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GiRAFR improves gRNA detection and annotation
in single-cell CRISPR screens
Qian Yu1, Paulien Van Minsel1, Eva Galle 1 & Bernard Thienpont 1,2✉

Novel methods that combine single cell RNA-seq with CRISPR screens enable high-

throughput characterization of transcriptional changes caused by genetic perturbations.

Dedicated software is however lacking to annotate CRISPR guide RNA (gRNA) libraries and

associate them with single cell transcriptomes. Here, we describe a CRISPR droplet

sequencing (CROP-seq) dataset. During analysis, we observed that the most commonly used

method fails to detect mutant gRNAs. We therefore developed a python tool to identify and

characterize intact and mutant gRNAs, called GiRAFR. We show that mutant gRNAs are

dysfunctional, and failure to detect and annotate them leads to an inflated estimate of the

number of untransformed cells, attenuated downregulation of target genes, as well as an

underestimated multiplet frequency. These findings are mirrored in publicly available data-

sets, where we find that up to 35% of cells are transduced with a mutant gRNA. Applying

GiRAFR hence stands to improve the annotation and quality of single cell CRISPR screens.
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The advent of single-cell omics technologies is revolutio-
nizing the cataloging of cell types and states in develop-
ment, physiology, and disease, as we recently reviewed1.

While such studies are mostly descriptive and correlative, recent
method developments now also enable functional analysis at
scale, with the impact of a multitude of gene perturbations for the
first time assessed in parallel on a transcriptome-wide scale.
Examples include Perturb-seq, Direct-Capture Perturb-seq,
CROP-seq, ECCITE-seq, and others2–5. Screens initially encom-
passed dozens of parallel perturbations, but more recent iterations
profiled numbers that are several orders of magnitude higher,
extending to the whole transcriptome6–8. These screens rely on
CRISPR-based systems where guide RNAs (gRNA) are used to
target Cas9 to loci of interest for gene knockout, inactivation, or
overexpression. By concomitantly reading out a single cell’s
mRNA and gRNA expression, they enable high-through char-
acterization of genetic perturbation phenotypes. A dedicated data
process pipeline that caters to these analyses is however still
lacking, and quality control metrics for such experiments have yet
to be established.

Here, we describe GiRAFR (Guide RNA Anomaly and Func-
tionality Revealer), a tool based on pysam (https://github.com/
pysam-developers/pysam) to perform quality control of single cell
CRISPR screens, and to assign gRNAs to cells in a sensitive,
mutation-aware manner. GiRAFR enables profiling of gRNA
sequence variations, as well as allows pinpointing the sources of
this variation, such as induced during library preparation or
during virus preparation. In a separate analysis mode, it also
detects CRISPR-cas9-induced DNA editing in transcriptome
data. By applying GiRAFR to 1 new and 11 publicly available
datasets (26 experiments in total3, 4, 6–14), we show that mutant
gRNA molecule are common in gRNA libraries and that, as a
consequence, cells are often inaccurately annotated, and we
propose minimal quality metrics for single cell gRNA sequencing
libraries. Together, GiRAFR forms a toolbox to analyze single-cell
CRISPR screens in a more accurate, reliable, variance-aware, and
efficient manner.

Results
gRNA mutations prevent gRNA detection. We transformed
A549 cells expressing a tamoxifen-inducible Cas9 with a lentiviral
pool for expression of 120 gRNAs (Supplementary Table 1) at low
multiplicity of infection. After stringent selection using pur-
omycin and 2 days of Cas9 induction, cells were allowed to grow
for another 5 days. Next, 5744 cells were analyzed by CROP-seq
as described. Downstream analysis confirmed this experiment to
be successful, as cells carrying specific gRNAs showed down-
regulated expression of gRNA target genes (Fig. 1a, Supplemen-
tary Fig. 1a). To further validate functionality, we searched for
Cas9-induced indels at gRNA target regions (see methods). This
also confirmed our experiment performed as anticipated, since
indels were readily identified in highly expressed genes when the
gRNA target region was recovered in the transcriptome library
(Supplementary Fig. 1b). Surprisingly however, no gRNA was
detected in 40% (2317) cells using the established gRNA detection
and annotation pipeline, Cell Ranger15 (Supplementary Fig. 1c).
Single-cell CRISPR screens are contingent on successfully and
accurately associating a cell’s transcriptome with the gRNA it
expresses. Similar to what we observed here, however, in every
study published thus far, no gRNA is detected in a subset of
cells6–9, 13. By most researchers, this is attributed to a lack of
complete selection for gRNA-transformed cells, leading to the
inclusion of non-transformed cells in the analysis, or to an
insufficiently high gRNA expression or sequencing depth. In our
experiment however, sequencing depth was high, with a

saturation estimated at 98.9%, and gRNA expression in gRNA-
positive cells was high, with on average 53 unique molecular
identifiers (UMIs) per gRNA per cell (Supplementary Fig. 1d).
Remarkably, gRNA-negative cells also expressed the puromycin
resistance cassette we used as selection marker, suggesting that
these cells were also successfully transformed and selected
(Fig. 1b). Closer inspection of reads mapping to the gRNA-
expressing plasmid sequence moreover revealed that also gRNA-
derived reads are mapped to this region. These however show
imperfect mapping, suggesting the presence of gRNA mutations
(Fig. 1c).

Detecting and annotating gRNA mutations. We therefore set
out to develop a tool to detect and annotate mutant gRNAs. This
is of importance for several reasons. Firstly, to control the quality
of the experimental work preceding gRNA detection, including
gRNA oligonucleotide synthesis, gRNA cloning, transformation
of cells, and selection of successfully transformed cells. Secondly,
single-cell CRISPR screens often rely on gRNAs for accurate
discrimination between single cells, having one gRNA, and
multiplets, where two or more cells are inadvertently captured
together causing them to share barcodes. Such multiplets (as well
as double-transformed cells) are characterized by the detection of
more than one gRNA, and they should typically be discarded for
analysis as the corresponding transcriptome no longer reflects the
impact of the CRISPR perturbation. Errors in gRNA detection
compromise annotation of these multiplets. And finally, expres-
sion of a mutated and potentially dysfunctional gRNA will pro-
voke attenuation or absence of phenotype, thus clouding
downstream analyses. Matters are further aggravated by tolerat-
ing mismatches for gRNA detection, with the state-of-art feature
barcoding pipeline (Cell Ranger) classifying gRNAs with 1
Hamming distance from the designed gRNA as intact.

To remedy these three issues, we developed GiRAFR, a tool to
identify mutations in the gRNA expression library and assign intact
and mutant gRNAs to cells in single-cell screens. It includes
multiple controllable filtering and model fitting parameters to
establish accurate spacer calling and provides annotations on both
intact and mutant gRNAs (Fig. 1d). Specifically, it first calls a
consensus gRNA sequence for each UMI. In doing so, sequencing
errors can be filtered from the gRNA pool as detection of multiple
reads supporting the same gRNA sequence becomes a prerequisite
for gRNA mutation calling (Fig. 1d). Next, it generates a count
matrix per detected gRNA, whilst discarding UMIs with fewer than
2 reads to avoid including sequencing errors as consensus gRNAs.
Next, by aligning the consensus gRNA sequences to the predefined
gRNA library, mutant and intact gRNAs can be identified and
mutations can be annotated. Here, we assembled a library of in
total 1997 different gRNAs (113 wild-type and 1884 mutant). Once
this listing of consensus gRNA sequences was constructed, gRNAs
were assigned to cells using the corresponding cell barcode. In each
cell, we detected between 0 to over 40 different gRNAs, versus 0 to
22 gRNAs for Cell Ranger (Fig. 1e, Supplementary Fig. 1e). In each
cell we detected on average 43 UMIs from 7 different gRNAs, either
intact or mutant.

Potential sources of gRNA mutations. We next sought to further
analyze the sources of these mutant gRNAs, using the GiRAFR
output (Supplementary Fig. 1f). Most UMIs that associate with a
mutant gRNA (97.3%) originated from 445 unique mutant gRNAs.
These mutant gRNAs were each detected in multiple cells (3173
cells in total). They were thus most likely already amplified in the
virus pool used for transduction. We cannot discriminate between
those originating from inaccurate oligonucleotide synthesis and
from errors introduced during gRNA cloning (Supplementary
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Fig. 1f, scenario 1). A smaller number of mutant gRNAs only
appeared in one cell but were supported by all UMIs for that gRNA
in that cell (n= 23 gRNAs, 23 cells). These mutations are likely
derived from errors during lentivirus transduction, but they could
equally represent a rarer mutant gRNA sub-clone present in the
virus pool (Supplementary Fig. 1f, scenario 1 or 2). Interestingly, in
1100 cells, both the mutant and intact version of the same gRNA

were encountered. In 1062 of these 1100 cells, only one single UMI
supported the presence of the mutant gRNA (validated across
multiple reads) while on average 56 UMIs supported the presence
of the intact gRNA. Here, the mutation most likely occurred in
cDNA preparation (Supplementary Fig. 1f, scenario 4). This con-
trasts with the cells where >1 UMI supported the detection of both
the mutant and intact gRNA (n= 78). Under the latter
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constellation, the mutation was most likely introduced during len-
tiviral integration, which is associated with a duplication of the
gRNA expression cassette4. Mutations introduced during this inte-
gration/duplication will give rise to an intact and amutant gRNA both
being expressed in a single cell (Supplementary Fig. 1f, scenario 3).
Note that 40 cells contain different gRNAmutations, either supported
by 1UMI or by >1UMI. In a final scenario, amutation is detected in a
single read of a UMI, but not in the other reads of that UMI. This is a
sequencing error (Supplementary Fig. 1f, scenario 5) which, as
described higher, is filtered out by GiRAFR during the consensus
sequence generation step. Here, 27% of the raw mutant molecules
were filtered out and 91% of the consensus sequences were con-
structed from sequence variations. After this filtering, mutant gRNA
molecules were widely present in the gRNA library (28.4%). The
distribution of mutant gRNA reads showed a bi-model pattern,
similar to the wild-type gRNAs, further confirming that they were not
sequencing errors (Supplementary Fig. 1g).

Assigning gRNAs to cells. Irrespective of the source of muta-
tions, deciding which gRNAs are truly expressed in a cell and
which represent artifacts, is a common problem in single-cell
CRISPR screen analysis. In GiRAFR, we offer two modes of set-
ting thresholds: one uses fixed UMI thresholds to assign gRNAs
to cells, the other one implements the two-components Gaussian
mixture model also used by Cell Ranger, to determine dynamic
UMI thresholds per gRNA per cell (Fig. 1d). In the latter, default
implementation, we included both mutant and intact gRNA UMI
counts to model the distribution, implying that different thresh-
olds may be proposed in GiRAFR versus Cell Ranger. Impor-
tantly, GiRAFR detects more cells with single gRNA (Fig. 1f).
Cells with 2 gRNAs show higher total UMI counts, implying that
many of these are multiplets (Fig. 1g). When assigning gRNAs to
cells using GiRAFR, 481 of the 2317 cells where no gRNA was
previously found, appeared transformed with a mutant gRNA, 49
cells where previously only one gRNA was found were in fact
multiplets, and 605 cells annotated as having single intact gRNA
in fact expressed a mutant gRNA (Fig. 1h). In total 1198 of all
5744 cells included in the analysis (20.7%) contain a mutant
gRNA.

To further validate the accuracy and sensitivity of gRNA
assignment, we applied GiRAFR to a Perturb-seq dataset where
25 genes were targeted using both intact (n= 25) and mutant
(n= 103) gRNAs16. Reassuringly, when solely supplied with 25
intact gRNA sequences, GiRAFR identified 253 mutant gRNAs,
including all 103 gRNAs present by design. Of the 14,113 single
cells originally annotated as expressing a predesigned mutant
gRNA, GiRAFR assigned 98.1% concordantly (Fig. 1i).

gRNA mutation characteristics and impact. A large portion of
cells discordant between Cell Ranger and GiRAFR express a

mutant gRNA (Fig. 1h). A key question is if gRNAmutations affect
their functions. The most frequent mutation is the deletion of
thymidine in the TTTT tetramer of the gRNA lower stem structure,
but mutations occur both in the gRNA promoter, spacer, and
scaffold, and could thus compromise gRNA expression, DNA
target recognition, and Cas9 binding, respectively17 (Fig. 2a).

Therefore, to evaluate the functionality of both intact and
mutant gRNAs, we compared the transcript level of gRNA target
genes between non-perturbed cells and cells perturbed with a
mutant or intact gRNA (Fig. 2b, Supplementary Fig. 1h). gRNAs
with a mutant spacer and scaffold failed to reduce expression, and
intact gRNAs significantly reduced target gene expression
(P= 8.2 × 10−6). Mutant gRNAs thus appear to be dysfunctional.
Such an attenuated functionality of mutant gRNAs matches the
previously reported reduction in functionality observed for
gRNAs with a predesigned mutation16. Reanalysing these data
confirms the strong CRISPRi-mediated reduction in expression
for cells with an intact gRNA, and an attenuated reduction for
gRNAs with a single (predesigned or GiRAFR-annotated)
mutation in the spacer. In contrast, mutations in the scaffold
(detected by GiRAFR) failed to reduce target gene expression, and
gRNAs with 2 or more mutations showed a near-normal
expression of their target genes (Fig. 2c). gRNA mutations thus
have a graded impact on their functionality, depending both on
the number and position of the mutation.

Mutant gRNA detection is also needed for the identification of
doublets or multiplets. Indeed, when mutant gRNAs abound,
droplets can often contain a mutant and an intact gRNA.
Undetected cell doublets will however mask the impact of the
intact gRNA. This is illustrated by comparing gRNA target gene
expression between droplets annotated as containing 1 (intact)
gRNA by Cell Ranger but where a second mutant gRNA is
detected by GiRAFR. These multiplets reported by GiRAFR
showed an attenuated target gene downregulation after perturba-
tion, further emphasizing the importance of detecting mutant
gRNAs (Fig. 2b, c, Supplementary Fig. 1i, j).

gRNA mutations are pervasive. To assess if gRNA mutations
also affect other, independent experiments, we applied GiRAFR
to 26 single-cell CRISPR experiments from 11 studies (Supple-
mentary Table 2). While the gRNA library in each study was
constructed using a different strategy, resultant sequences usually
contain both a region before the spacer (i.e. the end of U6 pro-
moter or the TSO), the spacer region itself that contains the
unique gRNA sequence (~G+ 20 bp), and the remainder,
representing gRNA scaffold and/or capture sequence. GiRAFR
detected mutant gRNA molecules in all studies analyzed, at fre-
quencies between 2 and 35%. Different samples from the same
study showing concordant results (Fig. 2d), but across studies we
observed different mutation spectra and frequencies, ranging
from 0.4 to 6.5 mutations per 1000 nucleotides of each gRNA

Fig. 1 Development of GiRAFR and its application to an in-house CROP-seq data with comparison of results from Cell Ranger feature barcoding
analysis. a Expression (log-transformed read counts) of gRNA target genes, normalized to their expression in cells with non-targeting gRNAs (control
cells). Shown is the aggregate expression of the 14 target genes which show expression in at least 50% of all control cells. ****:P < 0.0001 by two-sided t
test. Box plot denotes quartile range (box), median (center line), and 1.5× interquartile range (whiskers). b Expression of the Puromycin resistance cassette,
after mapping the scRNA-seq library to a reference augmented to include the Puromycin resistance cassette. Shown is the log-normalized expression in
cells where 0, 1, or 2 gRNAs were detected by Cell Ranger feature barcoding analysis. Box plots inside violin plots denote quartile ranges (box), median
(center mark), and 1.5× interquartile range (whiskers). c Reads with unique UMIs showing partial mapping to the 20 bp spacer region, using either Ns as a
reference (left), or from 1 cell expressing a variant HAT1 gRNA using this gRNA as a reference. d Schematic workflow of the GiRAFR pipeline. See methods
for additional details. e, f Number of cells with gRNA spacer assigned by Cell Ranger and GiRAFR (e) in the raw count matrix and (f) after application of the
Gaussian Mixture model represented in panel d. g Beeswarm plot showing the number of UMIs per cell in cells with single gRNA and 2 gRNAs from
GiRAFR. Median numbers are indicated on plot. h Comparison of gRNA assignment to cells between Cell Ranger and GiRAFR25. The red box indicates cells
containing 1 or more mutant gRNAs. i Detection rate of mutant gRNAs by GiRAFR in a Perturb-seq dataset16, containing 103 predesigned mutant gRNAs.
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profiled (Fig. 2e, Supplementary Fig. 2a). Frequencies were higher
in the spacer region and in regions immediately flanking it,
corresponding to the sequences that are typically synthesized as
pooled oligonucleotides for generating gRNA virus libraries

(Fig. 3a). Mutations, in addition, abound in the beginning and at
the end of the spacer region—sites that serve as handles for
cloning these oligonucleotides into the gRNA expression plasmid
prior to virus production.

Fig. 2 Application of GiRAFR to an extended dataset. aMutation frequency of gRNAs associated with cells after the Gaussian Mixture model filtering. The
cartoon below illustrates the annotation of spacer and scaffold in the gRNA. b Average expression (log-transformed read counts) ± standard error of mean
of gRNA target genes, normalized to their expression in cells with non-targeting gRNAs (control cells). ‘intact’ bar shows the expression in cells with intact
gRNAs. ‘mutation in scaffold’, ‘mutation in spacer’ show the novel mutations identified by GiRAFR with mutations in the spacer region and gRNA spacer
region. ‘doublets or multiplets’ show the cells with more than 1 gRNA newly identified by GiRAFR. c Similar as b using data from Jost et al.14. ‘designed
mutation’ bar shows the expression of single mismatch gRNAs as designed in the experiment. ‘mutation in scaffold’, ‘new mutation’ and ‘2 or more
mutations’ show the novel mutations identified by GiRAFR with 0, 1, and 2 or more mutations in the spacer region. d Fraction of cells with a gRNA showing
a mutation, out of all cells. Only gRNAs associated with cells after the Gaussian Mixture model filtering were considered. e Frequency of mutations in
gRNAs associated with cells after the Gaussian Mixture model filtering. The mutation frequency is shown per cell and per 1000 nucleotides, to subtract
differences in gRNA sequencing read length.
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gRNA expression and sequencing saturation impact mutation
calling. In analyzing these 11 studies, we observed high variability
in gRNA expression and in library sequencing saturation, factors
likely to impact gRNA mutation calling accuracy. gRNA library
sequencing saturation differed dramatically, ranging from 20 to
99%. Also, the average number of gRNA molecules detected per
cell was highly variable, ranging from 1 to over 100 UMIs
(Supplementary Fig. 2b). We first assessed the impact of this
variation on how accurate gRNAs can be assigned to cells, by
downsampling our own CROP-seq experiment. This analysis
revealed that, at a sequencing saturation of 34, 59 and 92%, an
average of 5, 16, and 31 unique gRNA molecules were recovered
per cell, leading to a correct annotation of cells with their gRNA
at an estimated 80%, 95% and 98% of samples (Fig. 3b). Cells may
be incorrectly annotated for three reasons. First and foremost, low

sequencing depth will cause some fragments to be simply not
detected. Second, gRNAs with low UMI counts can fail to meet
the UMI count cutoff. And third, ambient gRNAs can be erro-
neous annotated as expressed as the automatic detection
threshold shifts to a lower value. This number of inaccurate
assignments upon downsampling is visualized in Supplementary
Fig. 3a. Note that a low sequencing saturation also impacts
mutation calling. Here, most UMIs are supported by 0 or 1 read
and thus not included for analysis. As a result, fewer UMIs (and
hence fewer intact as well as mutant gRNAs) are detected at lower
sequencing depths (Supplementary Fig. 3b). In 13 of 26 experi-
ments we analyzed, on average over 16 unique gRNA molecules
were recovered per cell, suggesting that over 95% of cells are
correctly assigned. We focused our analyses on these 13 experi-
ments (6 studies); in the 13 other experiments, many cells were

Fig. 3 Mutation spectra of the extended dataset and cell assignment results of selected high sequencing depth experiments. a gRNA mutation patterns
detected in publicly available datasets, as in panel a. Shown is the aggregate across all experiments analyzed per dataset. Note that some gRNA libraries
encompass only a fraction of the U6 promoter shown. Individual experiments are shown in Supplementary Fig. 2. Striped boxes indicate the position of
template-switching oligonucleotides, where mutations on position −2, −1, and 0 before the start of the spacer were also removed. b gRNA assignment
accuracy as a function of the median number of UMIs per cell, as estimated by downsampling the CROP-seq data generated in the current study.
c Comparison of the number of different gRNAs assigned to a cell by Cell Ranger and GiRAFR. Shown are (left and right) data from studies Belk et al.13 and
Replogle et al.3 (top), Tian et al.11 and Genga et al.8 (middle), and Schraivogel et al.10 and Replogle et al.14 (bottom).
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excluded from analysis by GiRAFR as gRNAs cannot be assigned
to cells with confidence.

Validation of functional impact of gRNA mutations. In each of
the 13 high-depth experiments, GiRAFR identified more cells as
containing a mutant gRNA (Supplementary Fig. 3c). Note that a
head-to-head comparison between the analyses presented in each
of these studies and GiRAFR is not feasible, as not each of them
implemented the same UMI thresholding, and they often use ad
hoc, fixed thresholds. To enable a head-to-head comparison, we
therefore reanalyzed each of these datasets using Cell Ranger as
well as GiRAFR. This revealed that Cell Ranger labeled between 6
and 40% of all cells as containing no gRNA, but 0.5 to 55% of
these in fact represent cells transfected with mutant gRNAs as per
our GiRAFR analysis. Likewise, cells labeled as having a single
gRNA by Cell Ranger were often labeled as multiplets by GiR-
AFR, with for example about one-third of single cells in one lane
profiled by Replogle et al.14 being mislabeled by Cell Ranger
(Fig. 3c). As expected, mutant gRNAs showed attenuated func-
tionality, having less impact on the expression of their target
genes (Supplementary Fig. 4a). Similarly, multiplets mislabeled as
singlets by Cell Ranger show a reduced downregulation of the
target genes of the intact gRNAs compared to true singlets.
Together, these analyses demonstrate the need for accurate and
tailored gRNA detection, and confirm that GiRAFR outperforms
Cell Ranger for gRNA library analysis and for assigning gRNAs to
cells. Notably, we observed that the analysis runtime of GiRAFR
scales in a linear manner with the product of the number of cells
and the number of reads in the gRNA library (Supplementary
Fig. 4b), taking about half a day to analyze 100,000 cells.

Discussion
Single-cell CRISPR screening is increasingly being used to assess
the impact of gene perturbations on cellular transcriptomes. Here,
we developed a method to identify and annotate the gRNAs used
in these assays more accurately, in a mutation-aware manner.
GiRAFR takes alignment results (bam files) as its main input. It is
compatible with the alignment outputs of both Cell Ranger and
Dropseq, and should be compatible with other alignment files.
While GiRAFR is clearly not essential for performing single-cell
CRISPR screening (several studies have been performed without
it), GiRAFR does stand to advance this burgeoning field by fixing
several analysis gaps.

First and foremost, if mutant gRNAs cannot be detected, cells
with a single gRNA cannot be properly distinguished from those
with multiple gRNAs. Discriminating both sets of cells is
important to avoid including cells that are inadvertently captured
together and labeled with the same barcode. In that scenario, the
transcriptome no longer represents the associated perturbation.
We demonstrate that up to 22% of all cells profiled in earlier
studies that are labeled as singlets by Cell Ranger are in fact
multiplets, i.e., multiple cells or single cells transformed with 2 or
more gRNAs. We also show that these undetected multiplets have
no or an attenuated phenotype and that they can thus cloud
downstream analyses.

Additionally, studies often use ad hoc customized pipelines and
fixed thresholds for analysis. This renders a head-to-head com-
parison between each of these studies unfeasible. By applying a
uniform analysis, we highlight strengths and weaknesses in sev-
eral of these studies that can be taken into consideration when
designing future experiments. For example, specific defined read
depths need to be attained for accurate gRNA assignment and
mutation detection.

Thirdly, GiRAFR can help to assess and optimize the quality of
the experiment. The UMI used in gRNA sequencing allows for

discrimination between sequencing errors and mutations. GiR-
AFR analyses can thus identify gRNA mutations and their
sources, hence allowing research teams to verify the quality of the
experimental work and remedy issues arising. Here, inspecting
the mutation pattern along the gRNA sequence revealed that
most mutations are spread across the gRNA spacer region, cor-
responding to the synthesized oligonucleotide fragment. This
suggests that these mutations result from inaccurate oligonu-
cleotide synthesis, and highlight a potential tradeoff between
cheaper synthesis at lower accuracy, and the downstream infor-
mation loss due to inaccurate oligonucleotide synthesis. In
addition, the multiplicity of infection, the number of designed
gRNAs and the mutations inadvertently introduced in them, and
the number of cells per perturbation are all design choices that
influence the ability to accurately assign gRNAs to cells. These
choices can be optimized during the execution of the experiment,
or remedied in part in analysis by finetuning parameters such as
the minimal number of reads per UMI, the use of static or
dynamic UMI thresholding, and deciding whether or not to pool
mutant gRNA molecules.

Furthermore, GiRAFR-identified mutations allow for an ana-
lysis of the impact of mutations on gRNA functioning. We for
example demonstrate here that mutations in both the spacer and
the scaffold compromise gRNA activity, as both are associated
with a reduced ability to downregulate target gene expression.
This is in line with an earlier study demonstrating that gRNA
spacer mutations dampen perturbation phenotypes. We reported
a high frequency of gRNA mutations in 11 published studies and
demonstrated attenuated gRNA functionality in 5 of them.
Worryingly, gRNAs with a single mutation (1 Hamming dis-
tance) are labeled as intact by CellRanger but similarly show an
attenuated phenotype. Although beyond the scope of the current
study, more in-depth analysis of high-throughput datasets may
enable a more fine-grained appraisal of which mutation types and
locations are tolerable or damaging.

Finally, we demonstrate that both the number of gRNA UMIs
identified per cell as well as the gRNA library sequencing depth
affect the ability to detect gRNAs mutations and to reliably assign
gRNAs to cells. Our data suggest that a high sequencing satura-
tion facilitates identifying gRNA mutations. But importantly, the
average number of gRNA UMIs differed dramatically between
experiments. This may either be due to low gRNA expression or
low detection rates, but can have a detrimental impact on the
accuracy of assigning gRNAs to cells, discriminating ambient
from endogenously expressed gRNAs, and singlets from
multiplets.

Together, we believe that these notions support the need for
accurate gRNA calling as implemented in GiRAFR, and that this
novel software tool will therefore enhance the outcome of
emergent and expanding single-cell CRISPR screens.

Methods
gRNA design. We designed four different gRNAs for each of 25
target genes, and 20 non-targeting guides as controls using
Benchling [Biology Software, 2018], retrieved from https://
benchling.com. Final gRNA sequences contained homology
arms (5′-end: TGGAAAGGACGAAACACCG, 3′-end: GTTTT
AGAGCTAGAAATAGCAAGTTAAAATAAGGC) to allow for
cloning into the CROP-seq-Guide-Puro vector (addgene plasmid
#86708 from Christoph Bock). The gRNA library was synthesized
and ordered as an oligo pool through CustomArray (GenScript).

gRNA cloning and lentivirus productions. Cloning of the
pooled gRNA library, and all consecutive steps until library
preparation, were performed according to the CRISPR droplet
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sequencing (CROP-seq) protocol as detailed4. Briefly, the vector
was digested with 20 units of BsmBI (NEB, R0580L), and the
backbone was purified using the SNAP UV-Free Gel Purification
kit (Fisher Scientific, 45-0105). The gRNA library pool was cloned
into the resulting backbone fragment with NEBuilder HiFi DNA
Assembly Master Mix (NEB cat no. E2621S) and transformed
into Endura Electrocompetent cells (Lucigen cat. No. 60242).
Plasmids were isolated and purified using the QIAprep Spin
Miniprep Kit (Qiagen, 27104). This plasmid pool was subse-
quently transfected in HEK293T cells together with pMDLg/
pRRE, pRSV-Rev, and pMD2.G (Addgene #12251, #12253,
#12259) using lipofectamine 3000 (ThermoFisher, L3000015), to
produce lentivirus. For lentiviral titration, puromycin (Cayman
Chemicals, 13884) resistant colonies were counted through
Crystal Violet (Sigma Aldrich, 61135) staining as per the manu-
facturer’s instructions.

Generation of A549-TetOn-Cas9 cells. A549 cells (ATCC) were
transduced with a lentivirus encapsulating the pCW-Cas9-Blast
vector (Addgene, #83481), followed by selection with 20 μg/mL
blasticidin (InvivoGen, 38220000) for 14 days. Cells were vali-
dated as being successfully transformed by western blotting
for Cas9.

CROP-seq. The A549-TetOn-Cas9 cells were transduced with the
lentiviral gRNA library pool at a multiplicity of infection of 0.3.
Cells were grown in DMEM high glucose (ThermoFisher,
41965062) at 37 °C in 5% CO2 and passaged every 2 days with
Trypsin-EDTA (ThermoFisher, 25200056). Positively transduced
cells were selected for puromycin (100 μg/mL). Following selec-
tion for 14 days, Cas9 expression was initiated by doxycycline
(VWR, J60579.14) addition (5 μg/mL). After two days of induc-
tion, cells were grown for another 5 days, collected, and processed
following the 10x Genomics demonstrated protocol for the pre-
paration of single-cell suspensions. ~5000 cells were processed
with Chromium Next GEM Single Cell 3′ GEM, Library & Gel
Bead v3.1 kit (10X Genomics, 1000128) following the manu-
facturer’s instructions.

10% of cDNA was used for gRNA enrichment and the creation
of a specific gRNA library. For higher resolution and better cell
assignments, gRNA sequences were amplified from the tran-
scriptome library before the last indexing PCR with Hifi HotStart
ReadyMix (Roche, 7958935001) and gRNA cassette specific
primers (5′-CAAGCAGAAG ACGGCATACG AGATXXXXXXXXXGT
GACTGG AGTTCAGACG TGTGCTCTTC CGATCTTCTT GTGG
AAAGGA CGAAACACCG-3′ and 5′-AATGATACGG CGACCACCGA
GATCTACACT CTTTCCCTAC ACGACGCTCT TCCGATCT-3′,
both at a final concentration 0,5 µM) in a thermal cycler
(Westburg, AJ8462070241). The final transcriptome and gRNA
libraries were purified using Ampure XP beads (Analis, A63881)
and analyzed using a Bioanalyzer high sensitivity DNA analysis
kit (Agilent, 5067-4626), and sequenced using a NovaSeq 6000
(Illumina, 20068232), with 28 and 91 nucleotides from read 1 and
2, respectively. We obtained respectively 454,191,138 and
25,289,660 reads from the transcriptome and gRNA libraries.

CROP-seq data processing using cell ranger. Alignment of the
gene expression library, detection of spacer, and cell assignments
were performed by Cell Ranger (version 3.1.0) feature barcoding
analysis. The count matrix of cells with a single gRNA spacer was
then extracted and normalized using LogNormalize function
(R version 4.2.018 and R package Seurat, version 4.1.019) with a
scale factor 10,000 for further analysis.

CROP-seq data processing using GiRAFR. GiRAFR relies on
mapping of reads to a custom reference genome, filtering of
mapped reads, generation of a consensus call, and identification
of mutuations therein. Below, each of these steps is explained in
more detail.

Generation of custom reference genome. A custom reference
genome was built using Cell Ranger mkref, a build note can be
found in our user manual. It was composed of the human
reference genome GRCh38, supplemented with an artificial
chromosome for each gRNA, containing the gRNA spacer
sequence as well as upstream and downstream sequences relevant
to the underlying method. Specifically, for data using 10X pro-
tocol, we used 530 basepairs from the plasmid containing the
gRNA cassette. For data originating from Dropseq, we included
the requisite Dropseq-tools index in the custom reference
genome file.

Mapping of reads to the custom reference genome and filtering of
mapped reads. Next, reads from the targeted sequencing library
and the transcriptome sequencing library were aligned to this
custom reference genome by STAR as implemented in Cell
Ranger or Dropseq-tools. For 10x sequencing, Cell Ranger per-
formed correction on the cell barcode and UMI with a maximal 1
hamming distance. All subsequent analyses were limited to reads
having both a valid cell barcode and a valid UMI (CB and UB tag,
or XC and XM tag for 10x and Dropseq respectively). After the
removal of the secondary alignments, reads mapping successfully
to the artificial gRNA references were collected in a BAM file.

This bam file was filtered by the predefined cell barcodes list,
containing cell barcodes that remain after the removal of
background noise. In most cases, this list came from alignments
of gene expression libraries. To solve cell barcode discrepancies
between gene expression libraries and captured CRISPR libraries
by 10X feature barcoding technology, unmatched cell barcodes
were compared and corrected with the lookup table provided by
Cell Ranger.

gRNA consensus sequence calling. Part of the reads in the gRNA-
filtered BAM file are associated with an identical UMI and cell
barcode. These are assumed to originate from the same cDNA
molecule. Because of errors in library preparation and/or
sequencing, the associated nucleotide sequence in these reads is
not necessarily identical. We therefore defined a consensus
sequence for each UMI-cell barcode combination. Specifically, the
Pysam (https://github.com/pysam-developers/pysam) (Python
version 0.15.3) package20 was used to extract the set of reads for
UMI-cell barcode combination from the gRNA filtered BAM file.
Firstly, the mapped gRNAs of this set of reads were inspected
(GN tag for cell ranger and gn for dropseq-tools bam file). In
most cases, they align uniquely to one gRNA. In the case of
different gRNA annotations for reads with the same UMI-cell
barcode combination, the gRNA annotation supported by the
highest number of reads was kept. In the (unlikely) event of a tie,
no gRNA can be confidently mapped, and reads were kept out
from the subsequent gRNA calling steps. From the subset of reads
that unanimously mapped, the common sequence supported by
the most reads was defined as the consensus sequence for this
UMI-cell barcode combination. When multiple different
sequences have identical reads counts, we randomly selected one
as the consensus sequence.

Filtering of gRNA consensus sequences. In theory, those consensus
sequences from UMI-cell barcode combinations that were con-
structed using multiple reads, can be considered as of higher
confidence, because this excludes sequencing errors. In GiRAFR,
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we provide the option to filter consensus sequences according to
the number of reads supporting them (default: >1 read). Cell
barcodes, UMIs, and corresponding consensus sequences were
written into “consensus.sequence.gRNA.txt” file. These align-
ments were also saved into a “consensus.bam” BAM file which is
compatible with other analysis tools.

Identification of mutations in the gRNA consensus. Analyzing the
alignment information is a fast and accurate way to identify
mutations in short sequences such as in the oligonucleotides used
to construct gRNA libraries. With the designed gRNA spacer and
cassette sequence annotation, we uncover changes from the
consensus sequences we constructed per base. From the CIGAR
strings in BAM alignments files, GiRAFR keeps all insertions (I),
deletions (D), skipped regions (N), and soft clippings (S) and
compares mapped bases to references (M). GiRAFR can annotate
the mutation location onto the oligo structure annotation pro-
vided by the user and detailed mutations in a manner similar to
CIGAR (details in Supplementary Note 1). Perfect matching
without any mismatch will be defined as an intact gRNA mole-
cule. Variant gRNAs were named with number suffixes.

Assign gRNAs to cells. Ambient gRNAs molecules can be captured
in droplets and erroneously assigned to cells. To avoid this, a
threshold defining the minimal number of UMIs supporting the
assignment of a gRNA to a cell is defined. Two modes are
available. Users can define a fixed threshold (for example three
UMIs) which will be applied to all gRNAs. Only gRNAs in a cell
with more UMIs than the threshold will be assigned to that cell.
Alternatively, automatic dynamic detection of UMI thresholds
can be employed. It will fit a two-component mixture Gaussian
model to model two distributions of in-cell gRNA UMIs and
background noise (“ambient”) UMIs. From these two distribu-
tions, the minimum number of UMIs in the gRNA distribution is
set as the UMI threshold for that gRNA. Intact gRNA and their
respective variants are counted together in fitting this distribu-
tion. This method is inspired by and adopted from Cell Ranger.
The resulting output consists of a matrix containing the UMI
counts per guide (including mutated guide) and per cell.

Detect CRISPR-cas9 editing effect. Alignments from the expres-
sion library are first split into sub bam files to accelerate detection
speeds by SAMtools (version 1.9)21. Each sub bam file contains
the alignments that mapped over the detection window of each
gRNA. The detection window is short and symmetric around the
Cas9 nuclease cutsite on the genome, which is 3–4 nucleotides
upstream of the PAM site. We used a 51 bp detection window.
The FeatureCounts (v2.0.1)22 tool was used to annotate mapped
reads to genes. Only alignments that are assigned and mapped to
target genes are considered valid.

Similarly, to deduplicate reads with identical UMI and cell
barcode, we construct a consensus sequence. To address that
reads do not align to the same starts within the detection window,
we take unions of sequenced reads as the consensus sequence for
each UMI-cell barcode combination. By analyzing mapped
positions of consensus sequences, if deletions happen across the
cutsite, they are detected as editing effects. Insertions or deletion
elsewhere and mismatches are not considered as “Cas9-induced”,
but are also reported in the final outputs.

Statistics and reproducibility. The downregulated expression of
14 target genes in KO cells (n= 1655) compared to the expression
in Control cells (n= 10,598) was tested by two-sided t test provided
by R package: ggpubr (version 0.4.0.999)23. The expression of target
genes in cells with intact gRNAs (n= 2004), gRNAs with a mutant

spacer (n= 452) and gRNAs with a mutant scaffold (n= 380) were
compared to those in control cells (n= 18,925) and were tested by
welch two-sample t test using R18.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
CROP-seq data for this study has been deposited in the NCBI’s Gene Expression
Omnibus (GEO) database under the accession number GSE216040. Processed data can
be download by figshare: https://doi.org/10.6084/m9.figshare.24064854. All other data
are available from the corresponding author on reasonable request.

Code availability
GiRAFR is available as an open-source Python package at our GitHub Repository
(github.com/FunctionalEpigeneticsLab/GiRAFR) and Zenodo repository with https://doi.
org/10.5281/zenodo.833371124. Scripts to recreate all figures using processed data are
also included in this repository as jupyter notebooks.
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