes to the
hTFtarget database again to create TF regulatory networks
involved in the transformation of fiber types. We further
highlighted genes related to metabolism in the networks.
NR1D1 and FADS1 were highlighted in the IDR network (Fig. 9f),
which were both related to the regulation of cell differentiation.
Besides, the LMR network found two important metabolism-
related genes (ZFP36L2 and SLC25A1), and both genes are
regulated by E2F1, FOSL2, andMAZ. They are mainly involved in
mitochondrial transport, stem cell differentiation regulation,
acetyl-CoA metabolism, and gluconeogenesis (Fig. 9g). In
addition, MAZ is D3-specific, while E2F1 and FOSL2 are M3-
specific. Taken together, these results point out a hypothesis
about the slow-twitch muscle fibers transformation: chromatin
accessibility and DNA methylation might regulate the expression
of the key genes via affecting TF binding at motif region and
changes in oxidation metabolism pathways.

Discussion
We performed a full comparison (a total of six comparison
groups) among those four stages for RNA-seq, WGBS, and
ATAC-seq data to ensure later analysis can be performed under
the same comparison group. In terms of RNA-seq results, three
important biological processes including protein synthesis,
immune activities, and mitosis and their gene expression ten-
dencies (T1–T3) were derived from the stratified DEGs through a
combination of clustering methods, part of which also can be
found on previous reports25,26. The main idea of this part of the
analysis is to investigate the main transcription process of muscle
postnatal growth in a robust way to avoid interference of false
positives introduced by the case-control comparison A non-
linear unsupervised clustering method called a self-organizing
map (SOM) was adopted to split DEGs into two groups (G1 and
G2). In this step, SOM requires one-dimension input so we use
the correlation between gene expression and the phenotype CSA.
Next, we independently conducted a clustering method called
Fuzzy C-Means Clustering on G1 and G2. In this step, we
obtained self-confirmation results: the enrichment results showed
the pathways in G1 can be validated in G2 with a similar
expression pattern.

In this study, the threshold (Log2 fold change >0) was a less
stringent cutoff than in other studies. On the one hand, we try to
avoid excluding some translational factors with small-expression
fluctuation yet highly efficient transcriptional activation and
increase the candidate genes list for further screening. On the
other hand, arbitrary filters can cause an unstable percentage of
DEG in certain pathways. Furthermore, an increased DEG
number will filter out pathways with a small number of genes
annotated, which helps understand the main biological processes
DEGs are involved. Therefore, we chose the q-value as the only
threshold for DEGs.

As the ages, the ability of the muscle to regenerate is decreased,
and the number of Muscle satellite cells declined27, which may be
related to the prolonged infiltration of immune cells in T2 ten-
dency. It is estimated that muscle satellite cells account for 30% of
the total nucleus in early postnatal growth, while they account for
only 2–7% of skeletal muscle in healthy adults and about 5% in
older pigs. The study has shown that an increase of TNFα and IL6
levels in satellite cells or myofibril environment leads to skeletal
muscle aging28. Moreover, some studies have shown that the
continuous activation of NF-κB leads to telomere shortening of
Muscle satellite cells under chronic injury, which has nothing to
do with proliferation. It ultimately leads to the loss of Muscle
satellite cells, and the failure of skeletal muscle regeneration29.

The core of muscle fiber hypertrophy is the net accumulation
of cellular component proteins (e.g., myofibril, mitochondria,
sarcoplasmic reticulum, cytoskeleton, etc.), which means that
anabolism should exceed catabolism for a long time. Protein
synthesis depends on the efficiency of ribosomal translation, and
muscle nucleus density to provide a platform for mRNA tran-
scription. There is a strong linear correlation reported in previous
studies among the CSA of human muscle fibers, the number of
nuclei per fiber, and ribosome content (RNA concentration)3,30.
The current viewpoint31 is that: (1) the initial stage of muscle
fiber hypertrophy induced by mechanical overload is not neces-
sarily satellite cell-dependent. Instead, it can occur mainly
through protein accumulation; (2) as the CSA of a single fiber and
the size of a single nucleus domain enlarges, Muscle satellite cells
mediated myonuclear addition may be essential for sustained
hypertrophy.

Studies from the single-cell RNA-seq have confirmed that
damaged muscle satellite cells activate cell differentiation and
gradually increase ribosomal biogenesis and metabolic activities
like glycolysis, tricarboxylic acid cycle (TCA cycle), and fatty acid
oxidation. In addition, there are significant differences between
primary myoblasts and muscle satellite cells21: both primary
myoblasts and muscle satellite cells cluster enriched cell cycle-
related pathways, but metabolism, protein balance, and transla-
tion activation were also found in the primary myoblasts cluster.
Interestingly, pathways related to the cell cycle were also enriched
in T1 tendency which features protein synthesis. This is a positive
indication that genes in different trends (T1–T3) are well coor-
dinated, not just within similar trends.

Chromatin accessibility is directly tied to gene transcriptional
regulation. Particular attention was given to the role of enhancers
and differential genes sharing the same direction of fold change
between DAR and DEGs were selected. Most genes belonged to
the T3 trend, and only a few genes were assigned to T1 and T2
trends such as in D3-M6. Some studies have reported genes
shared reverse fold change and speculated that transcriptional
suppressors may be involved32. Our study further found that the
upregulated minority was closely related to muscle development.

To find the potential relationship between accessible regions
and DEG, we map the TF inferred from IDR peaks and DEGs
which shared the same directions of fold changes with DAR to the
hTFtarget, an external TF-targets database, to construct the IDR

Fig. 6 Gene network of muscle growth regulated via DNA methylation. a Heatmap for gene expression (red-blue bar, red indicates high expression while
blue means low expression) and their methylation at DMR (purple bar, the deeper purple, the higher DNA methylation) across four stages (using the
groups referring to D3). b GO items for intersection genes of DMR and differentially expressed genes (DEGs). c Identification of potential transcription
factors (TF) binding on LMR. Each TF was validated by the expression matrix of RNA-seq. The dot size represents the significance of TF. TF found in TF-
target pairs were in the red. d TF-targets networks of LMR (LMR network) based on (c) (first-level nodes, in blue) and genes (second-level nodes, in red or
black) from (b). Red targets represent genes in muscle-related pathways of (e). e GO items for LMR network. f Genome browser of ENO1 in LMR network,
showing methylation level tracks of four stages and gene structure. GCF_000298735.2 was used for genome annotation. Dashed lines indicated where
DMR lay (n= 3). DMR differential methylation regions, LMR low methylation regions.
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Fig. 7 Interaction between DNA methylation and chromatin accessibility during postnatal muscle growth. a Genome-wide accessible signal (top) and
mean methylation (bottom). TSS refers to the transcriptional start site, and TTS refers to the transcriptional terminal site. b Venn diagram of loci with IDR
peaks and methylated sites on TSS ± 3 kb (kilobase). c Expression distribution of three types of genes: genes with IDR peaks only, genes with methylated
sites only and those had both modifications on TSS ± 3 kb. d GO items for genes with IDR peaks only. e GO items for genes with methylated sites only. IDR
irreproducible discovery rate.
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network. Motif enrichment analysis found a series of transcrip-
tion factors and their target genes: FoxO1, IFRD1, and ARID5B
belonged to the T1 trend, while ANXA6,ADORA2B and SMAD7
genes belonged to the T3 trend. Combined with the biological
processes assigned to T1 and T3 trends, it also makes sense that
these targets are essential for muscle development. Although most
studies about SMAD7 focused on muscle differentiation, a study
of systematic administration of rAAV6:SMAD7 delivery con-
firmed the hypertrophy of muscle mass body-wide on C57BL/6
mice33. ARID5B is involved in the formation of H3K9me2
demethylase. ARID5B knockout increases glucose uptake, meta-
bolism, and oxygen consumption in skeletal muscle34. Besides, it
also leads to the hindrance of cell differentiation and sarcomere
defect in primary skeletal muscle35.

DNA methylation is generally considered a static epigenetic
modification, but some studies have found that dynamic DNA
methylation plays an important role in regulating muscle

metabolism36. We calculated the mean methylation at four
annotation sites mentioned in Method Annotation for ATAC-seq
and WGBS part: the upstream region, the gene body, the
downstream region, and the distal region. Then t test was per-
formed among these four stages (a total of six comparison
groups), and the P value was adjusted with the FDR method.
Although there were no positive results (no significant compar-
ison group was reported), it’s still a simple way to present the
gradually increased methylation level along with postnatal muscle
growth to avoid thousands of outliers. In our study, the average
methylation of DMR climbed largely (40-60%) since D3, at a
decreasing speed. Interestingly, the GO terms of many DMR
groups reached a consensus in pathways related to muscle
development, such as muscle system process and actin filament
organization. By further combining with DEGs, those genes
affected by DNA methylation are enriched into more muscle-
related pathways in the D3-M6 and D3-M12 groups.

D3 M3 M6 M12

KIAA0907

FRYL

DNAJC13

HNRNPA1

CALCOCO1

TSNAX

PHF14

MTRF1L

INTS6

PHF12

GSK3B

SCOC

CCDC90B

ENTPD7

CEP70

CEP290

VPS50

z-score
012

*
* ***
*
*
***
*** *

**

** *

*

*

*

*

*
*

*

*

*

mRNA splice site selection
neuron projection development
receptor-mediated endocytosis; osteoblast differentiation
regulation of alternative mRNA splicing, via spliceosome
Wnt signaling pathway; positive regulation of transcription
cell differentiation
regulation of transcription by RNA polymerase II
mitochondrial translational termination
snRNA processing
negative regulation of transcription, DNA-templated
glycogen metabolic process
positive regulation of macroautophagy

GTP, CTP and UDP metabolic process
regulation of microtubule cytoskeleton organization
kidney development
endocytic recycling; protein transport

1- 2-

TSNAX

D3

M3

M6
M12

D3

M3

M6

M12

PHF14

D3

M3

M6
M12

D3

M3

M6

M12

a

b c

Fig. 8 Candidates subjected to temporal and persistent interaction effects between DNA methylation and chromosome accessibility. a Expression
heatmap of genes subjected to IDR and DNA methylation effects with biological processes list of corresponding genes, according to genecards.org, aside.
“*” means when the interaction effect occurred. PHF14 only had IDR peaks at D3 stages, while TSNAX had constant IDR peaks across four stages, as “*”
indicated. The Genome browser displayed PHF14 (b) and TSNAX (c). GCF_000298735.2 was used for genome annotation.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05439-0 ARTICLE

COMMUNICATIONS BIOLOGY |          (2023) 6:1077 | https://doi.org/10.1038/s42003-023-05439-0 | www.nature.com/commsbio 13

www.nature.com/commsbio
www.nature.com/commsbio


Fig. 9 The effects of epigenetic modification on postnatal muscle fiber transformation. a Muscle fiber types distribution. Representative images of fiber
types at D3 and M3 are shown. Scale bar: 130 µm. b Quantification of the proportion of the slow-twitch fibers at D3 and M3 (n= 6), P value= 0.01.
c Genes with significant positive correlation and negative correlation with the proportion of the slow-twitch fibers. x and y axes, respectively represent gene
expression in D3 and Spearman correlation efficiency (rho). d GO items for metabolic genes in (c). e KEGG items for metabolic genes in (c). f TF-targets
networks of IDR (IDR network) based on metabolic genes and transcription factors in Fig. 4c. g TF-targets networks of LMR (LMR network) based on
metabolic genes and transcription factors in Fig. 6c. Red targets are the metabolic genes in (c) and their GO items in (d) is in the lower right corner. Error
bars represent mean values ± SD. IDR irreproducible discovery rate, LMR low methylation regions, SD standard deviation.
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As for the classification types based on methylation types, LMR
and UMR are potentially important regulatory regions, due to
their low methylation characteristics; We mainly focused on the
potential regulatory relationship between LMR (we merged it
with UMR, see methods) and the intersection of genes of DMR
and DEGs. Therefore, we infer motifs (or transcription factors)
from the identified LMR. Then we narrowed down the intersec-
tion genes of DMR and DEGs according to their enrichment
results and connected these genes with previously mentioned
motifs inferred from LMR.

In LMR network, ENO1 may be involved in glycolysis, plas-
minogen activation, and transcriptional inhibition. It has been
reported that human α, β enolase is a marker of early myogenic
differentiation37,38. The expression level of total enolase is closely
related to the maintenance of muscle fibers, and knocking down
ENO1 reduces the fusion efficiency of myoblasts37,39. Other stu-
dies have also found that Wnt5a, Wnt9a, and TGFβ1, as key
nodes, regulated the functions of satellite cells40.

Our study hypothesized that the location changes of IDR and
LMR may contribute to spatial-specific, temporal-specific, or cell-
type-specific regulation of TFs. Several studies41,42 used ATAC-
seq to study the specific regulation of transcription factors, but
DNA methylation was not considered. At present, the function of
some TFs found in our study, such as VDR43, MEF2, FOSL2,
JUND42, TCF4, TEAD344, and MYF5 have been reported. Among
them, members of the myogenic regulatory factor family of
transcription factors MYOD, MYF5, MRF4, and Myogenin
(MYOG) are the key regulators of muscle gene expression in
vertebrates during early and adult myogenesis45–47. It is worth
noting that these enhancers activate transcription through direct
contact with the promoter of target genes, via the CpG-bound TF
NRF1 and the formation of CTCF-anchored chromatin loops in a
muscle fiber-specific manner48. Besides, histone H4 and E2F2
bind to the -216/-28 region and play important roles in SIX1
methylation regulation49.

The TSS ± 3 kb region is suitable for studying the interaction
between DNA methylation and chromatin accessibility because
highly accessible chromatin and hypomethylated cytosine were
found to co-exist. The interaction is already implied in the DMR
heatmap in which no linear correlation was observed between the
DNA methylation and expression of DEGs. According to the
expression distribution of the two epigenetic modified genes,
three parts were identified for each stage: genes affected inde-
pendently by IDR or DNA methylation and genes under both
effects. We reported that the bias of expression distribution with
interaction effect was similar to that of IDR proportion in CpG
island. This not only further supported the interaction but also
suggested that CpG island may be the place to link the two of
epigenetic modification. Aligned with this finding, the enrich-
ment results of intersect genes of DMG and DEGs were found 12
and 7 significant pathways related to muscle for D3-M6 and D3-
M12 groups, respectively. A total of 17 genes with possible
interaction effects were obtained, among which CALCOCO1,
DNAJC13, FRYL, HNRNPA1, KIAA0907, PHF14, and TSNAX
were DEG. PHF14 (PHD Finger Protein 14) is a hypoxia-sensitive
surface modification regulator, which encourages cell cycle pro-
gression and protein synthesis. Hypoxia-induced down-regula-
tion of PHF14 inhibits the transition from the G1 to the S phase
of mitosis and compromises protein synthesis by inhibiting the
AKT-mTOR-4E-BP1/pS6K pathway. In our result, the expression
of PHF14 was the highest in the D3 stage, followed by M3-M6.
This may be related to satellite cell proliferation and muscle
protein synthesis50. TSNAX binds to Translin as an endonuclease
activated by RNA-induced silencing complex. Consistent with the
results, TSNAX was highly expressed in the chest muscle, leg
muscle, and heart of ducks, as muscle aged51.

The body’s musculature is composed of a variety of muscle
groups, which enable it to perform specific motor activities.
Different muscle groups contain heterogeneous muscle fibers
with distinct biochemical, contractile, and metabolic properties52.
Muscle fibers are classified into slow-twitch and fast-twitch fibers
based on contractile performance and the expression of specific
isoforms of myosin heavy chain. Slow-twitch muscle fibers, rich
in myoglobin and oxidative enzymes and specialized for more
continuous activity, and fast-twitch characterized by glycolytic
metabolism and specialized for phasic activity53.

Different types of muscle fibers feature divergent metabolic
phenotypes, which contribute to meat quality or muscle perfor-
mance. With the development of muscle, the proportion of slow-
twitch muscle fibers was decreased. The D3 and M3 stages were
investigated to analyze the effect of chromatin accessibility on
slow-switch muscle fiber transformation. IDR-network analysis
showed NR1D1 and FADS1 were key candidates. NR1D1 is
highly expressed in oxidative skeletal muscle and plays a role in
mitochondrial biogenesis, oxidative function54 and calcium
homeostasis55. In addition, the LMR network found the
metabolism-related gene ZFP36L2, a member of the ZFP36
family, exists in both IDR network and LMR network. Its analog
ZFP36L1 is also in LMR network. ZFP36 regulates the degrada-
tion rate of mRNA and the myogenic process by binding to the
AU-rich sequence in 3’UTR of mRNA56.

In summary, the combined ATAC-seq and WGBS with RNA-
seq was applied to discover the epigenetic dynamics, genome-
wide DNA methylation and chromatin accessibility, and its reg-
ulations during postnatal muscle development of Hu sheep. In
four stages (from D3 to M12), all DEGs were stratified into two
groups according to the correlation with CSA, and the two group
genes were further assigned into three distinct tendencies (T1-
T3), which were mainly enriched in the regulation of protein
synthesis, immune activities, cell division and so on. IDR network
from chromatin accessibility-regulated genes showed the
ARID5B, SMAD7, FoxO1, etc were identified in muscle organ
development pathways. Global genome DNA methylation forms
were mainly the contexts of methylated cytosine, and the genes
regulated by DNA methylation were integrated with the biolo-
gical processes of muscle development, protein degradation, and
so on. The genes such as ENO1, MYOG, IGF1R, etc. were
observed in muscle system process, skeletal muscle organ devel-
opment, muscle atrophy, and so on by LMR-network analysis. the
interaction between DNA methylation and chromatin accessi-
bility at TSS ± 3 kb region showed 17 genes (KIAA0907, PHF14,
TSNAX, etc.) were identified with interaction effects which were
involved in mRNA alternative splicing, cell differentiation,
autophagy, etc. the metabolism-related genes (NR1D1,
FADS1, ZFP36L2, and SLC25A1) were involved in the transfor-
mation of slow-twitch muscle fibers using IDR-network and
LMR-network analysis, which were enriched in the acetyl-CoA
metabolism, fatty acid oxidation, gluconeogenesis and so on.
Taken together, the genome-wide DNA methylation and chro-
matin accessibility were involved in regulating the growth and
muscle fiber type transformation of postnatal skeletal muscle
(Fig. 10).

Methods
Ethics statement. All experimental animal protocols were
approved by the Animal Care and Use Committee at China
Agricultural University (Aw03602202-1-1).

Animals and muscle histology. Six Hu sheep (three males and
three females) of the same age were normally developed, vital,
and without visible defects. At the four developmental stages (D3,
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M3, M6, and M12), the quadriceps femoris tissues of these six Hu
sheep were obtained by local operation. To avoid the interference
experiment of muscle regeneration and repair-related gene
expression, we increase the time interval of sampling at the same
position as much as possible. The quadriceps femoris tissues of
the left leg were operated at D3 and M6, while the right leg was
handled at M3 and M12.

The quadriceps femoris tissues of six Hu sheep were frozen
rapidly with liquid nitrogen. A total of 6 µm sections were cut
using a low-temperature microtome, affixed to a slide, and stored
at -80 °C until dyed. For the calculation of fiber cross-sectional
area, Wheat Germ Agglutinin (WGA) with fluorescent-
conjugated (AlexaFluor488) (W11261, Invitrogen, USA,) was
used to stain the extracellular matrix. The working concentration
of WGA was 50 ng/ml. Remove the slices and place them at 37 °C
for 2 min. The tissues were covered with WGA working solution
and incubated at 37 °C for 30 min. Wash with PBS three times,
5 min each time. Identification of fast and slow-twitch muscle
types by ATPase staining57, The sections were placed in an acidic
pre-incubation solution and incubated at room temperature for
30 min. The slides were taken out and washed with double
distilled water for 1-2 min. The water droplets on the surface of
the slices were dried as much as possible (keeping the tissue
sample wet), put into a dye vat containing ATP incubation
solution, and stayed overnight at 4 °C. The slices were quickly
washed once in 1% CaCl2 solution, replaced with 1 % CaCl2
solution, and incubated for 3 min. The slices were incubated with
2% CoCl2 solution for 3 min. Tap water washes quickly (washing
speed is fast, the sample will not fall off), and deionized water
washes for 2 min. 200 µl 1% ammonium sulfide was dropped on
tissue sections for 2 min. Washed with tap water and deionized
water for 2 min. The black staining of slow-twitch muscle fibers
and gray staining of fast-twitch muscle fibers.

Measurement of CSA and count of slow-twitch muscle pro-
portion. Original images were captured at ×20 objective magni-
fication using an ECHO microscope (American).

We used Python58 and OpenCV (https://docs.opencv.org/4.5.
3/index.html) and59 to compute the CSA of muscle fibers. First,

the captured RGB image is preprocessed by gray transformation.
Then, the noise and background were filtered out in the gray
image by using a Gaussian filter and image binarization.
Subsequently, the morphological operation was implemented to
select candidate muscle fibers. The threshold for the area is
ranging from 1400 pixels to 80,000 pixels, and the circularity of
the selected region is ranging from 0.2 to 1.0. Finally, to compute
the CSA of muscle fibers more accurately, we used morphological
operation again to remove the adhered muscle fibers and fill up
the remained muscle fibers. The calculation of slow-twitch muscle
proportion using Image-Pro Plus 6.0 software.

Transcriptome sequencing (RNA-seq). The total RNA was
extracted from the quadriceps femoris using a Tissue RNA Kit
according to the manufacturer’s instructions (Omega Bio-tek,
USA). The RNA concentration was measured using an Agilent
2100 Bioanalyzer and Agilent RNA 6000 Nano Kit, and the RNA
purity was verified by a NanoDrop 2000 micro-
spectrophotometer. The integrity of RNA was analyzed by Agi-
lent 2100. Libraries of six Hu sheep were prepared and sequenced
on the Illumina platform for high-throughput sequencing with
read PE150 (Frasergen Bioinformatics, Wuhan, China).

Targeting accessible chromatin with high-throughput sequen-
cing (ATAC-seq). In this experiment, ATAC-seq was completed
in Frasergen Bioinformatics, Wuhan, China. Frozen tissues from
three Hu sheep were homogenized into cell suspensions with cold
PBS buffer. Lysis buffers were added to the cell suspensions and
incubated for 10 min at 4 °C on the rotation mixer. Cell sus-
pensions were filtered with a 40-µm cell strainer and then washed
with cold PBS buffer once time. Approximately, 50,000 nucleis
were added to the transposition reaction solution to perform
tagmentation. Tn5 transposed DNA was purified by AMPure
DNA magnetic beads and PCR amplification. Qubit2.0 was used
for preliminary quantification. The library was diluted to 1 ng/μl,
and Agilent 2100 was used to measure the fragment size of the
library. The effective concentration of the library was further
determined by Q-PCR (>2 nM) to ensure the quality of the

Chromatin 
accessibility

DNA 
methylation

Interaction 
effect

Expression level

Postnatal skeletal muscle  development of Hu sheep

Growth and fibers 
transformation of 
postnatal muscle
(From D3 to M12)

IGF2BP3, 
METTL21, RHOU, 
ARID5B , FoxO1, 

 NR1D1, 
FADS1 etc.

CXCL12, MYOZ2, 
KLHL31,ACVR1B,
GDNF, ENO1, 
ZFP36L2,SLC25A1 
etc.

CALCOCO1, 
DNAJC13, FRYL, 
HNRNPA1, 
KIAA0907,
PHF14, 

TSNAX etc.

Fig. 10 Summary of potential regulatory patterns of DNA 5mC and accessible chromatin regions on gene expression. On the one hand, the expression
of the genes influencing growth and fiber transformation during postnatal skeletal muscle in Hu sheep can be independently either upregulated by
chromatin accessibility or downregulated by DNA methylation at specific stages. For example, ARID5B may be upregulated by XBP1 in M3 than D3, due to
increased accessible signal on the UTR of one of its transcripts. On the other hand, the interaction of chromatin accessibility and DNA methylation
maintained a moderate level of the genes related to skeletal muscle growth. Some genes, like CALCOCO1 and PHF14, were possibly mediated by both 5mC
and accessible chromatin in our dataset.
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library. The final qualified library was sequenced on the Illumina
Nova-seq platform (San Diego, CA, USA) with PE150 mode.

Whole-genome bisulfite sequencing (WGBS). In this experi-
ment, WGBS was completed in Frasergen Bioinformatics,
Wuhan, China. Extraction of genomic DNA from the quadriceps
femoris of three Hu sheep. In total, 2 μg of genomic DNA spiked
with 5 ng unmethylated Lambda DNA (Promega, Madison, WI,
USA) was fragmented by sonication to a mean size of ~200-
400 bp. 500 ng of purified fragmented was end-repaired, 5’-
phosphorylated, 3’-dA-tailed and then ligated to 5-
methylcytosine-modified adapters. The bisulfite conversion was
carried out using the ZYMO EZ DNA Methylation-Gold Kit
(Zymo Research, Irvine, CA, USA) and amplified via PCR with
ten cycles using KAPA HiFi HotStart Uracil+ ReadyMix (Kapa
Biosystems, Wilmington, MA, USA) and Illumina 8-bp index
primers. The constructed WGBS libraries were then analyzed by
Agilent 2100 Bioanalyzer and finally sequenced on the Illumina
platform. The sodium bisulfite non-conversion rate was calcu-
lated as the percentage of cytosines sequenced at cytosine refer-
ence positions in the lambda genome.

Sequencing data processing. Except for the RNA-seq (six repli-
cates for each stage), ATAC-seq (three replicates for each stage),
and WGBS data (three replicates for each stage), we also down-
load WGS data to identify methylation types and ChIP-seq data
to visualize the activation signals (H3K4me3, H3K27ac, etc.) with
accessible signals. Associated metadata can be seen in Supple-
mentary Data 5. The analysis software and associated datasets
used are listed in Supplementary Table 1.

Trim_galora are used for filtering, including the removal of
adapters and low-quality reads. The filtered data is called clean
data. Clean data was aligned with the sheep reference genome by
different aligners.

For RNA-seq data, a total of 242 G sequencing data was
obtained, with an average Q30 of 92%. Hisat260 2.2.1 was used for
alignment. Then BAM files were sorted by samtools61 1.9 and
quantified by featureCounts62 of subread 2.0.1. the PCA and
hierarchical clustering methods were adopted to detect outliers.
As a result, a total of 21 samples were preserved for downstream
analysis, while three outliers (respectively in D3, M6, and M12)
were excluded. The DEGs are obtained by DESeq263 1.26.0, with
criteria as |Log2FoldChange | > 0 and q-value < 0.05.

For ATAC-seq and ChIP-seq, clean data was aligned by
Bowtie264 2.35.1, and Samamba65 0.6.6 was used to remove PCR
duplicates. Use MACS266 2.1.0 to obtain the signal peak of the
open area, with the effective genome size set as 2.20E+ 06. For
ATAC-seq data, parameter was set as --keep-dup=all --cutoff-
analysis -g 2.20E+ 06 -B --SPMR --nomodel --shift -75 --extsize
150; Following fetal ChIP-seq samples were download:
H3K4me3 samples (SRR5070525-SRR5070530), H3K27ac sam-
ples (SRR5070519-SRR5070524) and nucleosomal DNA
(SRR5070531). The parameter was set as --keep-dup all
--nomodel -- extsize 100 -g 2.20E+ 06 in MACS2. To get the
consistent accessible peaks, use the IDR67 (Irreproducible
Discovery Rate) method within the repeated samples, and use
BEDTools68 intersect -wo to get the intersection.

For WGBS data, Bismark69 0.23.0 software which calls Bowtie2
aligns the clean data of WGBS data to the reference genome, uses
deduplicate_bismark to remove duplicate reads, and uses
bismark_methylation extractor function to quantify methylation.
A bulk DNA sample was used, so the methylation level of the
cytosine base ranges from 0 to 100.

Besides, WGS (whole-genome sequence) data were used for
better methylation types identification, which requires the

location of CpG island and SNP to exclude CpG islands
overlapped with SNP and find regions with low methylation
levels more precisely. To get more precise SNP data, we used the
intersection results of SNPs identified from the public database
and our WGBS data. 6 WGS samples70 (one ewe SRR10821772
and five rams SRR11657579-SRR11657583) were downloaded
from the NCBI SRA database and associated metadata can be
seen in Supplementary Data 5. To note, the only consideration
about selection is including both male and female HU sheep.
However, its proportion was not yet under serious consideration.

Following SNP calling processes were conducted: (1) fastqc for
data quality control; (2) BWA MEME 2.0 (doi.org/10.48550/
arXiv.1303.3997) for alignment; (3) Samtools for sorting,
indexing, and using Samamba to remove PCR duplications; 4)
using HaplotypeCaller, CombineGVCFs, SelectVariants, Variant-
Filtration built-in GATK471 4.1.8 to screen SNP mutation types
and get high-quality mutations (QUAL > 30). To better adapt to
the data of this study, SNPs were also called based on WGBS data
by Biscuit 0.3.16 (github.com/huishenlab/biscuit). Intersected loci
were used for downstream analysis.

Annotation for ATAC-seq and WGBS. ChIPseeker72 1.26.2 can
annotate a BED file with gene name, distance from TSS, genome
regions, etc. ChIPseeker annotates in the following order: pro-
moter,5’UTR, 3’UTR, exon, intron, downstream, distal intergenic.
It is important to note that we defined promoter as 3 kb upstream
of TSS in ChIPseeker to classify genomic region into four cate-
gories: upstream region (including promoter (TSS-3kb) and 5
‘UTR in the original classification), gene body (including Exon
and Intron above), downstream region (Downstream and 3’ UTR
above), and distal region (distal intergenic).

Clustering analysis of RNA-seq data. For each DEG, the
Spearman rank correlation coefficient (rho) was first calculated
between expression and CSA. DEGs were ranked by the rho value
and clustered by a self-organizing map (SOM) implemented in
the Kohonen73 3.0.10 R package. SOM clustering is an unsu-
pervised clustering algorithm, which is often used with hier-
archical clustering. Then, we use the built-in function hclust to
assign DEGs into two groups. Finally, time expression patterns
were identified for each group using the Mfuzz74 2.46.0 package.

Overrepresentation analysis. ClusterProfiler75 3.14.3 was used
for overrepresentation analysis within GO and KEGG databases.
P value was corrected by the false discovering rate (FDR) method
(P.adjust), the significant threshold was 0.05, and similar
enrichment pathways (default parameters) were removed by
semantic similarity.

Methylation types identification. As mentioned above,
MethylSeekR76 1.26.0 software requires the location of the CpG
island and SNP to classify the methylation level of the whole
genome. The reason to exclude the CpG islands overlapped with
SNP is simply due to the difference in genome background
between real samples and the reference genome.

Partially methylated regions (PMD), low methylated regions
(LMR), and unmethylated regions (UMR) were obtained in turn:
PMD needs to be masked before the segmentation of low
methylation regions (LMR and UMR); HMD was the rest of the
regions with high methylation levels.

Originally identified UMR and LMR were merged and named
with LMR, because the range of methylation level of LMR and
UMR is highly overlapped (Wilcoxon test: P value= 0.69).
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Differential accessed regions identification. The results of the
MACS2 can be used for DAG identification with DiffBind77

2.14.0, which calls DEseq2 for difference analysis. The least
qualified sample was selected as the control bam to reduce the
noise produced by liquid nitrogen (N2) Cryopreservation. The
criteria for DAR are: adjusted P value by FDR < 0.1. Note that the
Diffbind uses DEseq2 to calculate log2 normalized read counts
(average within groups). Genes with DAR are called differential
accessible genes (DAG). All the parameter settings use the default
parameters of the software. PCA plot was drawn by DiffBind dba.
plotPCA functions.

Differentially methylated regions identification. DMR refers to
some fragments that show different methylation patterns in dif-
ferent samples. Because DSS78 2.38.0 requires the methylation
level of input files to be a percentage, the awk software is used to
convert the cov file exported by Bismark. Use the default para-
meter of DSS to get DMR. Genes with DMR annotation are called
differentially methylated genes (DMG).

TF binding motifs analysis. The findMotifsGenome.pl of
HOMER79 4.11 was used to analyze the potential transcription
factor binding sites of given sequences. To reduce the false
positive, the de novo algorithm was adopted, and the significance
threshold was 10e-13.

TF network construction. To find the potential relationship
between potential regulatory regions and DEGs, we first inferred
the potential binding site of TF from IDR which ensures high-
confidence open chromatin peaks, and from LMR which features
low methylated cytosine coverage, respectively. Both IDR and
LMR are potential regulatory regions that were identified through
different perspectives.

Then we selected candidates starting from DEGs. We chose
DEGs which shared the same directions of fold changes with
host genes of DAR as candidates for IDR network; while we
chose the intersection of DEGs and host genes of DMR. To
narrow down the candidate genes of LMR network further, we
selected specifically the targets in D3-M6 and D3-M12, which
covered most pathways related to muscle development in
Fig. 3g.

Next, the TF and candidates were mapped to the hTFtarget80,
an external TF-targets database, to connect both components and
construct the IDR network and LMR network.

As for the regulatory network of the proportion of slow-twitch
muscle fibers, we replaced the target genes of the above TF
networks with the DEGs which were significantly correlated with
SFP and also reported to do with metabolism in MSigDB.

Genome browser. By summarizing the signal peak, methylation
loci, gene structure, and differential results, the pyGenomeTracks81

3.6 package is used for visualization on the genome browser. The
genome annotation file (GCF_000298735.2) was used.

Statistics and reproducibility. The CSA and values are reported
as means ± SD (n= 6, animals). The differences of the CSA were
analyzed by one-way ANOVA with SPSS. The differences of the
slow-twitch muscle proportion were analyzed by independent-
sample t test with SPSS. The statistical significance was defined at
P value < 0.05. Multiple test correction is adjusted by the FDR
method if no extra claims. Spearman Correlation coefficient
(Rho) was adopted in calculating phenotype-related genes (P
value < 0.05, if no extra claims).

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
Transcriptomic data were uploaded to the GeneBank database in NCBI Data Center
under BioProject accession numbers PRJNA947918 (Registration date: 23 March 2023)82

and PRJNA1019899. ATAC-seq and WGBS data were deposited in the GeneBank under
the project PRJNA1018291. ChIP-seq data are available in the NCBI SRA repository with
the identifier: H3K4me3 samples (SRR5070525-SRR5070530), H3K27ac samples
(SRR5070519-SRR5070524), and nucleosomal DNA (SRR5070531). WGS data are
available in the NCBI SRA repository with the identifiers: SRR10821772 and
SRR11657579-SRR11657583. Source data underlying figures are provided in
Supplementary Data 1. All other data are available from the lead contact upon request.

Code availability
The analysis methods and software used in this article are open source and listed in
Supplementary Table 1. The code is available at the Zenodo repository (zenodo.org/
record/8415716)83.
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