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Methanol fixation is the method of choice for
droplet-based single-cell transcriptomics of neural
cells
Ana Gutiérrez-Franco1,2,5, Franz Ake1,2,5, Mohamed N. Hassan 1,2, Natalie Chaves Cayuela 1,2,

Loris Mularoni2,3 & Mireya Plass 1,2,4✉

The main critical step in single-cell transcriptomics is sample preparation. Several methods

have been developed to preserve cells after dissociation to uncouple sample handling from

library preparation. Yet, the suitability of these methods depends on the cell types to be

processed. In this project, we perform a systematic comparison of preservation methods for

droplet-based single-cell RNA-seq on neural and glial cells derived from induced pluripotent

stem cells. Our results show that while DMSO provides the highest cell quality in terms of

RNA molecules and genes detected per cell, it strongly affects the cellular composition and

induces the expression of stress and apoptosis genes. In contrast, methanol fixed samples

display a cellular composition similar to fresh samples and provide a good cell quality and

little expression biases. Taken together, our results show that methanol fixation is the method

of choice for performing droplet-based single-cell transcriptomics experiments on neural cell

populations.
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S ingle-cell transcriptomics (scRNA-seq) methods have
revolutionized the way we study in a high-throughput
manner the expression of genes across individuals, tissues

and even in disease1–3. Previously, studies were limited to identify
changes in the expression levels of genes in bulk, that is, in the
population of cells that composed a particular sample. Thus, these
approaches mixed two different effects: changes in the cell
composition of the sample of interest and changes in the
expression of genes within individual cells. Now, scRNA-seq
allows assessing these two effects independently and can detect
both changes in the cellular composition4,5 and the expression of
genes in specific cell types6,7.

Despite the popularity of scRNA-seq methods, there are still
several technical challenges unsolved. For instance, the dissocia-
tion of the cells from a tissue and the obtention of a good cell
suspension, necessary for scRNA-seq, is highly tissue-specific and
may require the use of different strategies including enzymatic
digestion, mechanical disgregation, fluorescence-activated cell
sorting, and other technologies8–12. As a result, the preparation of
samples for scRNA-seq can take several hours, which makes more
convenient to process them at later time points. Apart from
technical difficulties, cell preservation is also important if we need
to decouple sample dissociation and processing for other reasons
such as the shipment of samples to an external facility, or if we
want to collect multiple samples and process them together at a
later time point to save time or money. In all these cases,
researchers would like to preserve these samples in a way that
minimizes the differences in cell composition and gene expres-
sion of individual cells in comparison to the original sample. That
is, the best preservation method will be the one that has the
smallest impact in the cell composition of the sample and the
transcriptomic profile of the individual cells.

Several cell preservation methods have already been devel-
oped to overcome this problem and uncouple sample handling
from library preparation. Among them, we find both home-
made and commercial solutions including methanol
fixation13,14, dithio-bis succinimidyl propionate15, dimethyl
sulfoxide (DMSO) cryopreservation16,17, acetic-methanol
(ACME)10, paraformaldehyde18, CellCover17, and vivoPHIX19.
These methods aim at maintaining sample composition and
RNA quality of cells. Yet, considering that sample preparation
is tissue-specific, we expect that different preservation methods
could be optimal for different samples. Many of these protocols
have been tested only in cell lines or easy-to-obtain cells such
as peripheral blood cells and thus, it is not clear how their
performance is in cells that are difficult to dissociate or that are
potentially damaged during dissociation. In particular, none of
the previous methods have been tested in mature neurons or in
human-induced pluripotent stem cell (hiPSC) derived neurons,
which are the main source of neural cells for studying the
molecular mechanisms driving neurological diseases20.

In this work, we have compared the performance of five
popular fixation or preservation methods in neural and glial cells
derived from hiPSCs. The results from our work show that the
different preservation/fixation methods affect the samples in
different ways, including biases in the transcriptomic profile, cell
composition and library complexity. DMSO cryopreservation
provides the highest cell quality in terms of library complexity.
Yet, the obtained datasets are strongly depleted of neurons and
display a stronger stress signature. In contrast, ACME and
vivoPHIX do not significantly affect the cell composition of the
single-cell suspensions but damage the RNA, which reduces the
library complexity and thus the number of genes and RNA
molecules detected in individual cells. Taken together, our results
show that methanol fixation is the method of choice for per-
forming droplet-based single-cell transcriptomics experiments on

neural cell populations as it provides a high library complexity
without affecting the cell composition nor gene expression in
comparison to fresh samples.

Results
Experimental setup for the systematic comparison of pre-
servation protocols. Individual or pooled hiPSC cell lines were
differentiated to cortical neurons using a previously described
protocol21 with minor modifications. Briefly, hiPSC colonies were
seeded in 12-well plates coated with matrigel, and after reaching
confluency, neural differentiation was induced using a combina-
tion of BMP inhibitors (noggin, dorsomorphin, and SB431542)
(Fig. 1a). After 29–50 days of differentiation, cells were dis-
sociated with papain-accutase solution to obtain a single-cell
suspension (Supplementary Data 1). At this point, some of the
samples were directly encapsulated using Dolomite Bio automatic
Drop-seq setup NADIA (fresh), cryopreserved with DMSO17, or
preserved using methanol14,22, ACME10, or chemical components
that stabilize RNA molecules such as vivoPHIX19

and CellCover17, which have been previously used in single-cell
transcriptomics (Fig. 1b).

Cell preservation methods can impact RNA quality. Before
performing single-cell transcriptomics analysis, we investigated if
the preservation of single-cell suspensions affects the quality of
obtained RNA. For that purpose, we extracted total RNA from
fresh and preserved neural precursor cells (NPCs) stored at
−80 °C or 4 °C for up to 15 days. For each of the samples, we
quantified the total amount of RNA and assessed its quality using
the Agilent TapeStation system. Our results showed that the
quality of the RNA extracted depended on the preservation
method used. DMSO, methanol, and ACME samples had very
high RNA integrity number (RIN) values (~9), similar to those of
fresh samples. In contrast, the vivoPHIX sample had some RNA
degradation (RIN ~7) and the samples processed with CellCover
had stronger degradation levels, with RIN values ~2 at 4 °C and
~6 at −80 °C (Supplementary Fig. 1). These results demonstrate
that CellCover is not suitable for long-term storage of cells for
single-cell transcriptomics. Taking this into consideration, we
decided to discard CellCover for the systematic comparison of
preservation methods.

Cell preservation affects the complexity of captured single-cell
transcriptomes. To compare the impact of different preservation
methods, hiPSCs were differentiated to NPCs and either pre-
served using one of the different preservation/fixation methods or
directly encapsulated with the NADIA equipment, a commercial
Drop-seq setup (Fig. 1b). Cell encapsulation and library pre-
paration was done following the same protocol for all samples.
The obtained datasets were then evaluated using different metrics
to assess their quality.

Inspection of the cDNA profiles showed that ACME and
vivoPHIX samples had less cDNA and smaller fragments than the
rest of the libraries (Fig. 2a), which is consistent with RNA
degradation. This was expected in the vivoPHIX samples, which
showed already a lower RNA quality after being preserved for
2 weeks, but not for ACME samples, which had RIN values
similar to that of fresh samples (Supplementary Fig. 1). Next, we
evaluated the impact of the preservation methods on library
complexity. We used samtools23 to downsample each of the
unaligned BAM files to produce files containing 10%, 20%, 30%,
etc. of the original dataset. Each of these subsamples was then
processed using the same computational pipeline to generate
downsampled digital gene expression (DGE) matrices. Our
results show that at the same sequencing depth, DMSO
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cryopreserved cells and methanol-fixed cells yield a comparable
or higher number of genes and unique molecular identifiers
(UMIs) per cell than fresh cells. In comparison, at 7500 reads per
cell, ACME and vivoPHIX samples have around 40% of the
Genes and UMIs obtained in fresh cells (Fig. 2b) (Supplementary
Data 2). The higher number of genes and UMIs in the DMSO
samples D1 and D2 and the methanol-fixed samples M3 and M4
is due to differences in the capture efficiency of the beads used for
the encapsulation and not to an intrinsic higher capture efficiency
in these experimental conditions (Supplementary Fig. 2 and
Supplementary Data 1).

The lower complexity of vivoPHIX and ACME libraries is also
reflected in the proportion of low-quality cells in the samples,
which have few UMIs and genes detected per cell (Fig. 2c and
Table 1), and may correspond to empty droplets or droplets
containing broken cells24. While the number of low-quality cells
discarded is around 10% of cells in fresh, DMSO, and methanol-
fixed cells, this number increases up to 29% and 49% in ACME
and vivoPHIX samples, respectively (Table 1 and Supplementary
Data 3).

After discarding low-quality cells, the remaining vivoPHIX and
ACME cells still show clear differences in quality (Fig. 2c and
Table 1). Interestingly, the percentage of UMIs mapped to
mitochondrial genes was similarly low across all samples,
suggesting that the lower number of captured RNAs in these
samples may not be due to RNA leakage or cellular damage24 but
rather be related with RNA capture efficiency or RNA degrada-
tion. In addition, ACME samples showed a much higher fraction
of UMIs mapped to ribosomal proteins than any of the other
samples (Fig. 2c), which has also been previously associated to
low-quality cells or technical artifacts25.

One of the reasons why vivoPHIX and ACME fixed cells have
less RNAs per cell could be that the fixation method facilitates cell
breakage. In this case, we would expect lower library complexity

and a higher fraction of reads coming from intronic regions,
which mainly come from pre-mRNAs and are enriched in
nuclei26,27. In our samples, the fraction of intronic reads coming
from each sample was variable across preservation methods,
ranging from 10% in DMSO samples to ~30% in methanol and
vivoPHIX (Fig. 2d) samples. The higher fraction of intronic reads
in vivoPHIX and methanol samples is indicative of nuclear RNA
enrichment26,27. Yet, considering that the number of genes and
UMIs detected in methanol is, on average, around three
times higher than in vivoPHIX samples (Supplementary Data 2),
RNA leakage is likely not the cause of this bias. Together, these
results demonstrate that vivoPHIX and ACME preservation
methods significantly affect the quality of the single-cell
transcriptomes obtained from human NPC populations although
this cannot be explained by an increased RNA leakage or cell
breakage.

DMSO cryopreservation alters the cell composition of hiPSC-
derived cell populations. After assessing the overall quality
metrics of the samples, we investigated whether preservation
methods affect the cellular composition of the samples. For that
purpose, we pooled all the samples and analyzed them together.
Initial analysis showed a strong batch effect driven mainly by the
preservation method used. As can be seen in Supplementary
Fig. 3, before integration, the cells from different experiments
occupy different regions of the uniform manifold approximation
and projection (UMAP) plot (Supplementary Fig. 3). Thus, we
used Harmony28 to integrate the datasets and identify the cell
populations obtained from the hiPSC differentiation (Fig. 3).
After batch correction, we identified 12 cell populations corre-
sponding to proliferating progenitors, NPCs, astroglial pre-
cursors, intermediate progenitors and different types of neurons
characterized by the expression of specific marker genes (Fig. 3,
Supplementary Figs. 4 and 5, and Supplementary Data 4 and 5).
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Fig. 1 Experimental setup. a Schematic representation of the differentiation protocol of hiPSCs to neural progenitor cells. b Systematic comparison of
preservation methods. After the differentiation of hiPSCs, all cells were dissociated using papain-accutase and either directly encapsulated or preserved
using one of the different reagents tested. After being preserved, cells were thawed or rehydrated and encapsulated using a commercial Drop-seq setup
using the same protocols.
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All the clusters identified were present in all the individual
samples. Yet, the relative abundance of each of the cell popula-
tions changed depending on the preservation method used
(Fig. 4a and Supplementary Fig. 6). To investigate if these changes
were due to experimental biases or they were systematic biases
due to the fixation method, we performed a compositional ana-
lysis of the samples with scCODA, a recently developed tool that

can reliably identify changes in single-cell datasets even with a
low number of replicates5. In contrast to other methods, scCODA
models compositional bias of the sample as a whole and not for
each cluster independently. This prevents wrongly identifying cell
proportion changes due to the depletion of a single-cell popula-
tion, which would artificially result in the increase of all other cell
populations in the sample. To identify compositional changes, we
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chose as reference group fresh samples, so that the results will
indicate if we find compositional changes relative to this group.
The results from this analysis highlight a significant depletion of
excitatory neurons in DMSO cryopreserved samples compared to
fresh samples, while we do not find significant compositional
biases in the samples preserved using any of the other methods
(Fig. 4b).

Preservation protocol affects gene expression across cell
populations. Finally, we investigated if preservation methods
induced changes in gene expression that could affect the com-
parison among samples. A comparison of gene expression across
samples shows high correlation among all samples (Pearson
correlation coefficient R >= 0.8), although ACME and vivoPHIX
samples have slightly lower correlations with all other samples
(Supplementary Fig. 7). This lower correlation can be explained
by global or cell-type-specific changes in gene expression but also
by compositional biases. To investigate this further, we generated
pseudobulk counts for each of the clusters for each sample
separately and performed a correlation analysis at the cluster
level. Our analyses show that the fixation method induces biases
in the clustering of cell populations across samples (Supple-
mentary Fig. 8). However, the high similarity between different
clusters, i.e., NPC populations, makes cell clusters preserved with
a particular method cluster together. To address this issue, we
evaluated the clustering of samples for each cell cluster inde-
pendently using sigclust229, a statistical method designed to test
the statistical significance of hierarchical clustering. As can be
seen in Fig. 5, in all cases methanol samples clustered with fresh
samples. In contrast, in 8 of the 12 cell populations identified,
several vivoPHIX and ACME samples cluster separately from
fresh samples. This analysis thus confirms that the overall
expression profile of methanol-fixed cells in each cluster is more
similar to that of fresh cells than that of cells preserved using
other methods.

Previous studies have shown that dissociation and preservation
methods can induce cellular stress that is reflected at the
transcriptomic level9,30. Accordingly, we checked the expression
of Immediate Early genes (IEGs) and apoptosis markers in our
datasets. The apoptosis gene signature was higher in ACME,
vivoPHIX, and DMSO samples compared to fresh samples, and
higher in DMSO than methanol-fixed samples, although these
differences were minimal (Fig. 6a). All fixed samples had higher
expression of IEGs than fresh samples, although DMSO
cryopreserved cells showed higher expression of IEGs than all
the other samples (Fig. 6b). This result indicates that freezing and
thawing stresses cells in a way that is globally reflected on the
transcriptomic profile of cells. To investigate if cell preservation
induced additional expression biases at the individual cluster
level, we used muscat31 to identify cell-type-specific differentially
expressed genes (DEGs) in fixed samples compared to fresh
(Supplementary Data 6). Our analysis shows that the number of
differentially expressed genes (DEGs) is very different across
fixation methods. Whereas vivoPHIX samples present many
DEGs in all clusters, the amount of significant DEGs is close to
zero in DMSO samples (Fig. 6c and Supplementary Data 6). We
used gene ontology term enrichment analysis to investigate if
different fixation methods would introduce biases in gene
expression related to particular functions. Our results did not
find any significant terms overrepresented in genes consistently
up or downregulated across multiple cell clusters, suggesting that
the effect that the fixation methods have on gene expression
across clusters is not linked to particular cell functions or
locations.

Discussion
Single-cell transcriptomics methods are becoming the new stan-
dard to study transcriptomic changes across samples and condi-
tions. These technologies are relatively new compared to bulk
transcriptomics methods such as RNA-seq or 3’ seq. Thus, in

Fig. 2 Systematic comparison of the effects of cellular preservation on library quality. a Trace of the libraries obtained after encapsulation, including
fresh (F1 and F2), methanol (M1, M2, M3, and M4), DMSO (D1, D2, and D3), ACME (A1 and A2), and vivoPHIX (V1 and V2) samples. The libraries of the
samples fixed with vivoPHIX and ACME have smaller fragment sizes and less RNA, which is consistent with RNA degradation. b Downsampling plots
showing the number of genes and UMIs as a function of sequencing depth (mean reads per cell). In both cases, DMSO (blue) and methanol (green)
libraries have a depth equivalent or higher than that of fresh samples (red). c Violin plots showing the number of genes, UMIs, the percentage of
mitochondrial content (% MT), and ribosomal content (% Ribo) of the cells for each sample after discarding low-quality cells and doublets. The boxplots
included inside the violin plots summarize the data distribution. The upper and lower sides of the box represent the 1st and 3rd quartiles. The line in the
middle corresponds to the median. Lines extend no further than 1.5 the interquartile range. d Barplots showing the percentage of intronic and exonic UMIs
assigned to cells for each of the libraries. The number of intronic reads range from ~10% in DMSO sample D1 to ~30% in methanol sample M4. High
intronic UMI fractions are indicative of cellular RNA leakage or nuclear RNA enrichment.

Table 1 Cell-quality statistics.

Sample Cells Filtered cells % cells kept Mean genes per cell Mean UMI per cell % MT genes % Ribo genes

F1 1764 1611 91.33 1043 1738 1.65 14.1
F2 1327 1142 86.06 889 1390 1.90 10.1
M1 1841 1613 87.62 970 1479 0.961 11.3
M2 1752 1568 89.50 954 1469 0.886 9.60
M3 1833 1697 92.58 1185 1977 1.39 9.71
M4 1305 1172 89.81 1364 2532 1.16 8.61
D1 1234 1139 92.30 1692 3271 2.31 14.8
D2 1342 1228 91.51 1787 3943 1.78 12.4
D3 1564 1405 89.83 1352 2577 2.49 11.4
A1 1313 729 55.52 373 545 1.61 24.5
A2 1524 1121 73.56 535 866 1.55 22.4
V1 1573 1122 71.33 669 937 1.31 10.6
V2 3053 1323 43.33 416 529 0.877 5.51
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many cases there are not yet standard preparation protocols for
the different samples used. In this project, we have compared how
commonly used preservation and fixation methods affect the cell
composition and expression of neural and glial cell populations

derived from hiPSCs. This work thus extends previous studies
that have compared the effects of only one preservation method
on the quality of single-cell transcriptomes or that have focused
on their effects on different cell types and thus may not be
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Fig. 3 scRNA-seq identifies diverse progenitor and immature neuron populations. a UMAP plot showing the cell populations identified in the NPC
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applicable to neural cells13–19. Our results show that different
preservation/fixation methods affect the quality of the single-cell
transcriptomics datasets in different ways, including decreased
library complexity, changes in cell composition, and alterations in
the expression profile of individual cells (Table 2).

In terms of library complexity, ACME and vivoPHIX samples
show a strong decrease in the amount of cDNA obtained after
single-cell encapsulation (Fig. 2a), which is also reflected in a
lower detection of genes and UMIs (Fig. 2b). In the case of the
vivoPHIX samples, this could be related with an initial lower
quality of the RNA sample, which had lower RIN values
(Supplementary Fig. 1). In the case of ACME samples, which
had an RNA quality equivalent to that of fresh samples, this
decrease is consistent with previous reports that show that RNA
integrity drops in ACME fixed samples over time10. The lower
library complexity of these samples due to a higher dropout rate
is likely the cause of the biases in the cell population clustering

analysis (Fig. 5) and it could contribute to the number of
DEGs identified in each cluster (Fig. 6c and Supplementary
Data 6).

When looking at cell composition, our results clearly highlight
a strong depletion of neuronal cells in the DMSO cryopreserved
samples (Fig. 4). Different cell lines and experiments have been
used for this project, which could be a confounding effect
affecting cell-type composition. However, the comparison of
DMSO and Methanol samples that come from the exact same
differentiation (M3, M4, D1, and D2) (Supplementary Data 1)
highlights a clear difference in the relative abundance of excita-
tory neuron populations between methanol and DMSO samples,
providing additional evidence that the compositional biases are
due to fixation/preservation procedure (Supplementary Fig. 6).
While DMSO has been previously reported as an excellent
method of cell preservation for single-cell transcriptomics16,17,
none of these studies looked at the effect of DMSO on mature
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neuronal cells. The reduction in the number of recovered neurons
could be due to DMSO toxicity32,33 or DMSO-induced reactive
gliosis, which has been reported previously and can affect cells
after a very brief exposure32, or simply due to the higher fragility
of neurons that do not survive thawing/freezing cycles. The latter
could explain the higher expression of stress genes in DMSO
samples compared to fresh and all other fixed samples. Yet, the

obtained neurons do not show strong expression biases as they
often cluster with fresh and methanol-fixed samples and have
barely no significant DEGs (Fig. 6 and Supplementary Data 6).
While our results demonstrate that DMSO is not a good choice
for performing compositional analysis of hiPSC-derived cells, it
could be used for profiling pure neural samples when cell avail-
ability is not an issue.
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Fig. 6 Fixation/preservation methods induce sample-specific expression biases. a, b Violin plots showing the distribution of the enrichment scores of
apoptosis (a) and stress (b) signatures across sample preparation methods. The boxplots included inside the violin plots summarize the data distribution.
Upper and lower sides of the box represent the 1st and 3rd quartiles. The line in the middle corresponds to the median. Lines extend no further than 1.5 the
interquartile range. a The apoptosis enrichment score is higher in DMSO, ACME, and vivoPHIX samples compared to Fresh samples (black asterisks), and
higher in DMSO compared to methanol (blue asterisks). b The stress signature is higher for all fixation/preservation methods compared to fresh samples
(black asterisks), and also higher in DMSO compared to all other fixation methods (blue asterisks). In all cases, statistical significance was tested using a
one-tailed Wilcoxon rank-sum test. Comparisons against fresh are marked with black * and comparisons of DMSO against other fixation methods are in
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DEGs across clusters, while the number of DEG in DMSO is close to zero.

Table 2 Summary of the effects of preservation methods on single-cell libraries.

Fixation method Library yield Library
complexity

Low-
quality cells

Composition bias Stress
signature

Apoptosis
signature

Expression bias

DMSO HIGH HIGH FEW STRONG HIGH MEDIUM LOW
Methanol HIGH HIGH FEW WEAK MEDIUM LOW LOW
ACME LOW LOW MANY WEAK MEDIUM MEDIUM MEDIUM
vivoPHIX LOW LOW MANY WEAK MEDIUM MEDIUM MEDIUM
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Our analyses also demonstrate that the different fixation/pre-
servation methods alter gene expression in different ways.
Fixation-induced expression biases can affect the overall expres-
sion profile of cell clusters, as is the case of vivoPHIX and ACME
samples (Fig. 5 and Supplementary Figs. 7 and 8), or drive cell-
type-specific changes in gene expression (Fig. 6c and Supple-
mentary Data 6). In addition, we have found a higher expression
of IEGs in all samples compared to fresh, and a higher expression
of apoptosis markers in vivoPHIX, ACME and DMSO cells
compared to fresh (Fig. 6a, b). These results confirm previous
observations that associated higher IEG expression to dissociation
and cryopreservation biases9,30, and highlight the need of accu-
rate controls and validation experiments to confirm gene
expression changes observed in single-cell data.

Finally, it has to be considered that fixation methods could
affect the detection of differentially expressed genes as they affect
the library complexity and the number of genes and UMI. Given
that the ability to detect differentially expressed genes is directly
related to the number of reads or UMIs assigned to a gene, it is
possible that subtle differential expression changes due to biolo-
gical or experimental conditions may be missed. We expect that
these effects would be higher in ACME and vivoPHIX samples,
which show lower genes and UMIs detected per cell (Fig. 2c),
although this can be compensated if more cells are sequenced.
Methanol-fixed cells have been successfully used before to dis-
cover changes in gene expression in single-cell data across dif-
ferent biological conditions34,35, indicating that this fixation
method is suitable not only to identify homeostatic gene
expression but also to identify more subtle biological differences.

In this work, we have tested the impact of fixation and pre-
servation methods in hiPSC-derived neuronal and glial cells using
a few replicates (2–4) per condition. This amount of replicates is
acceptable considering the cost of individual single-cell experi-
ments and current experimental standards. Yet, it limits our
ability to fully assess the impact of all possible variables in the
quality of the sample. Our results show that not only the method
of preservation affects sample composition and gene expression.
Other parameters such as the days of preservation, the cell line
used, the differentiation experiment, and the batch of beads have
an impact on the final single-cell transcriptomes. Yet, this work
does not provide an extensive comparison of all of them, which is
out of the scope of this project. Therefore, the results provided in
this work may be different when working with different cell types,
samples, and single-cell technology or using different experi-
mental conditions that the ones used here. Researchers should
consider all these factors and optimize individual experiments
given that our results demonstrate that sample processing can
impact significantly the results of single-cell transcriptomics
experiments.

Taking into account the pros and cons of the different methods
(Table 2) and the limitations of this study, our comparative
analysis indicates that methanol fixation is the best preservation
method to perform single-cell transcriptomics analyses on neural
cells. Libraries from methanol-fixed cells have similar complexity
to that of fresh cells (Fig. 2) and do no present strong biases in
gene expression that affect the overall transcriptomic profile of
cells (Figs. 5 and 6 and Supplementary Data 4 and 5) or cell
composition (Fig. 4 and Supplementary Fig. 6), thus providing
the sample with the most similar profile to that of fresh cells.

Methods
hiPSC cell culture and differentiation. hiPSCs were maintained on 1:40 matrigel
(Corning, #354277) coated dishes in supplemented mTeSR-1 medium (StemCell
Technologies, #85850) with 500 Uml−1 penicillin and 500 mgml−1 streptomycin
(Gibco, #15140122). For the differentiation of cortical neurons the protocol
described previously21 was followed with slight modifications. Briefly, hiPSC

colonies were seeded in 12-well plates coated with 1:40 matrigel at a cell density
sufficient to ensure 100% confluence one day after plating. At day 1, the medium
was switched to neural induction medium (neural maintenance medium (1:1 ratio
of DMEM/F-12 GlutaMAX (Gibco, #10565018) and Neurobasal (Gibco,
#21103049) medium with 1× N-2 (Gibco, #17502048), 1× B-27 (Gibco,
#17504044), 5 μg ml−1 insulin (Sigma, #I9278), 1 mM L-glutamine (Gibco,
#35050061), 100 μM non-essential amino acids (Lonza, #BE13-114E), 100 μM
2-mercaptoethanol (Gibco, #31350010), 50 Uml−1 penicillin and 50 mgml−1

streptomycin) supplemented with 500 ng ml−1 noggin (R&D Systems, # 3344-NG-
050), 1 μM Dorsomorphin (StemCell technologies, #72102) and 10 μM SB431542
(Calbiochem, # 616461)). The neural induction media was replaced every day for
9–12 days until the neuroepithelial sheet was formed. At this point, the neuroe-
pithelial cells were collected in aggregates using dispase (StemCell Technologies,
#07923) and seeded on 20 μg ml−1 laminin-coated (Sigma, #L2020) six- well plate
containing 2 ml of neural maintenance medium. Cells were incubated in neural
maintenance medium with every-other day replacement until neural rosette
structures were recognizable (days 12–15 after neural induction). Then, 20 ng ml−1

of bFGF (Peprotech, #100-18B) was added to the medium for 2–4 days to promote
the expansion of neuro stem cells. At day 18 after neural induction, cells were
splitted with dispase for precursors amplification. At day 24, when neurons begin
to accumulate at the outside of the rosettes, cells were passaged 1:3 using Accutase
(Merck Millipore, #SCR005) in a single-cell suspension and seeded at 50,000
cells cm−2 on 20 μg ml−1 laminin-coated six-well plate. After a week, cells were
split again (ratio 1:4) and seeded on 20 μg ml−1 laminin-coated six-well plates and
continued the culture for up to 50 days (between 29 and 50) after neural induction
with medium changes every second day. Several hiPSCs cell lines and differ-
entiation experiments were used for the obtention of NPCs (Supplementary
Data 1). Additional information on the media and reagents used in cell culture can
be found in Supplementary Data 7. All the hiPSC cell lines used in this work were
generated with informed consent from human donors. The use of hiPSCs in this
work was approved by the Spanish’ National Commission of guarantees con-
cerning the donation and use of human cells and tissues from the Carlos III
National Institute of Health.

Cell dissociation. Cells were dissociated into a single-cell suspension following a
previously described protocol optimized for scRNA-seq techniques36. In summary,
cells were enzymatically dissociated for 35 min at 37 °C using papain-accutase
dissociation buffer (1:1) (PDS Kit, Papain, Worthington Biochemical Corporation,
#LK003176), and quenched with DMEM/F-12 GlutaMAX supplemented with
10 µM of ROCK inhibitor (Y-27632, StemCell Technologies, #72304) and
0.033 mgml−1 of DNase (DNase (D2), Worthington Biochemical Corporation,
#LK003170). Additional information on the media and reagents used in cell culture
can be found in Supplementary Data 7. Cell suspension was filtered through a
40 µm strainer (Pluriselect Life Science, #43-10040-60) and then centrifuged at
150 g for 3 min at RT. After three washes with 0.4 mg ml−1 BSA in DPBS, cells
were counted, and viability by trypan blue method was recorded. Only samples
with cell viability higher than 75% were included in the study.

DMSO cryopreserved sample preparation. Around 2.5 × 106 cells after dis-
sociation were cryopreserved in cryovials in 1 ml of freezing medium, neural
maintenance medium supplemented with 10% v/v of DMSO (Sigma-Aldrich,
#D2438) and 20 ng ml−1 bFGF. The cryovials were placed into a Mr. Frosty
freezing container (Nalgene, #5100-001) previously filled up with isopropyl alcohol
and stored at −80 °C overnight (ON) and then transferred for long storage to a
vapor phase nitrogen freezer. DMSO cryopreserved samples were thawed in a
water bath at 37 °C in continuous agitation, then 1 ml of maintenance medium was
added to the vial and transferred to a falcon tube with 10 ml of maintenance
medium. Cells were centrifuged at 160 g for 5 min at RT. The supernatant was
carefully removed, and the cell pellet was washed with 1 ml of DPBS and 0.01%
BSA and then transferred to a 1.5-ml DNA LoBind tube (Eppendorf, #022431021).
Cells were pelleted again and resuspended in DPBS and 0.01% BSA. Finally, cells
were filtered through a 40 µm strainer and counted in a Neubauer chamber using
the standard trypan blue method.

Methanol sample preparation. Following the methanol fixation protocol for
single-cell RNA-seq in 10X Genomics (CG000136), 200 µl of ice-cold DPBS was
added to resuspend a 2.5 × 106 cell pellet. 800 µl of pre-chilled 100 % methanol was
added dropwise until the final methanol concentration reached 80%. Samples in
DNA LoBind tubes were placed on ice 30 min, then ON at −20 °C and finally
transferred to −80 °C for long storage. Methanol-fixed cells were thawed on ice and
centrifuged to remove the supernatant. The cell pellet was washed and rehydrated
in 1 ml of DPBS with 0.01% BSA and 0.2 U µl−1 of RNase inhibitor (Takara Bio,
#2313 A) and 1 mM DTT (Sigma-Aldrich, #D0632)) to avoid RNA degradation.
Cells were filtered again with a 40 µm strainer and counted in a Neubauer chamber.

ACME sample preparation. A pellet of 1 × 106 to 5 × 106 cells was gently resus-
pended with 100 µl of wash buffer (DPBS with 0.01% BSA and 0.2 U µl−1 of RNase
inhibitor and 1 mM DTT). Then, ACME solution (wash buffer: methanol: acetic
acid: glycerol; in a final ratio of 13:3:2:2) was added dropwise while mixing the tube
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to a final volume of 1 ml and incubated for 30 min at RT. After centrifugation at
1000 g at 4 °C for 5 min and discarding the supernatant, the fixed cell pellet was
washed twice in 1 ml of wash buffer and resuspended in 1 ml of wash buffer
supplemented with 10% v/v DMSO for storage at −80 °C. ACME fixed samples
were thawed and rehydrated following the same protocol as methanol-fixed
samples.

vivoPHIX sample preparation. A cell pellet containing 1 × 106 to 5 × 106 cells was
gently resuspended with 25 µl of DPBS with 0.01% BSA. For sample fixation, 75 µl
of vivoPHIX reagent (Rapid Labs, #RD-VIVO-5) (3:1 ratio) was added and mixed
by inverting the tube 10 times during the first 5 min of fixation. Next, the tube was
placed on a wheel device at RT and incubated for 30 min more. Samples were
stored at 4 °C ON and then transferred to −80 °C for long storage.

vivoPHIX-fixed samples were rehydrated by the addition of one volume (100 µl)
of 100% ethanol and mixing the tube several times by inversion. Then, cells were
pelleted at 1000 g for 5 min at RT, and the supernatant was discarded. 0.5 ml of
vivoPHIX-SCAA (1 volume of vivoPHIX with three volumes of glacial acetic acid)
was added very slowly to the cell pellet without disturbing it and incubated for
exactly 3 min at RT. The vivoPHIX-SCAA from the pellet was removed and cells
were pelleted again at 100 g for 5 min at RT to remove any remaining liquid using a
P20 pipette tip. The cell pellet was washed three times with DPBS with 0.01% BSA
and 0.2 U µl−1 of RNase inhibitor and 1 mM DTT, and the supernatant was
discarded. Cells were filtered with a 40 µm strainer and counted in a Neubauer
chamber.

CellCover sample preparation. A cell pellet containing 1 × 106 to 5 × 106 cells was
gently resuspended by flicking the tube with the remaining wash buffer (25 µl) after
enzymatic dissociation with accutase-papain solution. Then, 10 volumes of Cell-
Cover (250 µl) (Anacyte Laboratories) were added and the cell suspension was
stored at 4° or −80 °C until use. The recommended protocol provided for the
company does not suggest freezing the samples or storing them for a longer period
of 2–7 days. However, we wanted to test the efficiency of this reagent in our
workflow since the protocol is quite simple. CellCover fixed samples were recov-
ered following the same procedure as for methanol-fixed samples.

Single-cell capture and library preparation. For a single-cell encapsulation in a
NADIA instrument (Dolomite Bio, #3200590), we followed the protocol provided
by the company. We loaded 75.000 cells in a volume of 250 µl (300.000 cells ml−1)
and 150.000 Macosko oligodT beads (ChemGenes Corporation, #Macosko-2011-
10 (V+ )) in 250 µl (600 beads µl−1) previously washed and resuspended in lysis
buffer (6% w/v Ficoll PM-400, 0.2% v/v Sarkosyl, 0.02 M EDTA, 0.2 M Tris pH 7.5
and 0.05M DTT in nuclease-free water). Cells and beads co-flowed in the
microfluidic chip of the device with a capture efficiency of 5–7%.

Immediately after the droplet emulsion breakage, the RNAs captured by the
oligodT are reverse transcribed (maxima H RT Master Mix, Thermo, #EP0751)
(Supplementary Data 8). Then, the excess bead primers that did not capture an
RNA molecule was removed by the incubation of the beads with Exonuclease I
(New England Biolabs, #174M0293L) for 45 min at 37 °C. Collected single-cell
transcriptomes attached to microparticles (STAMPS) were counted and
resuspended in nuclease-free water at 400 beads µl−1 and split in pools of 4000
beads per PCR tube and amplified for 9 or 11 PCR cycles depending on the bead
batch used for the encapsulation (9 cycles for batch 01, 11 for the others). After
cDNA purification with 0.6:1 AMPure XP Beads (Agencourt, #A63881) to sample,
quantification with Qubit dsDNA HS Assay (Thermo, #Q32851) and fragment size
check-up using a 4200 TapeStation System (Agilent, #G2991BA) was performed.
Nextera XT DNA Library Prep Kit (Illumina, #FC-131-1096) was used for the
tagmentation of 600 pg of cDNA, illumina adapter tagging and amplification
(Supplementary Data 8). The size of Nextera libraries after being purified with 0.6:1
AMPure XP Beads to sample was determined using a 4200 TapeStation System and
quantified with Qubit dsDNA HS Assay.1.8 pM of pooled libraries was sequenced
on Illumina NextSeq 550 sequencer using Nextseq 550 High Output v2 kit (75
cycles) (Illumina, #20024906) in paired-end mode; 20 bp for Read 1 using the
custom primer Read1CustSeqB37 (cell barcode and UMI) and 64 bp for Read 2, and
8 bp for i7 index.

scRNA-seq data pre-processing. scRNA-seq libraries were processed using
Drop-seq_tools 2.3 pipeline38 to generate Digital Gene Expression (DGE) matrices.
First, Drop-seq tools were used to generate the index and the annotation files for
the hg38 assembly version of the human genome using Ensembl version 100
annotation39 as reference. Next, fastq files containing paired-end reads were
merged into a single unaligned BAM file using picard tools v2.18.1440. Using the
Drop-seq toolkit with default parameters, reads were then tagged with the cell and
the molecular barcodes, trimmed at the 5’ end to remove adapter sequences and at
the 3’ end to remove polyA tails. Next, reads were mapped to the human genome
(version hg38) with STAR version 2.7.0.a41. Resulting bam files were tagged with
the annotation metadata files to identify reads overlapping genes. Finally, cell
barcode correction was done using the programs DetectBeadSubstitutionError and
DetectBeadSynthesisErrors also with default parameters. To estimate the number
of cells obtained during the single-cell encapsulation, we used a knee plot using as

input the number of uniquely mapped reads assigned to the top N barcodes, where
N is at least five times the number of expected cells. The estimated number of cells
obtained with this procedure was then used to generate a DGE. Two DGE matrices
were generated for each dataset, one containing all UMIs overlapping genes using
the parameters LOCUS_FUNCTION_LIST= INTRONIC LOCUS_FUNC-
TION_LIST= INTERGENIC and another one containing all UMIs overlapping
introns using the parameters LOCUS_FUNCTION_LIST= null
LOCUS_FUNCTION_LIST= INTRONIC.

Filtering of low-quality cells and doublets. DGE expression matrices were
analyzed using Seurat v 4.2.142. First, we generated Seurat objects for each dataset
and merged these objects prior to perform the filtering of low-quality cells. After
manual inspection, all the cells with a UMI count below 200 or above 17000, a gene
number below 200 or above 5500, a percentage of mitochondrial transcripts higher
than 7.5%, and a ribosomal content higher than 40% were discarded. The number
of cells discarded at each step is provided in Supplementary Data 3. Then, we used
DoubletFinder43 on each sample object separately to remove doublets. The para-
meters and doublets identified in each dataset are detailed in Supplementary
Data 9. After doublet removal, we merged individual objects to perform a joint
analysis. Initially, all genes expressed in less than three cells were removed. In
addition, we fitted a linear model to describe the relationship between the log
number of UMIs and the log number of genes detected per cell. All cells with a
residual smaller than −0.5 (3 cells) were discarded. The final Seurat object obtained
contained 16,870 cells and 24,468 genes.

Identification of cell populations. We used Seurat function to regress out the
percentage of mitochondrial transcripts, the number of genes, the number of UMIs,
and the preservation method. To normalize data, we used the LogNormalize
method and multiplied by a scale factor of 10,000. We then selected the 2000 most
variable genes to calculate 100 principal components (PCs). We used the ElbowPlot
function to manually inspect the amount of variability explained by each PC and
select the first 20 PCs that were used to build the kNN graph and compute the
UMAP plot using 500 training epochs (iterations). To eliminate the batch effects
affecting the identification of shared cell populations across datasets, we used
Harmony package28. The function RunHarmony was applied on the filtered and
processed object, providing the samples as the variable to integrate. By inspecting
the updated Elbow plot, we selected the first 19 corrected PCs to perform the
clustering. We used the package clustree44 to inspect the clustering results at dif-
ferent resolutions from 0.1 to 1 and chose a final resolution of resolution 0.7 where
we obtained 12-cell populations. To calculate the top markers for each cluster, we
used FindAllMarkers function from Seurat with only positive markers and the rest
default parameters. Statistically significant markers with an adjusted Wilcoxon
rank-sum test P value smaller than 0.05 were selected.

Stress and apoptosis gene signatures. We used the function AddModuleScore
with default parameters from Seurat package42 to assess if the different fixation
methods induced stress or favored apoptosis among the cells. This function
compares the expression of a set of given genes with random sets of genes with
similar expression in the dataset to calculate an enrichment. For the apoptosis
signature, we built a gene signature including the genes BCL2, TNF, TP53, CASP3,
BAX, CASP8, FAS45. For the stress signature, we used the following immediate
early genes FOS, JUN, EGR1, UBC, HSPA1B, BTG2, IER2, ID330. Statistically sig-
nificant differences in the signature score between the different fixation methods
and fresh samples was calculated using a one-tailed Wilcoxon rank-sum test.

Cell composition analysis. To assess changes in cell composition we used
scCODA5. To run scCODA we defined fresh samples as a reference condition. To
set the comparison, a cluster with low variability across samples had to be chosen
as a reference. In this case, we used as reference the NPC cluster, which had a good
number of cells and a very low amount of dispersion (expressed as differences
between groups). To ensure the results were consistent and reproducible we ran
scCODA5 ten times using the Hamiltonian Monte Carlo sampling method with
default parameters and averaged the results. Cell types with average scores below
(or above) zero have a significant decrease (or increase) in abundance according to
scCODA model (false discovery rate <0.05).

Differential expression analysis. We used the function aggregateData from the R
package Muscat31 to obtain pseudobulk expression values for each cluster in each
of the samples. Then, we used the function pbDS to perform differential gene
expression analysis using DESeq246 for each cluster and identify DEGs for each
method in comparison to fresh samples. DEGs with an adjusted Wald test P value
<0.05 and an absolute log2 Fold change >0.58 are available in Supplementary
Data 6 and in Fig. 6c. To assess if the different fixation/preservation methods
introduced biases in the expression of particular gene sets, we investigated the
biological processes associated to up and downregulated genes using the enrichr
function of the GSEApy package47. For this analysis, we used all genes that were
consistently up- or downregulated across at least four cell types for each fixation/
preservation method. Only gene sets with at least ten genes were analyzed. As
background set for the enrichment analysis, we provided all genes expressed in the
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dataset which had at least 445 UMIs, which is the minimum expression among the
DEGs identified. Across all comparisons, we did not identify any significantly
overrepresented gene ontology term (hypergeometric test adjusted P value <0.001).

Correlation analysis. To assess the correlation across datasets, we compared the
expression profiles of all cells from each dataset globally and at the cluster level. For
that purpose, we computed pseudobulk expression values for all genes within a
specific cluster/dataset. Afterwards, we log transformed the counts c using a
pseudocount so that the normalized expression n was n= log (c+ 1). We used
these normalized expression values to calculate the Pearson correlation coefficient
per cell type/sample using cor function in R. We used the pheatmap48 function to
perform a hierarchical clustering using a complete clustering method and using the
correlation coefficients to calculate Euclidean distances between clusters. Given that
many cell clusters are very similar, we repeated the same procedure for each cell
type separately and determined the statistical significance of sample clusters using
the shc function from the sigclust2 R package29 on the corresponding correlation
table. The shc method uses a Monte Carlo simulation-based significance testing
procedure to assess the significance of the hierarchical clustering results of the
dataset. Statistical significance is evaluated at each node along the hierarchical tree
(dendrogram) starting from the root using a gaussian null hypothesis test, and a
corresponding P value is calculated using the 2-means cluster index, a statistic
sensitive to the null and alternative hypotheses. A family-wise error rate controlling
the procedure is applied to correct for multiple testing. We generated dendrogram
plots for each cell type to illustrate the similarity among clusters for different
samples and highlight the statistically significant differences.

Measuring the capture efficiency of bead batches. Different batches of beads
can have different mRNA capture efficiency. In order to evaluate the impact of
using different batches in scRNA-seq encapsulations, we measured the capture
efficiency of bead batches 01 and 02. We encapsulated the same sample twice using
both bead batches used in the paper. After RT-PCR, we amplified 4000 STAMPS by
PCR using 9, 10, 11, or 12 cycles independently. After AMPure XP Beads pur-
ification, the cDNA of each PCR was quantified by Qubit dsDNA HS Assay. Our
results demonstrate that to obtain a similar cDNA concentration with the two bead
batches, we needed to increase by 2 the number of PCR cycles when using batch 02
(Supplementary Fig. 2).

Statistics and reproducibility. All single-cell transcriptomics experiments have
been performed using at least two different cell lines and two independent dif-
ferentiation experiments. Samples D1, D2, M3, and M4 come from the same
differentiation experiments but were fixed using different protocols and at different
days (DMSO cryopreservation for D1 and D2, Methanol fixation for M3 and M4).
F1, F2, M1, M2, D3, A1, A2, V1, and V2 samples all come from independent
differentiation experiments. All details about days of differentiation, cell lines used,
and other details from the sample preservation can be found in Supplementary
Data 1. The initial number of cells of each of the samples and the final number after
quality filtering is provided in Table 1. These cells are the ones used in all the
analyses provided in the article.

Most computational analyses have been performed using R49 and specific
packages implemented in R 4.2.1 such as Seurat50, Harmony28, clustree44,
muscat31, sigclust229, and DoubletFinder43. We have also used the program
scCODA5 implemented in Python to assess changes in cell-type abundances and
the program GSEApy47 to perform a GO-term enrichment analysis. All the details
are provided in the Methods section.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All raw and processed scRNA-seq data generated for this study can be found in GEO
database under accession number GSE209947. Source data underlying Figs. 2c, d, 4b, and 6
are available in the Supplementary Data files 10–14.
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