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TimeTalk uses single-cell RNA-seq datasets to
decipher cell-cell communication during early
embryo development
Longteng Wang 1,2, Yang Zheng3, Yu Sun3, Shulin Mao2,4, Hao Li 3, Xiaochen Bo 2, Cheng Li 2✉ &

Hebing Chen 3✉

Early embryonic development is a dynamic process that relies on proper cell-cell commu-

nication to form a correctly patterned embryo. Early embryo development-related ligand-

receptor pairs (eLRs) have been shown to guide cell fate decisions and morphogenesis.

However, the scope of eLRs and their influence on early embryo development remain elusive.

Here, we developed a computational framework named TimeTalk from integrated public

time-course mouse scRNA-seq datasets to decipher the secret of eLRs. Extensive validations

and analyses were performed to ensure the involvement of identified eLRs in early embryo

development. Process analysis identified that eLRs could be divided into six temporal win-

dows corresponding to sequential events in the early embryo development process. With the

interpolation strategy, TimeTalk is powerful in revealing paracrine settings and studying cell-

cell communication during early embryo development. Furthermore, by using TimeTalk in the

blastocyst and blastoid models, we found that the blastoid models share the core commu-

nication pathways with the epiblast and primitive endoderm lineages in the blastocysts. This

result suggests that TimeTalk has transferability to other bio-dynamic processes. We also

curated eLRs recognized by TimeTalk, which may provide valuable clues for understanding

early embryo development and relevant disorders.
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Early embryo development is a multi-level regulatory process
in which fertilized egg undergoes rounds of cleavage to form
a self-organized, hollow sphere structure called blastocyst1.

At the beginning of the early embryo development, the paternal
gametes sperm and maternal gametes oocytes fused to form a
one-cell embryo called the zygote in fertilization. Then, the one-
cell embryo zygote experiences rounds of cell cleavage division
with maternal factor decay and zygotic genome activation (ZGA),
which is called maternal to zygotic transition2. After the fourth
cleavage division, the embryo begins to compact into blastomeres.
With blastomere formation, there are two critical differentiation
events: the first cell fate decision and the second cell fate decision.
In the first cell fate decision from the 8-cell stage to the 32-cell
stage, the cells in the embryo segregate into two lineages: tro-
phectoderm (TE) and inner cell mass (ICM), while TE lineage
will develop into the placenta. However, in the second cell fate
decisions from the early-blastocyst stage to the late-blastocyst
stage, the cells in the ICM lineage differentiated into epiblast
(EPI) and primitive endoderm (PE) lineage. The EPI lineage will
develop into the fetus, and the PE lineage will develop into the
Yolk sac1,3,4. The phenomena intrigue evolving research on the
mechanisms of the two fate decision events4,5.

Cell-cell communication is a fundamental process in which, for
a given cell, the membrane protein (i.e., receptor) is bound by the
protein secreted by other cells or itself, called a ligand, inducing
intracellular signaling responses6. Recently, many studies illu-
strated that cell-cell communication participates in the two fate-
decision events during early embryo development. For example,
during the first fate decision, LIF-JAK/STAT pathway-related pair
Lif-Lifr is essential for ICM lineage maintenance7. Nevertheless,
during the second fate decision, the communication between cells
mediated by Fgf4-Fgfr1 and Fgf4-Fgfr2 interplay with master
regulator Nanog and Gata6 promote PE lineage formation and
maturation1. The progenitor cells in the ICM with high expres-
sion of Gata6 express high levels of the FGF receptor genes Fgfr1
and Fgfr2. Similarly, the progenitor cells in the ICM with high
expression of Nanog express high levels of Fgf4. The binding of
FGF4 secreted by Nanoghigh cells to FGFR1 or FGFR2 in
Gata6high cells constructs a positive feedback loop with GATA6 to
activate gene expression of primitive endoderm program1,8.
Moreover, the cell-cell communication mediated by Fgf4-Fgfr1 of
Nanoghigh cells promotes EPI exiting from pluripotency9. Thus,
Fgf4-Fgfr1 and Fgf4-Fgfr2 regulate PE and EPI formation.

In conclusion, previous research indicates that cell-cell com-
munication via ligand-receptor pairs has critical functions during
early embryo development. We termed these early embryo
development-related ligand-receptor pairs as eLRs. Studying eLRs
will help us better understand cell-cell communication during
early embryo development. However, the scope of eLRs and their
influence on early embryo development is still lacking.

With the advancement of functional genomics research, more
cell-cell communication priori knowledge resources, including
ligand-receptor databases, have been accumulated in recent
years6. On the other hand, the development of single-cell RNA
sequencing (scRNA-seq) technology has made it possible to infer
the cell-cell communication events between different cells. Con-
sequently, integrating single-cell transcriptomic sequencing data
and prior knowledge to infer cell-cell communication has
emerged as a new research direction in bioinformatics. As for
early embryo development studies, research performed scRNA-
seq over each development stage to obtain the time-course
scRNA-seq data to measure the dynamic changes in cell states
and types. However, it is critical to note that definitive cell types
do not emerge during early embryo development until blastocyst
formation. However, commonly used tools for cell-cell commu-
nication inference, such as CellPhoneDB10 and CellChat11, are

designed to study cell-cell communication between given cell
types and cannot meet the requirements of early embryo devel-
opment research. Moreover, the need for multiple time points of
cell-cell communication analysis during early embryo develop-
ment and the need to elucidate potential causal relationships
between cell-cell communication and gene regulatory networks
during dynamic changes of early embryo development also pose
challenges to existing cell-cell communication research.

To address these issues, we developed and applied a compu-
tational framework named TimeTalk for utilizing temporal series
information to study the dynamics of autocrine signaling within
the embryos and to identify early embryo development-related
ligand-receptor pairs (eLRs) from integrated public time-course
mouse scRNA-seq datasets. Our analysis identified 430 eLRs,
including previously reported Fgf4-Fgfr1 and Fgf4-Fgfr2. Addi-
tionally, we conducted thorough in silico analyses to test the
involvement of identified eLRs in early embryo development.
After validation, we found that the identified eLRs can be divided
into six temporal windows. Furthermore, the GO analysis reveals
that different temporal windows correspond with sequential early
embryo development events. Moreover, we used Granger caus-
ality and network analysis to discover and check the potential
regulation relationship between eLR and corresponding temporal
TFs (tTFs). To broaden the application of TimeTalk to paracrine
studies and other development processes, we further improved
the framework, used it to investigate cell-cell communication in
blastocysts, and reconstructed in-vitro embryo models named
blastoids. The results indicated that the communication between
EPI and PE lineages in blastoids involves shared core LR pairs
and signaling pathways as in naturally developed blastocysts. In
summary, the identified eLRs would be a valuable resource for
better understanding early embryo development, and some would
be targets to perturb some key early embryo development pro-
cesses. In addition, we believed TimeTalk would be a helpful
toolkit to study cell-cell communication in other development
processes. TimeTalk is an R package that is available at https://
github.com/ChengLiLab/TimeTalk.

Results
Curation of early-embryo development single-cell RNA-seq
data sets for studying cell-cell communication. To identify and
study eLRs, we collected public early embryo development
scRNA-seq datasets from the mouse MII-oocyte stage to the late
blastocyst stage to ensure that scRNA-seq datasets represented
every stage of early embryo development. In addition, to validate
the quality of scRNA-seq data, we also collected public low-input
RNA-seq data (Fig. 1a).

We first validated the quality of the scRNA-seq data. Each
stage’s overall gene expression distributions were similar for the
low-input RNA-seq data and the pseudo-bulk single-cell RNA-
seq data (Supplementary Fig. 1a–d; for low-input RNA-seq, gene
expression was quantified by RPKM; for pseudo-bulk single-cell
RNA-seq data, gene expression was quantified based on the
average gene expression of cells in different stages). The principal
component analysis (PCA) showed that the single-cell RNA-seq
and low-input RNA-seq datasets were clustered together at each
stage (Supplementary Fig. 1e). By comparing the expression
profile of pseudo-bulk RNA-seq data derived from scRNA-seq
data and low-input RNA-seq data, we found that the pseudo-bulk
and low-input RNA-seq expression profiles of the samples from
each stage were highly correlated. For example, the Pearson
correlation coefficient of the bulk late 2-cell expression profile
with the pseudo-bulk late 2-cell expression profile was 0.91
(Fig. 1b and Supplementary Fig. 2). Consider MII-oocyte (E0)
scRNA-seq data (GEO accession: GSE38495)12 and E1-E4.0
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Fig. 1 Curation of early-embryo development single-cell RNA-seq data sets for studying cell-cell communication. a Metadata of the collected early
embryo development datasets. b Heatmap of the Pearson correlation coefficients between bulk and pseudo-bulk data. c tSNE plot of the integrated single-
cell RNA-seq data. d Feature plot of the different marker genes.The unit for color gradient keys is LogNormalize, which involves dividing the feature counts
for each cell by the total counts for that cell and then multiplying it by the scale.factor. This value is then transformed using the natural-log function and
adding 1. e Pseudotime ordering of collected early embryo cells reveals development trajectory. The top of the figure was colored by development stages,
and the bottom was colored by pseudotimes.
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scRNA-seq datasets (GEO accession, GSE45719)13, which were
obtained from two different studies. To ensure that potential
batch effects could be disregarded, we performed the kBET
analysis14. The results of the kBET analysis suggested that the
batch effects were negligible (see Supplementary Fig. 3). There-
fore, we can merge the two datasets without performing batch
correction. Next, we put the scRNA-seq data into the Seurat
toolkit to perform t-SNE dimension reductions (Fig. 1c) and
check each stage’s marker gene expression (Fig. 1d). Upon
checking the marker gene expression, and the monocle2
package15 was utilized to perform trajectory analysis and arrange
the cells along the constructed trajectory (Fig. 1e).

In summary, the curated early embryo scRNA-seq datasets
recapitulate the early embryo development process.

TimeTalk is a computational framework that utilizes temporal
series information for eLR identification. After building the
comprehensive transcriptomics datasets, we began to identify
eLRs. First, we obtained the ligand-receptor list from the com-
prehensive CellTalkDB database16. Then, we studied the gene
expression distribution of ligands and receptors across develop-
mental stages. We found that the expression levels of ligands and
receptor genes were lower (Supplementary Fig. 4a) and more
dynamic (Supplementary Fig. 4b, c) in comparison with the
overall trends of gene expression at each stage. Furthermore, the
previously reported eLRs exhibited significant co-variation
changes along the pseudotime (Supplementary Fig. 5).

According to previous studies, well-studied eLR pairs Fgf4-
Fgfr1 and Fgf4-Fgfr2 interplay with transcription factors Sox2,
Nanog, Oct4 (Pou5f1), Gata6 to form a complex regulatory
network to guide the ICM to differentiate into EPI or PE lineage1

(Fig. 2a). Therefore, after ranking the cells according to pseudo-
time inference by the monocle2 package, we investigate the
expression of Fgf4, Fgfr1, Fgfr2, and related transcription factors
Gata6, Pou5f1, Sox2, and Nanog (Supplementary Fig. 6). We
found that the gene expression of Fgf4 and Fgfr2 were negatively
correlated (Fig. 2b). Moreover, we calculate the geometry means
of Fgf4 and Fgfr2 gene expression (Interaction Score, or can be
noted as IS)17 to quantify the cell-cell communication activity of
Fgf4-Fgfr2. We found that the IS of Fgf4-Fgfr2 was correlated with
Gata6 gene expression (Fig. 2c).

These results indicated that eLR gene pairs show coordinated
expression patterns with core transcription factors during early
embryo development. According to these observations, we
developed an early-embryo ligand-receptor screening strategy,
TimeTalk, to identify eLRs with the following steps. (1) Building
trajectory from integrated single-cell RNA-seq datasets, ordering
the single-cells along the trajectory. (2) A ligand-receptor
database was used to identify the co-varying LR pairs from the
pseudotime time series data (Supplementary Fig. 7, details are
described in the Methods section). Meanwhile, the transcriptional
regulatory network is reconstructed from scRNA-seq data to
identify the temporal TFs (tTFs) during early embryo develop-
ment. (3) Cluster the tTFs. (4) Inference of the regulatory
relationship between the different clusters of tTF and co-varying
LR pairs through the Granger causality approach by Granger
causal test. (5) The LR pairs that passed the Granger causal test
were considered as forward (LR regulates TF), backward (TF
regulates LR), and feedback (LR and TF were mutually regulated)
(Fig. 2d, e, details are described in the Methods section).

According to TimeTalk workflow, we identified 430 eLRs, and
as a by-product of eLR identification, we identified 229 tTFs
during early embryo development. The 229 tTFs were clustered
into six distinct groups (Supplementary Data 1, Supplementary
Fig. 8). Subsequent analysis revealed that the previously reported

eLR Bmp4-Bmpr2 also exhibited varying Granger causality
relationships with different clusters of tTFs (Supplementary
Fig. 9). Cluster C1 tTFs consist of maternal factors such as Nfya18,
Obox5, and Atf2 and they are enriched in GO terms like
“oogenesis” and “germ cell development”. Cluster C2 contains
ZGA genes like Zscan4f and is enriched with GO terms like
“histone methylation” and “protein methylation”. Cluster C3
comprises TFs that play a role in establishing heterogeneity. For
example, Sox21 contained in cluster C3 was reported to be
involved in fate biases starting from the 4-cell stage19. Cluster C4
is composed of TFs like Ctcf involved in chromatin reorganiza-
tion and enriched in GO terms like “histone methylation”,
“chromatin silencing”, and “chromatin assembly or disassembly”,
“DNA conformation change”. Cluster C5 is composed of tTFs
involved in blastocyst development like Gata6, Tead4, Cdx2,
Nanog, and Pou5f1 and enriched in GO terms like “trophecto-
dermal cell differentiation”, “blastocyst development”, “blastocyst
formation”, “blastocyst growth”. Cluster C6 is also composed of
tTFs involved in blastocyst development like Sox2 and enriched
GO term “embryonic organ development”, and “regulation of
epithelial cell differentiation” (Fig. 2f, g, Supplementary Data 1).
Additionally, we found that C5 tTFs regulate Fgf4-Fgfr2 activity
(Fig. 2h, i, Supplementary Fig. 10).

In summary, the tTFs identified here provided potential targets
for manipulating early embryo development at different temporal
windows.

The predicted eLRs can be verified from extensive in-silico
validations. Next, we validated the eLRs identified by TimeTalk
from multiple in-silico strategies.

The candidate eLRs predicted by the TimeTalk workflow
contain reported eLRs. We ranked the identified eLRs pairs
according to their PCC values. A literature review yielded evi-
dence that the top 30 positively correlated eLRs and the top 30
negatively correlated eLRs participate in early embryo develop-
ment (Fig. 3a, Supplementary Data 1). The eLRs identified using
TimeTalk also included ligands and receptors with established
roles in early embryo development. For example, the candidate
eLRs contain Bmp6-Bmpr2, which has been reported to regulate
extra-embryonic lineage development20.

The enrichment of essential gene in the candidate eLRs indi-
cate that the genes composed of predicted eLRs were mainly
required for early embryo development. Essential genes are
required for organisms to survive and fit in with the
environment21,22. A loss of function of any essential gene gen-
erally produces serious deleterious effects, including embryonic
lethality23. Thus, essential genes among the eLRs identified using
TimeTalk are likely required for early embryo development. We
obtained the mouse essential gene list provided by the DEG 10
database24 and computed essential gene set enrichment ratios for
all protein-coding genes (all), ligand and receptor genes (LRs),
and eLRs. In comparison with all protein-coding genes, the set of
essential genes was more significantly enriched with LRs and
eLRs (Fig. 3b, Supplementary Data 1, “LR” vs. “all”,
p= 1.628 × 10−111; “eLR” vs. “all” p= 3.049 × 10−85, p-values
were obtained by hypergeometric test, upper tail). This observa-
tion was consistent with the principle that the proteins encoded
by ligand and receptor genes required cells to respond to external
stimuli. In addition, the set of essential genes was more enriched
in eLRs in comparison with LRs (Fig. 3b, Supplementary Fig. 11a,
Supplementary Data 1, “eLR” vs. “LR”, p= 4.344 × 10−14, p-
values were obtained by hypergeometric test, upper tail). The
enrichment of essential gene in the candidate eLRs indicate the
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genes composed of predicted eLRs were mainly required for the
organism’s fitness.

The absence of housekeeping genes in the candidate eLRs
suggests that the genes comprising the predicted eLRs were not
required for individual cell survival. Housekeeping genes are

stably expressed genes that maintain basic cellular functions
regardless of cell type or developmental stage25. In contrast, the
genes comprising eLRs should be dynamically expressed to
coordinate early embryo development. This result led us to sus-
pect that the identified eLR genes had been absent of house-
keeping genes. Therefore, we obtained the housekeeping gene list
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provided by the HRT Atlas v1.0 database26 and calculated the
housekeeping gene enrichment ratio for all protein-coding genes
(all), ligand and receptor genes (LRs), and eLR genes (eLRs). As
expected, in comparison with the set of all protein-coding genes,
the set of eLR genes was more depleted of housekeeping genes
(Fig. 3c, Supplementary Data 1, “LR” vs. “all”, p= 1.944 × 10-47;
“eLR” vs. “all”, p= 5.986 × 10−16, p-values were obtained by
hypergeometric test, lower tail). Moreover, the housekeeping gene
enrichment ratio of the set of all ligand and receptor genes was
not significantly different from that of the identified eLRs (Fig. 3c,
Supplementary Fig. 11b, Supplementary Data 1). Together with
the essential gene enrichment results, these findings suggest that
the eLR genes identified using TimeTalk were more important for
the organism’s fitness, rather than for the survival of an
individual cell.

Many genes composed of the candidate eLRs were activated by
the ZGA process, and the cell-cell communication mediated by
the candidate eLRs required the ZGA process. ZGA is the
embryogenesis process in which maternally provided factors are
replaced by factors supplied by zygotic transcription27. Tran-
scription of the ZGA gene is required for lineage specification and
provides substrates for the initiation of gastrulation27,28. There-
fore, ZGA is vital for early embryo development. Thus, we
hypothesized that ZGA genes were more enriched in the identi-
fied eLR genes than the LR genes. The ZGA gene list was obtained
from ref. 18, and the ZGA gene enrichment ratio was calculated
for the protein-coding genes (all), ligand and receptor genes
(LRs), and eLR genes (eLRs). The enrichment ratio of the ZGA
gene in the protein-coding gene set was not significantly different
from that of the LR gene set (Fig. 3d, Supplementary Data 1,
Supplementary Fig. 11c, p= 0.09293, p-values were obtained by
hypergeometric test, upper tail). However, the ZGA gene
enrichment ratio of the eLRs was significantly different from that
of the protein-coding gene set (Fig. 3d, Supplementary Fig. 11c,
Supplementary Data 1, p= 0.001159, p-values were obtained by
hypergeometric test, upper tail). In addition, the ZGA gene
enrichment ratio of the eLRs was higher than that of the LR gene
(Fig. 3d, Supplementary Fig. 11c, Supplementary Data 1,
p= 0.00279, p-values were obtained by hypergeometric test,
upper tail). These findings indicate that the set of eLRs identified
using TimeTalk was enriched with ZGA genes when compared to
both LR genes and protein-coding genes. This result suggests that
the many genes composed of candidate eLRs were activated
during the ZGA process.

It has been established that ZGA is essential for pre-
implantation in mice29. Considering that eLR-mediated cell-cell
communication is essential for early embryo development, we
hypothesized that the signaling mediated by specific eLR pairs
might require ZGA. Accordingly, we obtained ZGA inhibition
RNA-seq datasets30 and calculated interaction scores17 (the
calculation of interaction score is described in the Methods
section) to quantify the cell-cell communication strength

mediated by eLR pairs. As a result, ZGA inhibition altered the
cell-cell communication strength of 56 eLR pairs (Fig. 3e,
Supplementary Fig. 12). Thus, the establishment of candidate
eLRs mediated cell-cell communication correlated with the ZGA
process. Furthermore, compared to non-eLR pairs, eLR pairs
show less impact from ZGA inhibition (Supplementary Fig. 13,
Supplementary Data 1). This suggests that eLR pairs possess
additional regulation mechanisms beyond ZGA.

In summary, the results above demonstrate that the eLR pairs
identified by TimeTalk have several essential characteristics. First,
many highly ranked eLR pairs have been reported in the literature
in relevant contexts. Second, the identified eLR pairs are enriched
with the essential gene and the ZGA gene but depleted of the
housekeeping gene. Third, ZGA inhibition disrupted some types
of cell-cell communication mediated by the identified eLR pairs.
Finally, these characteristics supported the involvement of the
identified eLR pairs in early embryo development.

The interplay between the tTFs and eLR orchestrates early
embryo development. As it is previously reported, the interplay
between the eLR Fgf4-Fgfr2 and tTF Gata6 formed a positive
regulatory network to guide the separation of PE and EPI lineage
during early embryo development8. However, no comprehensive
prolling of the relationship between eLR and tTF has been con-
ceived. Therefore, we hypothesized that investigating the inter-
play between eLR and TF will help us to understand the gene
regulatory network to control mouse embryo development.

The identified eLRs can be clustered into 6 clusters associated
with different groups of temporal TFs. Cluster 1 eLRs have a
backward relationship with C1 tTFs. This result implies that
maternal tTFs control the cluster 1 eLRs. This conclusion is
supported by the observation that cluster 1 eLRs exhibit a higher
ratio of the maternal gene (Supplementary Fig. 14a). Cluster 3
eLRs exhibit a higher ratio of ZGA genes (Supplementary
Fig. 14b). In addition, cluster 1 eLRs have a feedback relationship
with C5 tTFs. Interestingly, cluster 4 eLRs have a forward
relationship with C1-C6 tTFs. Cluster 5 eLRs have feed relation-
ships with C1, C2, C3, and C4 and backward relationships with
C6. Cluster 6 eLRs have a backward relationship with C6 tTFs
(Fig. 4a, Supplementary Data 2). Clusters 1, 2, 3, and 4 enriched
MAPK signaling pathways (Fig. 4b, Supplementary Data 2). This
pathway is involved in cell differentiation during early embryo
development31,32.

Cluster 4,5,6 eLRs enriched KEGG term “Signaling pathways
regulating pluripotency of stem cells”. Besides, clusters 4 and 6
enriched the “Hippo signaling pathway” related to trophectoderm
lineage formation33(Fig. 4b, Supplementary Data 2). Upon
analyzing the enrichment results, we discovered that cluster 4
eLR was enriched in the Hippo signaling pathway with 23 eLRs
consisting of genes such as Cdh1, Wnt3a, Areg, Gdf5, Wnt5a,
Wnt7a, Fgf1, Tgfbr1, Fzd2, Itgb2, Fzd5, Fzd1, Fzd4, Fzd9, Bmpr1b,
Bmpr2, and Fzd3. Similarly, cluster 6 eLR was found to be
enriched in the Hippo signaling pathway with six eLRs consisting

Fig. 2 TimeTalk is a computational framework that utilizes temporal series information for eLR identification. a The Fgf4-Fgfr1 and Fgf4-Fgfr2 work
together to regulate a core pluripotency gene network. Red lines with arrows show positive regulation, while blue lines with inhibitory marks indicate
negative regulation. The black lines represent the gene expression process. This figure was created using BioRender (https://app.biorender.com/). b The
ligand and receptor genes in Fgf4-Fgfr2 co-vary during development. PCC, Pearson’s correlation coefficient, SCC, Spearman’s correlation coefficient. c The
dynamics of interaction score of Fgf4-Fgfr2 and transcription factor Gata6. The p-value of p_TFtoLR and p_LRtoTF were calculated by the Granger causal
test, revealing the potential causal relationship between TF and LR. d The workflow of the preliminary version of TimeTalk. e Illustration of the relationship
between the activated LR and TFs. Forward means LR activates TF, backward means TF regulates LR, and feedback means LR and TF mutually regulate each
other. f The 229 temporal TFs (tTFs) revealed by master regulator analysis were divided into six clusters. The right side marked representative TFs of each
group. g The GO analysis of six clusters of tTFs. h The dynamics of tTFs in C5 gradually decreased during development. i The line plot depicts the dynamic
variations in the interaction score of Fgf4-Fgfr2 and the activity of C5 tTFs.
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of genes like Wnt3a, Wnt7b, Fzd7, Fzd5, Fzd3, and Fzd6
(Supplementary Fig. 15a). Most of these genes are known to be
involved in the TGF-β and Wnt signaling pathways, which have
crosstalk with Hippo signaling pathway34. The KEGG database
also highlights this crosstalk between the Hippo, Wnt, and TGF-β
signaling pathways (see web link from the KEGG database:
https://www.genome.jp/pathway/mmu04390). An investigation
was conducted to determine whether there is a connection
between eLR activity and the Hippo signaling pathway. It was

discovered that the C5 tTF includes Tead2 and Tead4, which are
part of the core Hippo pathway gene sets35. Therefore, Tead2 and
Tead4 can be indicators of Hippo signaling pathway activity. As
for Tead2, the eLR Wnt3a-Fzd5 exhibited an increase in activity
over pseudotime, with the Granger test indicating that Tead2 was
responsible for activating Wnt3a-Fzd5 activity (Supplementary
Fig. 15b). Prior research has demonstrated that both the Wnt3a
and Fzd5 genes are crucial for subsequent trophectoderm lineage
development36. Our findings, combined with this previous

Fig. 3 The predicted eLRs can be validated through extensive in-silico analyses. a The predicted eLRs; each dot represents an eLR. Previously reported
eLR pairs were highlighted. b The enrichment ratio of essential genes in the sets of all protein-coding genes (all), ligands and receptors (LRs), and eLRs.
c The enrichment ratio of housekeeping genes in all protein-coding genes (all), ligands and receptors (LRs), and eLRs. d The enrichment ratio of ZGA genes
in the sets of all protein-coding genes (all), ligands and receptors (LRs), and eLRs. We used the hypergeometric test to assess the results’ significance in
(b–d). e Heatmap of the interaction scores of some eLRs that were down-regulated by the ZGA inhibition, the ZGA-inhibited RNA-seq data downloaded
from GSE71434.
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Fig. 4 The interplay between the temporal transcription factor and eLR orchestrates early embryo development. a Heatmap of the interaction scores of
all identified 430 eLRs can be grouped into 6 clusters. In the row annotation of the heatmap, the “cluster” column illustrates the classification of the eLR, C1,
C2, C3, C4, C5, and C6 columns illustrate the relationship of each eLR to the C1, C2, C3, C4, C5, C6 regulons. In the column annotation of the heatmap, the
“Stage” row illustrates the development stage of every single cell, the “Pseudotime” row illustrates the pseudotime, C1, C2, C3, C4, C5, C6 row illustrates
the activity of every single cell. b The KEGG analysis of eLRs clustered for each clusters. c–e The cluster 1, cluster 5, and cluster 6 eLR to TF ratio, the
signaling network provided by NicheNet can verify the ratio. f The distribution of eLR genes across the regulons of various tTFs. Each row in the figure
corresponds to a specific tTF, with the horizontal bar indicating the ratio of eLR genes present in its regulon. g Fgf4-Fgfr1 and Fgf4-Fgfr2 interacted with
different tTFs, forming an organized regulatory network.
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research, demonstrate that Hippo signaling pathway activation
leads to eLR activation, indicating a potential role for the Hippo
signaling pathway in regulating trophectoderm development by
activating eLR activity. The eLR Cthrc1-Fzd3 exhibited a peak
expression between the 4-cell stage and 16-cell stages with respect
to Tead4 expression, suggesting that Tead4 has a feedback
relationship with Cthrc1-Fzd3 activity (Supplementary Fig. 15c).
Previous studies indicate that Cthrc1 selectively activates the
planar cell polarity pathway of Wnt signaling by stabilizing the
Wnt-receptor complex37. Additionally, Cthrc1 promotes tropho-
blast growth, migration, and invasion through reciprocal Wnt/β-
catenin regulation38. Our findings suggest that the cell-cell
communication triggered by Cthrc1 may also interact with the
Hippo signaling pathway to promote trophectoderm lineage
formation.

In addition, we verified regulation from eLR to tTF by the
signaling network created from NicheNet. (Fig. 4c–e, Supple-
mentary Fig. 16a–c, Supplementary Data 2). Besides, we
investigate regulation relationships from tTFs to eLRs and find
that C1 and C6 regulate more eLRs than the other cluster of tTFs
(Fig. 4f, Supplementary Fig. 17, Supplementary Data 2). We used
BioTapestry39 to illustrate well-studied eLRs Fgf4-Fgfr1, Fgf4-
Fgfr2 interplay with temporal TFs like Sox2 and Nanog form a
complex regulatory network (Fig. 4g).

In conclusion, the interplay between the tTFs and eLR
orchestrates early embryo development.

TimeTalk workflow can be updated to decipher cell-cell com-
munication in blastoid. Blastoids are a valuable system for
studying early embryo development in vitro40. Therefore, we
hypothesized it would be helpful to study the cell-cell commu-
nication between different blastoid lineages to check blastoids’
fidelity in modeling naturally developed blastocysts.

However, some obstacles exist to employing TimeTalk for
investigating cell-cell communication in blastoids. The presence
of different cell lineages in blastoids and blastocysts requires the
investigation of paracrine signaling between distinct cell types.
Moreover, the available public data on blastoid research primarily
comprise droplet-based single-cell RNA-seq datasets, which can
be relatively sparse. This sparsity poses challenges when building
transcriptional networks from the available data. These obstacles
may make it difficult to apply the TimeTalk workflow directly to
the study of blastoid cell-cell communication. Therefore, we
update the TimeTalk workflow with the following procedures: (1)
As the monocle341 package can reconstruct complex development
trajectories from scRNA-seq datasets, we used monocle3 to
replace monocle2 to order cells in each cell type. (2) Next, to study
the correlation of ligand and receptor expression between two cell
types, we interpolated pseudotime the time series by CellAlign42

to get equal sample points for two cell types. (3) We used
Spearman’s correlation coefficient to get co-varying LR pairs
between two cell types. (4) We perform zero-preserved imputa-
tion by the ALRA algorithm43. (5) The impute matrix was used to
build the transcriptional network and perform master regulator
analysis by RTN package44. (6) Performing the Granger causal
test to calculate the Granger causality between the gene
expression of master TFs from the receiver cell types and
interaction score of co-varying LR pairs from the interpolated
pseudotime time series. (7) The LR pairs that passed the Granger
causal test were considered forward (LR regulates TF), backward
(TF regulates LR), and feedback (LR and TF were mutually
regulated) (Fig. 5a).

Next, we re-analyzed a public scRNA-seq data set containing
EPS-blastoids and natural blastocyst45. Consistent with the
original study, the EPS-blastoid captures the main lineage EPI,

PE, and TE as blastocyst (Fig. 5b, Supplementary Fig. 18a–c). In
addition, we found that the ICM-like lineage in EPS-blastoids also
expressed 2-cell markers like Zscan4c, Zscan4d, and Zscan4f
(Supplementary Fig. 18d, e). Therefore, we named these cells 2C-
like cells. Besides, there are also some intermediate lineages
(Supplementary Fig. 18f, g). As we annotated the cell types across
different lineages, we used monocle3 to reconstruct trajectories
and order cells in each lineage (Fig. 5c, Supplementary Data 3).

We are currently utilizing the updated version of TimeTalk to
investigate cell-cell communication between the EPI-PE lineage
in blastocysts and EPS-blastoids. As described in the previous
paragraph, the interpolation and subsequent Granger causal test
procedures in TimeTalk rely on three key parameters: window
size of the interpolation (winsz), number of desired interpolated
points (numPts), and the order of lags to include in the auxiliary
regression (lag). We have set the default parameter values as
winsz= 0.1, numPts= 200, and lags= 1, to identify 311 ligand-
receptor pairs that mediate cell-cell communication between the
epiblast and primitive endoderm in blastocyst cells. (Supplemen-
tary Data 3). TimeTalk is quite sensitive to the parameter winsz
(Supplementary Fig. 19a), but relatively stable to numPts and lags
parameters (Supplementary Fig. 19b, c). Moreover, it remains
relatively robust when using the three critical parameters within
certain ranges (Supplementary Fig. 19d). Through our analysis of
TimeTalk results, we have discovered a feedback relationship
between Fgf4-Fgfr2 and Gata6 with regards to cell-cell commu-
nication between the epiblast and primitive endoderm
(p_LR_to_TF= 0.0184, p_TF_to_LR= 4.74 × 10-5, p-values were
calculated by granger causal test Supplementary Fig. 19e). This
result is consistent with previous research46, which demonstrated
that Nanog in the epiblast upregulates the expression of Fgf4. The
secreted Fgf4 from epiblast induced Fgf4-Fgfr2 interaction in
primate endoderm cells to release Gata6 expression through ERK
signaling. Gata6 then potentiates the upregulation of Fgfr2, and
the feedback loop reinforces a primitive endoderm fate.
Furthermore, the interpolation result can suggest that Nanog
upregulates Fgf4 expression, but Fgf4 cannot regulate Nanog
expression in the epiblast (SCC= 0.640, p_L_to_TF= 0.657,
p_TF_to_L= 0.025, p-values were calculated by granger causal
test, SCC means Spearman correlation coefficient, Supplementary
Fig. 19f). Additionally, the interpolation result could also suggest
the feedback relationship between Fgfr2 and Gata6 (SCC= 0.274,
p_R_to_TF= 1.15×10-10, p_TF_to_LR= 9.19 × 10-5, p-values
were calculated by granger causal test, Supplementary Fig 19g).

The Venn diagram shows that blastoid and blastocyst share
common LR pairs identified by TimeTalk (Fig. 5d, Supplementary
Data 3). These shared LR pairs include well-studied pairs Fgf4-
Fgfr1 and Fgf4-Fgfr2. Moreover, the genes composed of LR pairs
identified by TimeTalk enriched common signaling pathways
involved in blastocyst formation. The notable examples are that
both blastocysts and blastoids are enriched with “Signaling
pathways regulating pluripotency of stem cells”, “TGF-beta
signaling pathway”, “MAPK signaling pathway” and “Hippo
signaling pathway” (Fig. 5e, Supplementary Data 3).

To the best of our knowledge, these results consistent with the
previous results of blastoid’s fidelity in modeling cell-cell
communication in balstocyst40, but from a different computation
perspective.

Discussion
Early embryo development is a gradual and continuous process
involving increasing cell heterogeneity. It is worth noting that
definite cell types do not occur until blastocyst formation during
this process. However, most computation toolkits for studying
cell-cell communication, such as CellPhoneDB10 and CellChat11,
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Fig. 5 The extended TimeTalk workflow for deciphering cell-cell communication in blastoid. a The updated version of TimeTalk. b The re-analysis of the
EPS-blastoid dataset. Trajectories were plotted in the UMAP embeddings. The color bar on the right side indicates the pseudotime. c The percentage of
different cell types in naturally developed blastocysts and EPS-blastoids. d The Venn diagram shows the overlap of LR pairs in blastocyst and blastoid.
There, EPI lineage as a sender cell and PE lineage as a receiver cell. e The KEGG analysis of genes consists of LR pairs mediated EPI-PE communication.
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were designed to investigate cell-cell communication in defined
cell types, making it challenging to apply these tools to study early
embryo development. To tackle these problems, it’s essential to
create a fresh computational workflow. We have developed the
TimeTalk workflow, which utilizes temporal information to infer
cell-cell communication during early embryo development.
TimeTalk uses trajectory analysis and the Granger causal test to
examine ligand-receptor pairs with causal relationships to master
transcription factors during development, thereby elucidating the
potential causal relationship between ligand-receptor interaction
and TF activity. To study cell-cell communication in blastoids, we
introduce an interpolated pseudotime time series strategy to
perform the Granger causal test of two unequal length time series
to infer cell-cell communication by different types of cells,
making the TimeTalk workflow applicable to paracrine signaling
in various development processes. In summary, TimeTalk is
suitable for studying developmental processes, particularly when
scRNA-seq datasets at different time points are available.

It should be admitted that the regulation relationship between
ligand-receptor interaction and transcription factors inferred by
the TimeTalk should be confirmed by further wet experiments.
Given the absence of high temporal resolution data, we utilized
two models based on theoretical Granger causality to create
simulation datasets. These datasets were then employed to
examine how the interpolation strategy might impact the con-
clusion of Granger causality. (Supplementary Note 1). According
to our simulation results, the Granger causality conclusion is
affected by the choice of parameter winsz (Supplementary
Figs. 20 and 21). Thus, as presented in this manuscript, we
acknowledge the need for additional methods to validate the
inferred potential regulatory relationship between ligand-receptor
interactions and transcription factors. Regrettably, the scarcity of
high temporal resolution datasets hinders our ability to address
this issue. Despite this limitation, we have acknowledged that our
causal analysis serves as a helpful reference, and we intend to
improve our approach in the future with more accurate data.
Furthermore, we advise users in the TimeTalk documentation to
conduct additional data analysis and experiment with various
parameter combinations to achieve more dependable results
when utilizing TimeTalk for cell-cell communication analysis.

It is noteworthy that TimeTalk can be employed to investigate
normal developmental processes and explore cell-cell commu-
nication during disease progression. For example, in the study of
cancer development and progression, the accumulation of long-
itudinal scRNA-seq data in cancer research47,48 has made it
possible to apply the TimeTalk framework to comprehend the
cell-cell communication between cells within the tumor and its
surrounding environment that promote cancer development and
progression, ultimately aiding the development of effective cancer
treatments.

It should be noted that the current version of the TimeTalk
framework is designed for cell-cell communication mediated by
ligand-receptor interactions. In contrast, other types of commu-
nication may not be accounted for. Extracellular vesicles (EVs)
are an example of such communication. EVs, which are lipid
bilayer structures that transport diverse biological cargo such as
nucleic acids and proteins49,50, are secreted from various mam-
malian cell types and hypothesized to mediate long-range cell-cell
communication51,52. EVs are believed to have an influential role
in both normal physiological and pathological processes53, much
like ligand-receptor interactions. However, previous EV profiling
technologies have focused on the cargo of EVs rather than the
molecules responsible for their secretion, making it difficult to
decipher the function of EV-mediated cell-cell
communication54,55. Recently, several studies attempted to
develop single-cell profiling technology to detect EV secretion

and link it to disease progression56,57. These technological
advancements can help extend the TimeTalk framework to
encompass EV-mediated cell-cell communication and provide
insights into how it participates in development and disease.

In this study, the identified eLRs would be a valuable resource
for better understanding early embryo development. Further-
more, the further study of eLRs would bring new knowledge of
how different cells coordinate each other’s behavior to self-
organize the embryo structure and give a new life. Moreover, the
interplay between the eLRs and tTFs makes us block or enhance
eLRs to manipulate tTFs activity or tune tTFs expression to
regulate the downstream eLR activity to manipulate the cell-cell
communication.

The process of co-evolution involves a heritable change in one
entity that creates selective pressure for a change in another
entity. Such entities can vary from nucleotides and amino acids to
proteins, entire organisms, and potentially even ecosystems across
the evolutionary time58. Co-evolution analysis was conducted on
both eLR and non-eLR pairs, and the results indicate a similar
distribution of co-evolution trends between the two groups
(Supplementary Fig. 22). These results indicate that eLR and non-
eLR are exposed to the same selection pressure.

This study assumed autocrine regulation of early embryo
developmental stages during eLR screening. This hypothesis was
reasonable for two reasons. First, before implantation, cells in the
embryo are constrained by a glycoprotein shell called the zona
pellucida1,59. Thus the embryo may be treated as a whole cell at
each stage during pre-implantation. Second, previous studies illu-
strated that autocrine signaling is a substantial feature of the cell-to-
cell communication network60,61. However, as crosstalk between
the embryo and the maternal environment is essential for embryo
development62, this hypothesis precludes our study from exploring
maternal-embryo interactions during early embryo development.
Nevertheless, the rapid growth of spatial transcriptomics applica-
tions in the maternal microenvironment60 and tissue engineering
strategies63 allowing researchers to mimic maternal-embryo
interactions will facilitate experiments exploring how eLRs med-
iate maternal-embryo crosstalk during early embryo development.

Research in Drosophila brain development recently proved
that different neuron cell types were successively generated by the
sequentially expressed temporal transcription factors (tTFs)64,65.
This study illustrates that the interplay of eLRs and tTFs can be
divided into different temporal windows. Moreover, the succes-
sive activation of tTFs and subsequent correspondent activation
of cell-cell communication by eLRs indicates a wave-like
mechanism to guide embryo development from a zygote (Fig. 6).

Blastoid is an ex-vivo reconstruction of blastocyst-like structure
from stem cell lines to model blastocyst development40,66,67.
Generating a blastoid close to the naturally developed blastocyst
is an excellent way to model early embryo development68. In this
study, we illustrate the fidelity of blastoids in modeling blastocysts
from the cell-cell communication perspective. In addition, it
should be noted that blastoid can be used to validate the function
of identified eLRs.

Overall, the recognized eLR list provides valuable clues for the
community to understand early embryo development and
developmental diseases. Furthermore, TimeTalk would be a
helpful tool for studying cell-cell communication in other
developmental processes.

Methods
Ethical approval statement. After a thorough review of the
sequencing studies utilized in the article, we can assure that the
mouse experiments were carried out with appropriate ethical
approval.
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Early embryo scRNA-seq preprocessing and quality control.
Publicly available pre-implantation (oocyte, zygote, early 2-cell,
mid 2-cell, late 2-cell, 4-cell, 8-cell, 16-cell, early blastocyst, mid
blastocyst, and late-blastocyst)12,13 scRNA-seq datasets were
downloaded from the GEO database (see Availability of data and
materials). These datasets were generated by the Smart-seq12 or
Smart-seq269 (Oocyte Smart-seq, remains, Smart-seq2) experi-
ment strategy and used reference genome mm9. In addition, we
used the author-provided reads per kilobase per million mapped
reads (RPKM) gene expression matrix for further analysis.

Custom R scripts were used for the pre-implantation scRNA-
seq data to calculate the pseudo-bulk expression for an average
single cell in each stage. Moreover, the PCC of pseudo-bulk and
bulk RNA-seq was calculated using the function “cor” in the R
stats package. Finally, PCA of pre-implantation scRNA-seq and
bulk RNA-seq was performed using the function “prcomp” from
the R stats package (parameters: center=TRUE, scale.=TRUE).
To quantify the presence of batch effects, we conducted the kBET
analysis using a χ2-based test14. The kBET analysis assessed
whether the data points with different batches in the PCA space
were well-mixed within random neighborhoods of a fixed size.
The binary test results were averaged to generate an overall
rejection rate, which is easily interpretable. A low rejection rate
indicates that the batches are well-mixed and that the confound-
ing effects can be neglected. The kBET analysis was performed by
R package kBET (version: 0.99.6).

Custom R scripts generated the pseudo-bulk expression for each
stage from the integrated datasets. Quantile normalization was
performed with the function “normalize.quantiles” from R package
preprocessCore (version 1.48.0). The ligand and receptor gene
distribution analysis used the quantile normalized gene expression.

The merged expression matrix was input to Seurat (version
3.2.3)70 to perform t-SNE dimension reduction and draw marker
expression by FeaturePlot.

Ligand and receptor gene expression analysis. Mouse ligand-
receptor gene pairs (2034 pairs) were downloaded from
CellTalkDB16 (http://tcm.zju.edu.cn/celltalkdb/download.php).
The ligand and receptor genes were compared with the mm9
protein-coding genes by pseudo-bulk expression with a boxplot
using the function “geom_boxplot” from ggplot2 (version 3.3.5).

We plotted each single-cell gene expression value across stages
for a given ligand-receptor gene pair and fit the non-linear

regression curve with the layer function “geom_path” in ggplot2
(parameters: method = “gam”, se = F)

Metric for cell-cell communication strength. Cell-cell commu-
nication strength was quantified by the interaction score pro-
posed by ref. 17. The interaction score was defined as follows:

Interaction scoreligand;receptor;cell type1;cell type2

¼ 1
ncell type1

∑i2cell type1ei;ligand �
1

ncell type2
∑j2cell type2ej;receptor

ð1Þ

In which ei,j is the expression value of gene j in cell i, and nc is
the number of cells of cell type c.

For single-cell autocrine, the interaction score was defined as:

Interaction scorereceptor;ligand ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ereceptor � eligand

p ð2Þ

TimeTalk workflow for identifying eLR. To identify the eLR
from the curated early embryo scRNA-seq, we follow these steps:
first, we order the cells according to their trajectories. Then, we
identify co-varying eLR and temporal TF (tTFs). Finally, we
obtain eLR from co-varying LR through Granger causality ana-
lysis with tTFs.

The monocle215 pipeline was used to construct the trajectory
from curated scRNA-seq datasets. First, we used the “differ-
entialGeneTest” function to get differentially expressed genes
(cutoff: qval= 0.01) during early embryo development. Then, the
differential expressed genes were used to perform DDRTree
dimension reduction to reconstruct the development trajectory by
the “reduceDimension” function. Finally, pseudotime was
calculated by the “orderCells” function.

We arrange the cells by stage and pseudotime. Then, for a
given LR, the ordered cells’ ligand gene and receptor gene
expression values form a two time series. Then, we calculated the
Pearson’s correlation coefficient (PCC) and used |PCC|= 0.1 as a
cutoff to get co-varying LR. LR pairs of PCC >0.1 or PCC <−0.1
is the co-varying LR. The rationale of |PCC|= 0.1 is as follows.
We first rank the positively correlated LR in ascending order by
PCC, producing a concave curve. The start and endpoints of this
curve are labeled as A and B, respectively. We then draw a
straight line connecting AB, which is moved to obtain the
tangency point C. Next, we connect AC and move the resulting
straight line to obtain tangency point D. Below point D, and the
curve roughly changes into a linear function. Thus, we select the
vertical coordinate of point D as the cutoff value, which is 0.0987,
for positive co-varying LR (Supplementary Fig. 7a). Using the
same process, the cutoff for the negative co-varying LR is −0.0587
(Supplementary Fig. 7b). To establish the co-varying LR cutoff,
we select the maximum value among the positive and negative co-
varying LR cutoffs and round to 2 decimal places, resulting in a
cutoff of 0.1.

We used the RTN package (version 2.10.1) to reconstruct the
transcriptional regulatory network to get temporal TF. In brief,
the log10(RPKM+ 1) normalized scRNA-seq data and TF list
from AnimalTFDB (version 3.0)71 to build the “tni” object from
the RTN package to construct the transcriptional regulatory
network. Then, the variable gene and their variance were input as
a phenotype to perform master regulator analysis by function
“tna.mra”. Finally, the output was considered as temporal TFs.

To reduce the computational cost, we clustered the identified
tTFs by hierarchical clustering (the agglomeration method was
“ward.D2”). After clustering tTFs, we calculate tTFs average
expression as the activity of entire TF clusters. Then, we perform
Granger causal test with the function “grangertest” from the R
package lmtest (version 0.9-38). Ultimately, we test the causal
relationship between tTFs activity and a given LR pairs

Fig. 6 The temporal expression of tTFs and eLR act as molecular switches
to guide early embryo development. In the top panel, the first wave
expression of temporal TFs (tTF1) triggers the expression eLR then the
activity of eLR triggers the second wave of tTFs expression (tTF2). The
bottom panel, the dynamics of tTF and eLR guide the early embryo
development.
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interaction score. Because Granger causal test is an asymmetric
test, we test for a given LR pair and a given cluster of tTFs
whether there is a Granger-causality relationship from LR to TF
or TF to LR.

As we have six clusters of tTFs, we choose the minimal p-value
to represent the significance of causality from LR to tTFs or tTFs
to LR. We used 0.01 as a cutoff to get candidate eLR from co-
varying LR. Thus, we consider p_LRtoTF < 0.01 and p_TFtoLR <
0.01 co-varying LR as eLR.

Validation of eLRs with sets of essential genes, housekeeping
genes, and ZGA genes. The essential gene set was downloaded
from the DEG 10 database24 (http://origin.tubic.org/deg/public/
index.php/index). The housekeeping gene set was downloaded
from the HRT Atlas v1.0 database26 (http://www.housekeeping.
unicamp.br/). The ZGA gene sets were obtained from Table S5 in
ref. 18. The enrichment ratio of gene set A in a given gene set B
was calculated with the following formula:

enrcichment ratio of A in B ¼ A \ Bj j
Bj j ð3Þ

As shown in formula (3), the numerator indicates the number
of elements that are common in both set A and set B, while the
denominator represents the total number of elements in set B.

For example, the gene set enrichment ratio of essential genes in
all eLR genes equals the number of essential genes among all eLRs
divided by the number of genes composite of eLRs.

The p-value was calculated by the “phyper” function from R
package stats (version 3.6.3). For the “phyper” function, we used
lower.tail=TRUE to test whether the observed enrichment ratio
was higher than the expected enrichment ratio, lower.tail=FALSE
to test whether the observed enrichment ratio was lower than the
expected enrichment ratio.

ZGA inhibition RNA-seq data analysis. ZGA inhibition RNA-
seq data were obtained from a study by ref. 30.

The ZGA inhibition RNA-seq dataset included three condi-
tions: early 2-cell, late 2-cell, and 2-cell treated with alpha
amanitin (i.e., ZGA-inhibited condition). We treated each
condition as a cell type and considered autocrine signaling within
each condition.

Two rounds of hierarchical clustering identified the eLR pairs
affected by ZGA inhibition. Euclidean distance and complete
clustering methods were used for hierarchical clustering. The first
step identified the variable eLR pairs, and the second step
identified the eLR pairs affected by ZGA inhibition.

We define the delta value to measure the effect of ZGA
inhibition on the cell-cell communication strength of LR pairs.
The ZGA inhibition RNA-seq dataset included three conditions:
early 2-cell, late 2-cell, and 2-cell treated with alpha amanitin (i.e.,
ZGA-inhibited condition). For a given LR pair with an
interaction score IS, the delta value was defined as follows:

delta value ¼
log10 IS2cell alph aamanitin þ 1

� �
� log10 ISearly 2�cell þ 1

� �� �
�

log10 ISlate 2�cell þ 1
� �� log10 ISearly 2�cell þ 1

� �� �

�������

�������
ð4Þ

The formula can be reduced to:

delta value ¼ log10 IS2cell alph aamanitin þ 1
� �

� log10 ISlate 2�cell þ 1
� ����

���
ð5Þ

We calculated the p-value in Supplementary Fig.13 using the
“t.test” function from the R package stats (version 3.6.3). To test

whether the delta value of non_eLR was lower than the delta
value of eLR, we used alternative= “l” for the “t test” function.

Blastoid scRNA-seq data analysis. The scRNA-seq datasets for
droplet-based EPS-generated blastoids and natural blastocysts
were obtained from a study by ref. 45.

For the EPS-generated blastoid and natural blastocyst data,
empty droplets were identified by the function “barcodeRanks” in
the R package DropletUtils (version 1.6.1, parameters: lower=
100, fit.bounds=NULL, df= 20). After removing the empty
droplets, the single-cell gene expression matrix was loaded into R
by the function “CreateSeuratObject” in Seurat (parameters:
min.features= 2000, min.cells= 0). Next, the natural blastocyst
and EPS-generated blastoid data were integrated by CCA-based
methodology in Seurat70. First, the anchors for integration were
identified by the function “FindIntegrationAnchors” (parameters:
dims= 1:20, k.anchor= 5, k.filter= 30). In the next step, the
identified anchors were input into the function “IntegrateData”
(parameters: dims= 1:20) to obtain integrated data. Finally, the
integrated data were processed using the function “ScaleData”
(parameters: model.use= “linear”, do.scale= TRUE, do.center=
TRUE”, scale.max= 10, block.size= 1000, min.cells.to.block=
3000), “RunPCA” (parameters: npcs= 30), “RunUMAP” (para-
meters: reduction= “pca”, dims= 1:30, umap.method= “umap-
learn”), “FindNeighbors” (parameters: dims= 1:20, reduction=
“pca”), and “FindClusters” (parameters: resolution= 0.2). Cell
lineages were assigned based on the following markers according
to the original research of ref. 45:

Trophectoderm (TE): Cdx2, Krt8, Krt18, Ascl2, Tacstd2;
Inner cell mass or epiblast (ICM/EPI): Pou5f1, Nanog, Sox2,

Esrrb, Sox15;
Primitive endoderm (PE): Gata4, Gata6, Sox17, Pdgfra, Col4a
2C like: Zscan4f, Zscan4c, Zscan4d.
We used Monocle3 to reconstruct trajectories. The integrated

UMAP embedding was used to learn trajectory using the function
“learn_graph” from the Monocle3 package. Finally, we choose the
2C_like cells as the root cell to calculate psedotime along the
trajectory.

The extended TimeTalk workflow. The extended TimeTalk
workflow including following steps: Firstly, we order cells based
on the reconstructed trajectory. Next, we identify the co-varying
LR from the two types of cells. Then, we identify the master
regulators for each cell type. Finally, we obtain the active LR from
the co-varying LR with the master regulators of a particular cell
type using Granger’s causality.

As monocle341 can reconstruct complex development trajec-
tories from scRNA-seq datasets, we used monocle3 to replace
monocle2 to order cells in each cell type.

For a given LR, consider sender cells A expressed ligand(L) and
receiver cell B expressed receptor (R). When examining the
expression data in ordered cells of both cell type A and cell type
B, two time series of unequal (or equal, if A and B are the same
types of cell) length were generated. Consequently, it is necessary
to calculate the correlation between these two time series. To
obtain equal sample points for both cell types, we used the
“interWeight” function from the cellAlign42 package to inter-
polate the expression data along one trajectory (window size of
interpolation: winSz= 0.1, number of desired interpolated
points, numPts= 200). Using this strategy, we can calculate
Spearman’s correlation coefficient of interpolated ligand signals
calculated from ligand gene expression in sender cells and
receptor signals calculated from the receptor gene expression in
receiver cells. We used SCC= 0.2 as a cutoff to identify co-
varying LR.
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We used the function RunALRA from the R package Seurat to
perform zero-preserved imputation by the ALRA algorithm43.
Each cell type’s imputed matrix was used to build the
transcriptional network and perform master regulator analysis
by RTN package44. The variable gene along the trajectories
identified by the function graph_test from the Monocle3 package
was used as a phenotype to perform master regulator analysis.

We perform the Granger test to calculate the Granger causality
between the gene expression of master TFs from the receiver cell
types and the interaction score of co-varying LR pairs from the
interpolated pseudotime time series. Meanwhile, we calculate
Spearman’s correlation coefficient to measure the correlation
between the activity of co-varying LR and master TFs. We used
0.01 as a cutoff to test whether the given LR and a master TF have
Granger causality. Thus, for a given LR, it will have manymaster TFs
passed the Granger test and have many different correlation values.
We choose the maximum (noted as SCC_ens) as the final correlation
value to measure the correlation of LR with the TFs activity. We used
SCC_ens > 0.8 or SCC_ens <−0.8 to get active LR.

Co-evolution analysis. We used the HomoloGene database
(https://www.ncbi.nlm.nih.gov/homologene) to retrieve homo-
logous ligand and receptor genes in four mammalian species Mus
Musculus (mouse), Rattus norvegicus (rat), Bos Taurus (cattle),
and Homo sapiens (human). Through this approach, 1119
homologous genes were obtained, which included 922 ligand-
receptor pairs, of which 208 were eLR pairs, and 714 were non-
eLR pairs. The ratio of nonsynonymous and synonymous sub-
stitution rates (Ka/Ks) for each gene was calculated using the
following steps: amino acid sequence alignments were performed
using the R package msa (version 1.28.0)72 and ClusterW
algorithm73, followed by codon alignment using the codon_aln
function by PAL2NAL algorithm74 in the R package orthologr
(version 0.4.0)75. The KaKs ratio was then calculated using the
dnastring2kaks function in the R package MSA2dist (version
1.0.0). Finally, co-evolution trends were evaluated by computing
the Pearson correlation coefficient (PCC) of the Ka/Ks ratio for
each ligand-receptor pair in each pairwise species comparison.

Statistics and reproducibility. All statistical analyses were per-
formed using R (version 3.6.3). Heatmaps were generated by the
R package ComplexHeatmap (version 2.9.4)76. Graphs of statis-
tical results were generated by the R package ggplot2 (version
3.3.5). GO analysis and KEGG analysis were performed by the R
package clusterProflier (version 3.14.3)77.

A collection of publicly available pre-implantation single-cell
RNA-seq datasets were used to analyze the different stages of
early embryo development. These stages include the oocyte (3
cells), zygote (4 cells), early 2-cell (8 cells), mid 2-cell (12 cells),
late 2-cell (10 cells), 4-cell (14 cells), 8-cell (28 cells), 16-cell (50
cells), early blastocyst (43 cells), mid blastocyst (60 cells), and late
blastocyst (30 cells). In total, there were 262 cells analyzed to
ensure that all stages were represented in the scRNA-seq datasets.
In Supplementary Note 1, we tested the impact of interpolation
strategies on Granger causality conclusions by using two different
time series models with theoretical causality. To determine the
false positive ratio of Granger causality that resulted from
interpolation, we conducted ten rounds of simulations for each
model. In each round of simulation, we generated simulation data
and performed the Granger test on the interpolated data 1000
times. Since each model has a theoretical Granger causality, the
false positive ratio was calculated for each round.

In order to make sure that our results can be replicated, we
have included the source data for the critical analysis of our

manuscript as Supplementary Data. Additionally, we have
uploaded our code and extensive data to Figshare (https://
figshare.com/projects/TimeTalk_CB_manuscript_code_data/
174498) to make it easier for others to reproduce our analyses.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The publicly available data on early embryo development used in this paper were
obtained from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/). The mouse oocyte scRNA-seq data were obtained from a study by ref. 12

with accession number GSE38495. The mouse scRNA-seq data covering the zygote stage
to the late blastocyst stage were obtained from a study by ref. 13 with accession number
GSE45719. The mouse bulk RNA-seq was obtained from studies by Wu et al. with
accession numbers GSE66582. The mouse ZGA inhibition RNA-seq data were obtained
from a study by ref. 30 with accession number GSE71434. The EPS-generated blastoid
scRNA-seq data and natural blastocyst scRNA-seq data were obtained from a study by
ref. 45 with accession number GSE135701. The processed sequencing data used in this
article has been deposited in the Figshare repository (https://doi.org/10.6084/m9.figshare.
23850324.v7)78. Source data underlying Figs. 2f, g, and 3a–d, and Supplementary Fig. 13
are provided in Supplementary Data 1. Source data for Fig. 4a–f and Supplementary
Fig. 16a–c are provided in Supplementary Data 2. Source data for Fig. 5c–e are provided
in Supplementary Data 3.

Code availability
All custom scripts required to reproduce all results reported in this manuscript have been
deposited in Figshare repository (https://doi.org/10.6084/m9.figshare.23895780.v6)79.
The source code for TimeTalk R package can be accessed on Github (https://github.com/
ChengLiLab/TimeTalk)80. Furthermore, we have also deposited the TimeTalk R package
in Zenodo (https://doi.org/10.5281/zenodo.8271645)81.
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