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Disrupted stepwise functional brain organization
in overweight individuals
Hyebin Lee1,2, Junmo Kwon1,2, Jong-eun Lee1,2, Bo-yong Park 2,3✉ & Hyunjin Park 2,4✉

Functional hierarchy establishes core axes of the brain, and overweight individuals show

alterations in the networks anchored on these axes, particularly in those involved in sensory

and cognitive control systems. However, quantitative assessments of hierarchical brain

organization in overweight individuals are lacking. Capitalizing stepwise functional con-

nectivity analysis, we assess altered functional connectivity in overweight individuals relative

to healthy weight controls along the brain hierarchy. Seeding from the brain regions asso-

ciated with obesity phenotypes, we conduct stepwise connectivity analysis at different step

distances and compare functional degrees between the groups. We find strong functional

connectivity in the somatomotor and prefrontal cortices in both groups, and both converge to

transmodal systems, including frontoparietal and default-mode networks, as the number of

steps increased. Conversely, compared with the healthy weight group, overweight individuals

show a marked decrease in functional degree in somatosensory and attention networks

across the steps, whereas visual and limbic networks show an increasing trend. Associating

functional degree with eating behaviors, we observe negative associations between functional

degrees in sensory networks and hunger and disinhibition-related behaviors. Our findings

suggest that overweight individuals show disrupted functional network organization along the

hierarchical axis of the brain and these results provide insights for behavioral associations.
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Obesity is a state of high body mass index (BMI) and is
recognized as a risk factor for severe health problems,
such as type 2 diabetes, cardiovascular diseases, stroke,

and various cancers1–4. Multiple neurobiological studies for
individuals with obesity reported associations between disrupted
reward/executive control systems and behavioral traits, as well as
genetic underpinnings5–11, motivating neuroimaging investiga-
tion of obesity.

Magnetic resonance imaging (MRI) is a powerful neuroimaging
technique evaluating brain structure and function in vivo. It has
been widely used for assessing whole-brain morphology and
functional response, as well as connectivity, and resulted in var-
ious correlates of obesity12–19. Previous studies observed that
individuals with obesity showed differences in gray matter volume
in the sensorimotor and transmodal regions of frontal and tem-
poral cortices19, as well as decreases in cortical thickness in reward
systems, including the orbitofrontal cortex, ventral diencephalon,
and brainstem14. In addition to morphological alterations, func-
tional connectivity perturbation, particularly in the regions related
to reward systems, has been observed in previous neuroimaging
studies based on resting-state functional MRI (rs-fMRI)15–17.
Task-based fMRI studies have shown enhanced food-related
responses during reward processing in reward and default-mode
networks12,13. Recent studies from our group and others com-
bined functional connectivity analysis with machine learning and
provided whole-brain connectome signatures associated with
obesity phenotypes, suggesting notable connectional alterations in
sensory, and transmodal areas20,21. We previously showed that
higher BMI is associated with an elevated level of functional
connectivity in executive control and reward systems, whereas
sensory regions showed decreased sensitivity21,22. In regards to the
graph-theoretical parameters, increased segregation of modular
architecture was observed in heteromodal association cortices23,24.
In summary, obesity may be characterized by alterations in hier-
archical functional brain organization, spanning from sensory to
default-mode and control networks.

The cortical hierarchy suggested by Mesulam was formulated in
non-human primates, and it involves the following four levels of
neural organization: idiotypic, unimodal association, heteromodal
association, and paralimbic cortices25. This concept has been
expanded to human models, suggesting a hierarchical axis differ-
entiating sensorimotor regions from a transmodal anchor26.
Functional brain hierarchy can be effectively evaluated using a
technique called stepwise functional connectivity (SFC)27. SFC is an

expansion of the conventional seed-based functional connectivity
approach, and this analysis counts the number of all possible paths
that connect different brain regions with specific step distances27.
The approach evaluates direct connections to indirect connections
involving a varying number of step distances. Thus, it is suitable to
characterize gradual changes in functional connectivity from the
primary sensory to association cortices27. SFC analysis has been
adopted in previous studies to assess developmental changes in the
hierarchical organization of the brain28, as well as to estimate
perturbed functional connectivity in diseased populations with
attention-deficit/hyperactivity disorder and autism spectrum
disorder29–31. As overweight individuals show disrupted hier-
archical organization in brain function20–22,24, the SFC analysis
would be an appropriate approach for investigating the perturba-
tion of functional brain hierarchy in overweight individuals. We
thus hypothesized that the hierarchical organization of functional
brain networks may show alterations in overweight individuals
relative to healthy weight controls.

In this study, we investigated perturbations of functional con-
nectivity across different step distances in individuals with over-
weight. First, we defined seed regions for SFC analysis by associating
obesity phenotypes with graph-theoretical measures previously
established in obesity-related studies to consider the continuous
nature of obesity phenotypes, such as BMI and waist-to-hip ratio
(WHR). We then assessed distinct patterns of functional connectivity
between individuals with healthy weight and overweight at different
step distances to assess perturbations of functional hierarchy in the
overweight group. Finally, we associated functional connectivity with
eating behaviors to examine underlying behavioral traits.

Results
We studied 301 participants (mean ± standard deviation age =
40.44 ± 17.68 years; 60.47% female) with a wide range of BMI
(16.25~47.49) and WHR (0.59~1.18) obtained from the enhanced
Nathan Kline Institute-Rockland Sample (eNKI) database32.
Details on participant demographics, image acquisition and
processing, and SFC analysis can be found in Methods, and
overall flow is described in Fig. 1.

Seed regions associated with obesity phenotype. We constructed
functional connectivity matrix from rs-fMRI data of all partici-
pants and calculated degree centrality values (Fig. 1a, b; see
Methods). We linearly correlated the degree centrality with WHR

Fig. 1 Flowchart of the study. a The T1-weighted MRI and rs-fMRI data were preprocessed. b (top) We calculated partial correlations of mean time series
between different brain regions defined using Brainnetome atlas, (bottom) and calculated degree centrality to assess association to waist-to-hip ratio
(WHR). The regions that showed significant associations were selected as seed regions for stepwise functional connectivity (SFC) analysis. c (top) The
SFC analysis was performed using binarized connectivity matrix from steps one to five, and (bottom) degree centrality was calculated for each step.
Abbreviations: rs-fMRI resting-state functional magnetic resonance imaging, BOLD blood-oxygen-level-dependent.
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to define seed regions for SFC analysis, and 26 brain regions
showed significant associations (q < 0.05; Fig. 2a). Specifically,
ventrolateral prefrontal, inferior temporal, insular cortices, and
pallidum were positively associated with WHR, whereas sensor-
imotor, visual, thalamus, and amygdala showed negative asso-
ciations. Stratifying the correlation coefficients based on
functional communities33, the frontoparietal network showed the
highest positive effect, followed by limbic and ventral attention
networks, and negative effects were observed in sensory and
dorsal attention networks (Fig. 2b). Similarly, the pallidum
showed a strong positive association with WHR, and the amyg-
dala and thalamus showed negative associations (Fig. 2c). Based
on the previously provided functional profiles of subregions in
the Brainnetome atlas34, we could find that eleven regions were
involved in the cognition, four reward, ten sensorimotor, and one
emotion-related functions. In brief, these profiles were deter-
mined by forward and reverse inferences, which decode beha-
vioral domains and paradigms based on the BrainMap database
(http://www.brainmap.org/taxonomy). Across 1,000 bootstraps,
we observed largely consistent seed regions (mean ± standard
deviation r= 0.85 ± 0.05; Supplementary Fig. 1), ensuring the
robustness (seeMethods). In the case of BMI, instead of WHR, we
observed a consistent albeit lower effect of spatial associations
with degree centrality (Supplementary Fig. 2). Indeed, linear
correlation between the effects of BMI and WHR was significant
(r= 0.51, p < 0.001).

Between-group differences in stepwise functional connectivity.
By utilizing the SFC analysis seeded from the identified regions

significantly associated with obesity phenotype, we assessed changes
in degree centrality at different steps for each group. We specifically
tracked hub regions with high degrees, where the normalized degree
was higher than 1.5 times the mean degree centrality35. Although
both groups showed high degree centrality values in the sensor-
imotor and frontal regions as well as the caudate and thalamus in the
first step (equivalent to conventional functional connectivity),
stronger connections were observed in the frontoparietal and default-
mode networks in higher steps (Fig. 3a). Noting that the connections
did not change largely above the step distance five (Supplementary
Fig. 3), we reported the results from steps one to five.

We then compared the degree centrality values between
individuals with healthy weight and overweight for each step. In
the first step, the overweight group showed a higher degree in
the medial frontal, lateral temporal, and visual cortices, and a
lower degree in sensorimotor regions relative to the healthy
weight group (Fig. 3b). The between-group differences were
more marked at higher step distances, and we could additionally
find higher degrees in the amygdala, hippocampus, putamen,
and pallidum. Stratifying the effects based on functional
communities33, visual, limbic, and default-mode regions showed
a higher degree in the overweight group, and a lower degree in
the somatomotor, dorsal attention, and ventral attention
networks (Fig. 4a). In subcortical regions, the amygdala and
hippocampus showed higher degrees in the overweight group,
while caudate showed a lower degree only in the first step
(Fig. 4b). To assess robustness, we repeated the SFC analysis
with different subsets of participants and observed virtually
identical patterns of degree centrality values across different step
distances (Supplementary Fig. 4; see Methods). We performed

Fig. 2 Brain regions associated with obesity phenotype. a Correlation coefficient of the identified regions that showed significant association with waist-
to-hip ratio (WHR) are reported on brain surfaces and subcortical structures using 301 participants. Red/blue indicate positive/negative correlations. The
correlation coefficients are stratified based on b functional communities as well as c subcortical regions.
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the same analyses on subnetworks of (i) cognition, (ii) reward,
and (iii) sensorimotor-related regions and found virtually
identical results (Supplementary Figs. 5–7).

Association with eating behaviors. To explore possible under-
lying behavioral traits of our findings, we associated TFEQ scores

with degree centrality values of visual, somatomotor, dorsal
attention, and limbic networks, as well as subcortical regions that
showed significant between-group differences at a step distance of
five. We observed significant negative associations between
TFEQ-hunger and visual network (r=−0.18, q= 0.020), soma-
tomotor network and TFEQ-disinhibition (r=−0.17, q= 0.025),

Fig. 3 Stepwise functional connectivity in healthy weight (HW) and overweight (OW) groups. a Hub regions from step distance one to five for each
group (n= 104 for HW; n= 75 for OW) are reported on brain surfaces. Hub regions in subcortical areas were detected only in the first step. bWe reported
the t-statistics of brain regions that showed significant between-group differences in degree centrality between individuals with HW and OW. Regions with
red show a higher degree in OW group compared to individuals with HW, and blue regions, vice versa.

Fig. 4 Between-group differences in degree centrality values. We stratified effects of between-group differences in degree centrality values according to
a functional communities and b subcortical regions. Positive (red) values indicate higher degrees in OW group, whereas negative (blue) values indicate
lower degrees. The t-statistics with significant between-group differences are marked with asterisks.
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total without (r=−0.17, q= 0.03), and with hunger subscale
(r=−0.15, q= 0.043; Table 1).

Results of sensitivity analysis.

(a) Age and sex. When we controlled age and sex from the
functional connectivity, we observed consistent results
(Supplementary Fig. 8).

(b) TFEQ scores. When controlling for eating behavior scores,
we could observe consistent SFC patterns (Supplementary
Fig. 9), indicating robustness.

(c) Low- vs. high-health risk groups comparison. Comparing
SFC patterns between low- and high-health risk groups
defined using the world health organization (WHO) criteria
based on WHR36, we observed virtually identical results
(Supplementary Fig. 10), indicating consistency of our
results compared to the between-group differences between
overweight and healthy weight groups defined based on
both BMI and WHR.

Discussion
Obesity is a trait affecting brain function, particularly sensory and
executive control processing, which are at the opposite ends of the
hierarchical spectrum. In this study, we investigated how func-
tional network organization changes at different step distances
between individuals with healthy weight and overweight. By
leveraging the SFC framework, we found that the step distance-
related functional connectivity of the two groups converged in
different ways. Although the hub regions of both groups were
transmitted from sensory/frontal regions to frontoparietal/default-
mode networks, overweight individuals showed higher functional
connectivity in visual, transmodal, and subcortical networks,
whereas dorsal attention and somatomotor networks showed
weaker connectivity. Associating with eating behaviors, visual and
somatomotor networks showed negative correlations with hunger
and disinhibition-related behaviors. Our findings provided
insights into how functional hierarchical organization is disrupted
in overweight individuals and suggest potential links between our
results and eating behaviors.

SFC analysis identifies seed-based connectivity patterns at dif-
ferent step distances and this approach efficiently examines how
brain systems reconfigure their modes of operation along the axis
of brain hierarchy27. A previous study introduced SFC analysis in
neuroimaging and found a dynamic transition of functional
connectivity along the hierarchical axis ranging from primary
sensory to higher-order cognitive control networks, which are
represented as cortical hubs27. In healthy controls, SFC patterns
show a clear cortical hierarchy in which sensory information
converges to higher-order heteromodal association areas27,30.

The SFC has been applied to compare age-related differences in
hierarchical structures in infants28, and to assess disease-related
connectome perturbations29–31. Indeed, individuals with autism
spectrum condition showed that sensory-driven connectivity did
not converge to default-mode regions, and this alteration was
associated with disturbed social cognition and repeated behavioral
symptoms30. Other studies have reported atypical convergence
patterns of SFC in attention-deficit/hyperactivity disorder, espe-
cially within sensory and between sensory and cognitive control
regions29,31. These studies collectively show the effectiveness of
SFC analysis for capturing typical and atypical hierarchical orga-
nization of healthy and diseased populations. Hierarchical orga-
nization of the brain also exists in individuals with obesity. Our
SFC analysis led to differential transition patterns of functional
connectivity in multiple networks, including lower-level sensory
and higher-order limbic networks, suggesting a disrupted orga-
nization of the functional hierarchy in individuals with obesity.
These disrupted patterns were consistent when we changed the
seeds to cognition, reward, and sensorimotor-related regions,
indicating the robustness of SFC analysis irrespective of the seeds.

In addition to the SFC at different steps, we performed a cor-
relation analysis between functional degree and eating behavior
traits to provide behavioral underpinnings of our findings. The
results of our study indicate that increases in functional con-
nectivity in sensorimotor networks are associated with decreased
hunger and disinhibited traits. Our work confirms prior work in
individuals with eating disorders, where patients with anorexia
display increased brain activation in somatosensory regions,
indicating a failure in sensory processing related to altered eating
habits37. Functional anomalies in sensory networks may involve
excitation of neuronal cells in the basal forebrain because appetite
suppression and food avoidance are known to be regulated by
excitatory basal forebrain circuits that integrate external sensory
information38. Previous studies suggested the association across
brain function, dimensions of eating behavior, and body
weight39–42. For example, eating behaviors were shown to mediate
genetic susceptibility to obesity43. The fat mass and obesity-
associated (FTO) gene is a key allele of obesity moderating satiety
responsiveness, food intake, and binge eating, and the variational
expressions in FTO lead to obesity44. In studies using structural
MRI, abnormal FTO expressions were associated with decreases in
gray matter volume in frontal and occipital regions in individuals
with higher BMI45–49. Variations in the FTO gene were also
associated with sensitivity of brain activity in reward and impulse/
inhibitory control of eating, predisposing to develop obesity50–52.
Further validation to understand the underlying neuronal
mechanisms of sensory-related functional alterations in over-
weight individuals is still needed. In addition, while we found a
significant association between functional connectivity in visual
network and TFEQ-hunger subscale, it should be noted that the

Table 1 Correlations between network-level degree centrality values at step distance five and eating behaviors.

Network Score Dietary restraint (1) Disinhibition (2) Hunger (3) (1+ 2) Total (1+ 2+ 3)

Visual r-value 0.0262 −0.0623 −0.1840* −0.0134 −0.0839
q-value 0.8155 0.5007 0.0200* 0.9113 0.3580

Somatomotor r-value −0.1147 −0.1665* −0.0488 −0.1704* −0.1506*
q-value 0.2360 0.0250* 0.5639 0.0300* 0.0425*

Dorsal attention r-value −0.0880 −0.0111 −0.0009 −0.0699 −0.0542
q-value 0.3580 0.9113 0.9880 0.4467 0.5231

Limbic r-value 0.0727 0.0193 0.0060 0.0630 0.0509
q-value 0.4467 0.8438 0.9379 0.5007 0.5429

Subcortical r-value 0.1070 0.0332 0.0537 0.0953 0.0948
q-value 0.2917 0.7111 0.5231 0.3388 0.3388

The r- and false discovery rate (FDR)-corrected p-values (q-values) are reported. Significant results are reported with asterisks.
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hunger subscale is relatively unstable across different populations,
and thus needs to be carefully interpreted53.

This study had several limitations. First, we analyzed the data
obtained from a single cohort owing to the limited information
on eating behavior scores in other databases. Further validation
using independent data can be performed in future studies.
Second, we assessed step-related differences in functional
connectivity only. Structural connectivity based on diffusion
tractography or multimodal integration, such as structure-
function coupling, may provide additional insights into obesity
phenotype-related connectome perturbations. Third, although
we excluded subjects with medical conditions or related med-
ications, we could not control obesity-related medical compli-
cations, such as metabolic syndromes and hypertension, as well
as physiological effects, which may affect brain function. Future
studies should collect such information and replicate the
findings to assess their robustness. Fourth, prior works inves-
tigated associations between longitudinal changes in BMI and
functional connectivity in sensorimotor and frontoparietal
networks54,55. However, how the whole-brain-wide functional
hierarchy changes are related to weight gain or loss need to be
explored further using longitudinal study designs. Lastly,
although many studies adopted TFEQ to assess physical and
psychological traits in individuals with obesity, it is a subject
measurement based on self-report questionnaires22,41,56,57. In
future works, more objective tools need to be developed.

In this study, we investigated differences in whole-brain
functional connectivity profiles between individuals with heal-
thy weight and overweight based on SFC analysis. We observed
marked differences in brain regions along the functional hier-
archical axis. In particular, sensorimotor networks showed sig-
nificant associations with eating behaviors. In summary, our
findings provide insights into the whole-brain-wide functional
connectome organization in overweight individuals and their
behavioral expression related to eating behaviors.

Methods
Participants and imaging data. This retrospective study was approved by the
Institutional Review Board (IRB) of Sungkyunkwan University and was performed
in full accordance with the local IRB guidelines. All participants provided informed
consent. We obtained T1-weighted structural MRI and rs-fMRI data from the
enhanced Nathan Kline Institute-Rockland Sample (eNKI) database32. Among 650
participants, subjects with medical conditions (e.g., attention-deficit/hyperactivity
disorder, depression, migraine, diabetes, and cardiovascular diseases) or related
medication (n= 165), and lack of full demographic information and obesity
phenotypes (BMI and WHR; n= 184) were excluded. A total of 301 participants
were included in this study. Detailed demographic information is reported in
Table 2, and the distribution of obesity phenotypes of all participants is represented
in Supplementary Fig. 11.

All imaging data were scanned using a 3-T Siemens Magnetom Trio Tim
scanner. The T1-weighted structural data were scanned using magnetization-
prepared rapid gradient-echo (MPRAGE) sequence (repetition time [TR]= 1900
ms, echo time [TE]= 2.52 ms, flip angle = 9°, field-of-view [FOV]= 250 mm ×
250 mm, 1 mm3 voxel resolution, and 176 slices). The rs-fMRI parameters were
scanned using a multiband echo planar imaging (EPI) sequence (TR= 645 ms,
TE= 30 ms, flip angle = 60°, FOV= 222 mm × 222 mm, 3 mm3 voxel resolution,
40 slices, and 900 volumes).

Data preprocessing. All imaging data were preprocessed using a Fusion of
Neuroimaging Preprocessing (FuNP) volume-based pipeline (https://gitlab.com/
by9433/funp), which integrates AFNI, FSL, and ANTs software58–61 (Fig. 1a). The
T1-weighted structural data were de-obliqued and reoriented in the right-
posterior-inferior direction. The magnetic field inhomogeneity was corrected, and
the nonbrain tissues were removed. The rs-fMRI data were preprocessed as follows:
volumes of the first 10 s were discarded, the head motion was corrected, and
intensity was normalized across the 4D volumes. Nuisance components of head
motion, cerebrospinal fluid, white matter, and cardiac- and large-vein-related
artifacts were regressed out using the FMRIB’s ICA-based Xnoiseifier (FIX)62. The
cleaned rs-fMRI data were registered onto the T1-weighted data and subsequently
onto the 3 mm isotropic Montreal Neurological Institute (MNI) standard space.
Spatial smoothing with a full width at a half maximum of 5 mm was applied.

Definition of seed regions for stepwise functional connectivity. We constructed
functional connectivity matrix from the preprocessed rs-fMRI data using partial
correlation with L2-norm (ridge regularization) of time series between different
brain regions63–65 defined using the Brainnetome atlas34 (Fig. 1b). We set the
regularization parameter with 0.5 derived from an existing study66. SFC analysis
requires the seed regions to be specified. Following our recent study21, we opted for
degree centrality, a graph-theoretical measure assessing the total strength of con-
nections of a given region, to associate it with an obesity phenotype (i.e., WHR),
which is a better factor predicting obesity-related complications compared to
BMI67–69. We linearly correlated degree centrality with WHR for every region and
corrected multiple comparisons using the false discovery rate (FDR) (q < 0.05)70.
The brain regions that showed significant associations were selected as seeds for
further SFC analysis. To visualize the associations at a large-scale network level, we
stratified the correlation coefficients of the identified regions based on seven
functional communities33, as well as subcortical regions of amygdala, hippo-
campus, globus pallidus, nucleus accumbens, putamen, caudate, and thalamus71.
To provide robustness of our findings, we conducted bootstrap-based assessments
1000 times. We randomly selected 90% of participants with replacement and
performed seed region identification by associating WHR and degree centrality
values. We calculated linear correlations between the whole-brain-wide obesity
phenotype-related map using the whole subjects with that using bootstrap samples.
For each iteration, we conducted the SFC analysis. We additionally calculated a
linear correlation between BMI and degree centrality to assess whether different
obesity phenotypes (i.e., BMI and WHR) show consistent results.

Stepwise functional connectivity analysis. Seeding from the seed regions, we
applied SFC analysis to the 95% thresholded and binarized connectivity matrix for
each individual (Fig. 1c). We then assessed how the whole-brain functional con-
nectivity changes their organization at different step distances27. Specifically, we
counted the number of all paths that connect a seed region and target regions (i.e.,
whole brain) at a given step distance27. For each step, the SFC matrix was z-
normalized. We assigned each participant to one of two distinct groups of healthy
weight or overweight based on BMI and WHR (healthy weight [n= 104]: 18.5 ≤
BMI < 25 and WHR ≤ 0.85 for female 0.9 for male; overweight [n= 75]: BMI ≥ 25
and WHR > 0.85 for female, 0.9 for male). For each step, we averaged individual
SFC matrices within each group and compared the averaged matrices between the
groups using two-sample t tests at a regional level. To further assess network-level
differences, we averaged the degree centrality of the regions involved in the same
brain network33,71, and computed between-group differences. Multiple compar-
isons were corrected for both tests using FDR (q < 0.05)70. Additional SFC analyses
using seeds from several subnetworks were performed, where each subnetwork
involved regions defined based on behavioral domains of the Brainnetome atlas
(http://atlas.brainnetome.org/bnatlas.html).

Association with eating behaviors. We explored the possible underlying beha-
vioral traits of our findings. The degree centrality of the networks that showed
significant between-group differences at the largest step distance was correlated
with eating behavior traits measured by a three-factor eating questionnaire
(TFEQ)72,73. The TFEQ included three subscales of dietary restraint, disinhibition,
and hunger, as well as the total score. We correlated degree centrality values and
each of the TFEQ scores based on permutation tests. Specifically, we randomly
shuffled participants and correlated degree centrality values with each TFEQ score
5000 times. This process yielded a null distribution of correlation coefficients, and
we considered the real correlation coefficient significant if it exceeded 95% of the
distribution. We further corrected multiple comparisons across different TFEQ
scores as well as brain networks using FDR70.

Sensitivity analysis.

(a) Age and sex. As age and sex showed significant differences between the
individuals with healthy weight and overweight, we additionally performed
SFC analysis after controlling these factors from the functional connectivity.

(b) TFEQ scores. As the eating behavior scores, especially dietary restraint and
disinhibition, were significantly different between the groups, we conducted
SFC analysis after controlling for TFEQ scores.

(c) Low- vs. high-health risk groups comparison. We investigated between-
group differences in SFC between low- and high-health risk groups defined
based on the world health organization (WHO) criteria36. The low-risk
group (n= 184) had WHR < 0.80/0.95 for female/male, and high-risk group
(n= 51) had WHR > 0.86/1.0. To adjust the imbalance of the number of
participants between the groups, we implemented bootstrap-based assess-
ment by randomly selecting 51 participants from the low-risk group, and
compared the degree centrality values across the steps. We repeated the
process 1,000 times.

Statistics and Reproducibility. We computed Pearson’s correlation between
degree centrality values of 246 brain regions and WHR to identify regions asso-
ciated with obesity. Multiple comparisons across brain regions were corrected using
Benjamini–Hochberg FDR procedure70. In SFC analysis, we performed two-sample
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t tests at a regional- and network-level to identify between-group differences in SFC
pattern between healthy weight and overweight groups. We furthermore correlated
the degree centrality values of the networks with eating behavior traits. We ran-
domly shuffled participants and calculated Pearson’s correlation 5,000 times to
build a null distribution. The p-value was determined by counting the number of
null correlation coefficients larger or smaller than the real correlation coefficient
(two-sided test). The robustness of the SFC patterns was assessed via a bootstrap-
based approach, which randomly selected 90% of participants with replacement
1,000 times. We furthermore assessed the robustness by controlling for age, sex,
and TFEQ scores that showed significant between-group differences using a linear
regression model.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data used in this study are available from the enhanced Nathan Kline Institute-
Rockland Sample (eNKI-RS) database (https://fcon_1000.projects.nitrc.org/indi/
enhanced/access.html). The eNKI-RS Institutional Data Access Committee grants
access to researchers who meet the criteria for access to confidential data upon
completion of the Data Usage Agreement. Researchers should contact the database
administrator to get access to data. Source data are provided with this paper as
Supplementary Data 1.

Code availability
The codes for data preprocessing are available at https://gitlab.com/by9433/funp, for
stepwise functional connectivity are at https://sites.google.com/site/bctnet, and for full
analysis are at https://github.com/hebinalee/SFC_obesity.
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