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Influenza virus neuraminidase regulates host CD8+

T-cell response in mice
Chung-Yi Wu1, Hong-Yang Chuang1 & Chi-Huey Wong 1,2✉

Influenza A virus (IAV)-specific CD8+ T-cell response was shown to provide protection

against pandemic and seasonal influenza infections. However, the response was often rela-

tively weak and the mechanism was unclear. Here, we show that the composition of IAV

released from infected cells is regulated by the neuraminidase (NA) activity and the cells

infected by NA-defective virus cause intracellular viral protein accumulation and cell death. In

addition, after uptake of NA-defective viruses by dendritic cells (DCs), an expression of the

major histocompatibility complex class I is induced to activate IAV-specific CD8+ T-cell

response. When mice were infected by NA-defective IAV, a CD8+ T-cell response to the

highly conserved viral antigens including PB1, NP, HA, M1, M2 and NS1 was observed along

with the increasing expression of IL10, IL12 and IL27. Vaccination of mice with NA-defective

H1N1 A/WSN/33 induced a strong IAV-specific CD8+ T cell response against H1N1, H3N2

and H5N1. This study reveals the role of NA in the IAV-specific CD8+ T-cell response and

virion assembly process, and provides an alternative direction toward the development of

universal influenza vaccines.
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Influenza A virus (IAV) has been a major threat to human
health, causing seasonal outbreaks and pandemics with high
morbidity and mortality especially involving more virulent

strains such as 1918 A/H1N1, H5N1, and H7N9. Vaccination has
been an effective strategy to control the spread of IAV, and the
protective antibodies induced by the vaccine are known to
recognize mainly the viral hemagglutinin (HA) domain and
partially the NA moiety1,2. However, seasonal vaccines may lose
their efficacy because of antigenic shift or drift in the circulating
virus population through genomic reassortment or antigen
mutations, respectively. Interestingly, certain populations,
including pregnant women infected by some novel strains of IAV
were asymptomatic with little antibody response, but had a steady
IAV-specific CD8+ T-cell response to IAV-infected cells1,2. In
addition, it was shown that humans, mice, and macaques with
positive IAV-specific CD8+ T-cell response had cross-protective
immunity against pandemic and seasonal influenza3–7, and the
targets of CD8+ T-cell response were the highly conserved pro-
teins from various IAV strains8. Despite the importance of CD8+

T-cell response in protection against influenza infection, the
reported cellular immune response is often relatively weak and
the mechanism has not been well understood.

In our previous study, we found that mice infected by a live
attenuated IAV without the stalk or catalytic domain of NA were
able to strongly induce the IAV-specific CD8+ instead of CD4+

T-cell response against the virus, leading to the development of a
live attenuated influenza vaccine (LAIV)4. In this study, we fur-
ther investigate the mechanism of such a selective immune
response and elucidate the role of NA in the induction of IAV-
specific CD8+ T cells against a broad range of IAV strains.

Results
NA activity regulated virus release. We previously reported that
immunization of mice with IAV without the stalk or catalytic
domain of NA induced a strong IAV-specific CD8+ T-cell
response with little antibody elicited4. In order to further
understand the mechanism, WSN viruses with defective NA
activity were generated by reverse genetics through deletion of the
stalk or the catalytic domain (LAIV WSN-NA or LAIV WSN-
NA-CD) or inactivation of the active site domain (LAIV WSN-
NA-AS1 or LAIV WSN-NA-AS2) (Fig. 1a, b, Table 1). After
A549 cells or MDCK cells were infected by defective NA viruses,
only a small number of viruses was released in the supernatant
compared to that from the cells infected by WSN with intact NA
(Fig. 1c). In addition, the viral RNA (vRNA) (Fig. 1d) and viral
proteins were accumulated inside the cells (Fig. 1e, Supplemen-
tary Fig. 7a), suggesting that the release of virus would require NA
activity (Supplementary Figs. 1 and 7b).

NA activity affected the virus-mediated host immune response.
To study whether the IAV without NA activity was the cause of
reduced viral release and accumulation of viral proteins inside the
infected cells leading to the biased host immune response4, we
performed an animal study (Fig. 2a). Mice infected with the NA-
defective virus (LAIV WSN-NA or LAIV WSN-NA-AS1) sur-
vived well and showed no body weight loss (Fig. 2b, c). The virus
titers were lower in the lungs compared to non-vaccinated or
WSN control groups with less interferon alpha and gamma (IFN-
α/γ) induced in the bronchial alveolar lavage (BAL) fluid on day 4
after infection (Fig. 2d–f), and little anti-HA antibody was pro-
duced (Fig. 2g).

In the H5N1 challenge study (Fig. 2h), mice vaccinated with
the NA-defective WSN also survived well without significant
body weight loss (Fig. 2i, j) and were able to clear different strains
of viruses from the lungs (Fig. 2k). Interestingly, the mice

challenged with H5N1 virus induced less IFN-α (Fig. 2l) but more
IFN-γ in BAL (Fig. 2m), indicating the activation of IAV-specific
T-cell response. These results suggest that the activity of NA is an
important factor in virulence, immune response, and probably is
a key factor to be considered for the development of live
attenuated influenza vaccines (LAIVs).

NA-defective viruses, expression of MHC, and activation of
IAV-specific CD8+ T cells. To understand how responses to NA-
defective viruses might activate IAV-specific CD8+ T cells, we
first investigated the interaction of dendritic cells (DCs) with
IAVs and IAV-infected cells to understand how they were pro-
cessed by DCs for presentation to T cells and other immune
cells9,10. After A549 cells were infected by NA-defective WSN
viruses, the cells showed increased viability (Fig. 3a) and released
fewer viruses into the supernatant as compared to the WSN-
infected cells (Fig. 3b). It was also found that the distribution of
some viral proteins inside the cell was not significantly affected,
probably due to the different processes of cell death in different
IAV-infected cells and viral proteins accumulated in NA-
defective virus-infected cells (Supplementary Fig. 2). The green
fluorescent signals were relatively weak compared to WSN
(Fig. 3c) in DCs co-cultured with mouse B cells labeled with 5(6)-
carboxyfluorescein diacetate N-succinimidyl ester (CFSE) and
infected with NA-defective WSN that had similar vRNA levels at
6-h post-infection to WSN-infected B cells (Fig. 3d), suggesting
that the NA activity might affect the uptake of IAV antigens by
DCs. When DCs were cultured with the cells infected by WSN,
more DCs with green fluorescent signal and more viral protein
M1 inside the DCs (Fig. 3e, Supplementary Fig. 7c) were
observed. After further incubation at 37 °C for 24 h, more viruses
were released to the supernatant (Fig. 3f), suggesting that WT
viruses replicated in DCs.

To further study the effects of DCs infected by IAV, the major
histocompatibility complex class I (MHC I) and class II (MHC
II), which are essential for presentation of the internalized
molecules after processing, were measured by flow cytometry9. In
general, we observed that when DCs were infected by WSN or co-
cultured with the cells infected by WSN, MHC II was more
expressed than MHC I (Fig. 3g, h, j, k), and the virus replicated
more in DCs (Fig. 3i). However, when DCs were co-cultured with
the cells infected by NA-defective WSN viruses, MHC I was more
expressed whereas MHC II was not expressed on DCs (Fig. 3j, k)
and little virus was released to the medium (Fig. 3l). We also
found that when DCs were incubated with inactivated IAVs,
more MHC II than MHC I was expressed (Supplementary Fig. 3a,
b); however, when DCs were incubated with the cells treated with
the inactivated virus, the expression of MHC I/II was not
increased (Supplementary Fig. 3c, d).

MHC I-expressed DCs can prime and activate the proliferation
of CD8+ T cells and secretion of IFN-γ9. LAIV WSN-NA treated
mice would induce IAV-specific CD8+ T cells4. When DCs were
co-cultured with the B cells infected by NA-defective viruses, the
isolated DCs were incubated with CD8+ T cells from mice treated
with different IAVs. As expected, the DCs induced a proliferation
of CD8+ T cells (Fig. 3m) accompanied with IFN-γ secretion
(Supplementary Fig. 4a), especially when DCs were incubated
with the CD8+ T cells isolated from the mice vaccinated with
LAIV WSN-NA produced from MDCK cells. This result
suggested that the uptake of antigens by DCs from the cells
infected by NA-defective viruses would prime and activate the
IAV-specific CD8+ T cells.

The IAV-specific CD8+ T cells induced by NA-defective WSN
were able to recognize the epitopes from different IAV proteins
such as PB1, NP, HA, M1, M2, and NS1, as shown by their
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secretion of granzyme B (GrzB) by flow cytometry (Fig. 3n). In
addition, the CD8+ T cells were more activated when incubated
with different combinations of viral peptides (Supplementary
Fig. 4b). Furthermore, when the cells infected by NA-defective
WSN were incubated with different ratios of CD8+ T cells, the
lysis of the IAV-infected cells (Fig. 3o) and the secretion of IFN-γ

(Supplementary Fig. 4c) showed a dose-dependent response,
suggesting that the NA-defective virus could induce an immune
response in which CD8+ T cells recognize and eliminate the
cells infected by IAV. The observation that vaccination of mice
with LAIV WSN-NA elicited a broadly protective immune
response against different strains and subtypes of IAVs, including
WSN, A/Puerto Rico/8/1934 (H1N1), A/Solomon Islands/3/2006
(H1N1), A/New Caledonia/20/1999 (H1N1), A/California/07/
2009 (H1N1), A/Brisbane/10/2007 (H3N2), and H5N1 in the
challenge study suggests that LAIV WSN-NA induced IAV-
specific CD8+ T cells have the ability to recognize many
conserved viral antigens (Supplementary Fig. 5).

NA-defective viruses and expression of cytokines in host
immune response. The mechanism of immune response to IAV
infection that causes tissue injury in the host is complicated,
and it is known that the cellular activities of innate and adaptive
immune response can be affected by cytokines11,12. Here we
found that mice infected by WSN induced higher levels of
IFNα, IFNγ, IL-2, IL-4, and IL-6 known to activate the antibody
response, while the NA-defective WSN induced higher levels of
IL-10, IL-12, and IL-27 known to trigger the cellular immune
response (Fig. 4a–h)13–18. In a recent study, IL-17D was shown
to be a critical cytokine during IAV infection to suppress the
activity of CD8+ T cells through regulation of dendritic cells19.
We also found that mice immunized with NA-defective WSN
induced a very low level of IL-17D (Fig. 4i), likely minimizing
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Fig. 1 NA activity controls the release of virus. a Schematic overview of IAV and constructs of WSN and NA-defective WSNs: LAIV WSN-NA (deletion of
the stalk and catalytic domains of NA) and LAIV WSN-NA-AS1 (inactivation of the active site of NA through R102A mutation). HA and NA are the two
major surface glycoproteins of IAV and M2 is the third surface protein of IAV with ion channel activity. The matrix protein M1 is the most abundant protein
to maintain viral structure. Viral RNA (vRNA) is the viral genome associated with the nucleoprotein (NP) to form the complex of vRNP. PB1, PB2, and PA
are the components of RNA-dependent RNA polymerase. The NS1 protein is an interferon antagonist to facilitate viral replication. N, N-terminal
cytoplasmic domain and cytoplasmic tails; TM, transmembrane domain. Purple Ψ, the glycosylation site; light blue ɸ, the active site of NA (AS). b NA
activity was measured by the 4-MUNANA assay4. After A549 cells were infected with various viruses at an MOI of 3, the titers of viruses released from
A549 cells (c) and the amount of vRNA (d) in A549 cells at 8 and 24-h post-infection were measured. e the total lysates from A549 cells were collected at
24-h post-infection by WSN and NA-defective WSNs (see Table 1) for analysis of the intracellular viral proteins HA, NP, and M1 by western blot. The filter
was probed with anti-NA, anti-NP, anti-M1, and anti-β-actin antibodies. bMean ± SD of five independent experiments. c, dMean ± SD of three independent
experiments. *P < 0.001.

Table 1 Characterization of different recombinant viruses.

Recombinant
virus (name)

Distinguishing feature

WSN Wild type
44-G Deleted the glycosylation site 44 (N44A)
72-G Deleted the glycosylation site 72 (N72A)
44-72-G Deleted the glycosylation site 44 and 72

(N44A, N72A)
44-72-219-G Deleted the glycosylation site 44, 72, and

219 (N44A, N72A, N219A)
LAIV WSN-NA Deleted the stalk and catalytic domain

(S31stop)
LAIV WSN-NA-CD Deleted the catalytic domain (L75stop)
LAIV WSN-NA-AS1 Deleted the active site domain 1 (N102A)
LAIV WSN-NA-AS2 Deleted the active site domain 2 (N135A)
WSN-NA-G388A Changed the amino acid residue 388G to A

WSN, LAIV WSN-NA, and WSN-NA-AS1 (bold words) are the major recombinant viruses used
in this research.
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its suppression of the CD8+ T-cell induction (Fig. 4j, k) and
activation (Fig. 4l, m). This result was supported by the
observation that IL-17D was able to reduce the secretion of
INFγ from CD8+ T cells (Fig. 4j, k) or IAV-specific CD8+

T cells (Fig. 4l, m)19. We speculate that when IAV was taken by
DCs, MHC II, and the cytokines including IL-2, IL-4, and IL-6
were expressed to activate CD4+ T cells, and IL-17D was
induced to suppress the CD8+ T-cell activity. However, the
expression of MHC I on DCs to prime the IAV-specific CD8+

T cells required the uptake of IAV-infected cells and the
cooperation of cytokines such as IL-10, IL-12, and IL-27
(Fig. 4n).

Severe influenza infection causes a cytokine storm that
originates from the hyperinduction of proinflammatory cytokine
production20,21. Interestingly, the mice with robust IAV-specific
CD8+ T-cell activation could avoid the cytokine storm caused by
highly pathogenic IAV infection. When mice were vaccinated with
LAIV WSN-NA followed by infection with a high lethal dosage of
H5N1, the mice produced less total protein in the BAL fluid and
lower levels of IFN-α, IL-2, IL-4, IL-6, and IL-17D, but higher
levels of IFNγ, IL-12, and IL-27 to activate the IAV-specific CD8+

T-cell response, suggesting that the NA activity would affect the
course of host immune response to IAV infection (Fig. 5).

NA activity and composition of viruses. Unexpectedly, we also
found that the composition of released viruses from IAV-infected
cells was affected by NA-defective strains. At the late stage of NA-
defective IAV infection in MDCK cells (on 18-h post-infection),
the cells released some particles (LAIV WSN-NA(p) and LAIV
WSN-NA-AS1(p)) that had different distributions of proteins
(Supplementary Fig. 6a). These particles contained more M2 (ion
channel) protein and less HA protein (Fig. 6a, Supplementary
Fig. 7d), but still had the viral genome (vRNA) (Supplementary
Figs. 6b, 7e) albeit with lower HA-sialic acid binding ability
(Supplementary Fig. 6c), and were mainly elongated, filamentous,
and irregular-shaped particles (Fig. 6b–d).

Application to universal vaccine design. After A549 cells were
infected by LAIV WSN-NA(p) and LAIV WSN-NA-AS1(p)
produced from MDCK cells, there were fewer viruses released
into the supernatant (Fig. 6e), and the intracellular viral genome
(Fig. 6f) and protein M1 (Supplementary Figs. 6d, 7f) were
accumulated, along with a reduction in viable cells (Fig. 6g).
When mice were infected with 1 × 106 pfu of LAIV WSN-NA(p)
or LAIV WSN-NA-AS1(p) via oral administration, they survived
well with no body weight loss, and were able to effectively clear
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the infection particles (Supplementary Fig. 6e–g). In addition, the
mice induced less IFN-α/γ in the BAL fluid (Supplementary
Fig. 6h, i) and produced very low levels of anti-HA antibodies
(Fig. 6h), indicating that these particles could be used as effective
LAIVs with low pathogenicity. In the H5N1 challenge study, the
immunized mice were able to survive well without body weight
loss (Fig. 6i, Supplementary Fig. 6j), clear the virus from the lungs
(Supplementary Fig. 6k), and induce less IFN-α (Supplementary
Fig. 6l) and more IFN-γ (Fig. 6j), suggesting that the IAV-specific
CD8+ T-cell response was activated. Since the immune responses
of LAIV WSN-NA(p) and LAIV WSN-NA-AS1(p) were similar
to that of NA-defective WSN, we concl uded that the induction of
IAV-specific CD8+ T-cell response does not require the release of
much infective virus, further supporting the important role of NA
in the process of immune response.

Discussion
It is known that infection with one subtype of IAV may induce
IAV-specific CD8+ T cells to target different subtypes of
IAV6,8,22, or IAV-specific CD4+ T cells to target that specific

subtype of IAV8,23. However, patients with severe IAV infection
usually have a limited or severely compromised CD8+ T-cell
proliferation and differentiation response to eliminate the
virus6,24,25. Our study indicated that though CD4+ T cells were
generally induced in response to IAV infection, and IL-17D was
expressed to suppress the CD8+ T-cell activity, MHC I was
expressed to activate CD8+ T cells in the presence of NA-
defective IAV. In addition, the mice infected with WT IAV did
not generate higher CD8+ T cells through induction of cytokines
such as IL-10, IL-12, and IL-2718,26.

Recent studies have suggested strategies for the design of LAIV
to elicit CD8+ T cells for cross protection4,27–30, and uptake of
large amounts of target antigens by DCs will stimulate an efficient
activation of CD8+ T cells31–34. However, our study showed that
the viral particles released from MDCK cells infected by NA-
defective WSN would provide sufficient antigens for DCs to
prime the IAV-specific CD8+ T cells and eliminate IAV-infected
cells through recognition of conserved cytotoxic T lymphocyte
epitopes of various IAV antigens such as PB1, NP, HA, M1,
and NS1.
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During the process of influenza infection, the cytoplasmic tails
of HA and NA play an important role in the budding process.
The concentration of HA and NA in lipid raft provides a local
alteration in membrane curvature resulting in the interaction of
the cytoplasmic tails of HA and NA with M1 protein to start the
budding process. M1 recruits M2 to the budding site for mem-
brane scission and NA then cleaves the sialic acid linkage on the
cell surface to release the budding virion35–38. In our study, the
NA-defective viruses can still express the cytoplasmic tails of NA
and produce infection particles in MDCK cells but not in A549
cells, probably because the MDCK cell is highly polarized and
susceptible for IAV replication39. Surprisingly, these infection
particles have different compositions, especially with increase in
M2 and decrease in HA expression, suggesting that NA is used
not only for the cleavage of sialic acid ligands to release virions
but its ectodomain also affects virion composition in the budding
process.

In summary, this study has demonstrated that the NA-
defective WSN or the viral particles produced from MDCK cells

infected with NA-defective WSN can be used as LAIV to effec-
tively induce IAV-specific CD8+ T-cell response to protect
against different influenza strains such as H1N1, H3N2, and
H5N1. The LAIV particles can be easily produced and this
approach may lead to a new direction toward the development of
a universal influenza vaccine.

Methods
Cell lines and viruses. Madin-Darby canine kidney cells (MDCK) and human
embryonic kidney cells (HEK293T) were maintained in Dulbecco’s modified
Eagle’s medium (DMEM) (Invitrogen, Rockville. MD). A549 human adenocarci-
noma alveolar basal epithelial cells were kept in F-12K medium (Invitrogen,
Rockville, MD). All media were supplemented with 10% heat-inactivated fetal
bovine serum (FBS) (Thermo Scientific) and antibiotics (100 U/ml penicillin G and
100 gm/ml streptomycin). The MDCK cells with stable NA expression were pre-
pared by cloning the full-length NA (from WSN strain) into a cDNA expression
lentivector (pLAS2w.Ppuro) to generate NA-expression lentivirus using the pro-
tocol provided by the National RNAi Core Facility, Academia Sinica, Taiwan (rnai.
genmed.sinica.edu.tw) and were maintained in DMEM medium4. Influenza A
virus, A/WSN/33 strain was used in the studies.
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Antibodies. Mouse monoclonal anti-HA, anti-NA, and anti-NP antibodies were
obtained from Sino Biological. Mouse monoclonal anti-β-actin and rabbit mono-
clonal anti-MHCII antibodies were purchased from Millipore. Goat polyclonal
anti-M1 was purchased from Santa Cruz Biotechnology. Mouse monoclonal anti-
M2 antibody was obtained from ABcan. Rabbit polyclonal anti-granzyme B anti-
body was purchased from Aviva Systems Biology. Rabbit monoclonal anti-MHC I
antibody was obtained from Invitrogen. All commercial antibodies were validated
for specificity by companies and us via western blot.

Virus replication rate. Monolayer cultures of MDCK and A549 cells in 12-well
dishes were washed twice with 1× phosphate-buffered saline (PBS). The cells were
infected with variants of modified influenza virus at an MOI of 3 in serum-free
medium containing 0.1 g/mL L-(tosylamido-2-phenylethyl) chloromethyl ketone
(TPCK)-trypsin (Pierce) and incubated at 37 °C for 1 h; cells were washed twice
with 1x PBS and then incubated with complete medium. At different time points,
the supernatant was collected to determine the virus titer by plaque assay in MDCK
cells36.

Plaque assay. Monolayers of MDCK cells (for WSN) or MDCK cells with stable
NA expression (for NA-defective WSN such as LAIV WSN-NA, LAIV WSN-NA-
AS1, LAIV WSN-NA(p), and LAIV WSN-NA-AS1(p)) in 6-well dishes were
washed twice with 1x PBS. The cells were then inoculated with serial 10-fold
dilutions of the virus in serum-free medium containing 0.5 μg/mL TPCK-trypsin
and incubated at 37 °C for 1 h. Afterward, the cells were washed and overlaid with

MEM containing 0.5% agarose (Lonza) and 0.5 gm/ml TPCK-trypsin, and after
3 days, fixed with 10% formaldehyde and stained with 0.1% crystal violet solution4.

Generation of recombinant viruses. Eight fragments of A/WSN/33 viral genome
were amplified by RT-PCR. As shown in Table 1, we mutated the N residue to A in
the putative sequon N-X-S/T to delete the glycosites 44, 72, and 219 (i.e., N44A
mutation designated as 44-G), or added a stop codon to the first amino acid residue
of the stalk or catalytic domain in the NA genome to remove the stalk and/or
catalytic domain (designated as LAIV WSN-NA (S31stop) and LAIV WSN-NA-
CD (L75stop)) of NA as previously described4, or changed the designated amino
acid in the active site (AS1: R102A (designated as LAIV WSN-NA-AS1); AS2:
D135A (designated as LAIV WSN-NA-AS2)) by site-directed mutagenesis. The
viral cDNAs were inserted into pcDNA3.1 containing the pol I and CMV promoter
with the method similar to the way pHW2000 was generated. The recombinant
viruses were generated by the 8-plasmid co-transfection method into MDCK/
293T cells with stable NA expression following the method described previously by
our group4. Supernatants were collected, titrated, and frozen at −80 °C until use.

RNA isolation, reverse transcription, and quantitative PCR. The total intra-
cellular or virus particle RNA was extracted by using Trizol (Invitrogen) and
EasyPrep total RNA kit (TOOLS, Taiwan) according to the manufacturer’s pro-
tocols. The reverse transcription (RT) reaction was carried out using the Super-
Script III first-strand synthesis system (Invitrogen). To synthesize the cDNA of
vRNA, the influenza A-specific primer (uni-12; 5′-AGCAAAAGCAGG-3′) was
used. The primer with the sequence 5′-AGGTCCAGACGCAGGATGGC-3′ was
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used for β-actin in the RT reaction36. To quantify vRNA, quantitative PCR
was performed by using SYBR green 1 (Roche, Germany). To detect influenza
vRNA, the primers used were 5′-AATAAGACGAATCTGGCGCCAAGC-3′ and
5′-CAGCCGTTGCATCGTCACCA-3′. To quantify β-actin, the primers used
were 5′-GCAAGCAGGAGTATGACGAGTCCG-3′ and 5′-GCATTTGCGGTGG
ACGATGG-3′. To quantify the total intracellular and cytoplasmic vRNA of
influenza A virus, the threshold cycle (CT) values of vRNA were normalized to
β-actin36. For amplification of influenza A NP, HA, NA, and M segments, the
primer sets for NP were 5′-ATGGCGACCAAAGGCACCAAAC-3′ and 5′-CTTTG
TCATAAAGGATGAGTTC-3′, for HA were 5′-ACAATATGTATAGGCTACC
ATG-3′ and 5′-TCTGTATTGAATGGATGGGATG-3′, for NA were 5′-ATGAAT
CCAAACCAGAAAATAATAAC-3′ and 5′-AGATGAATTGCCGGTTAATAT
C-3′, and for M were 5′-ATGAGTCTTCTAACCGAG-3′ and 5′-ACTGGCAAGT
GCACCAGCAG-3′36,40.

Preparation of WSN and NA-defective WSN viruses for immunogenicity test.
WSN, LAIV WSN-NA(p) and LAIV WSN-NA-AS1(p) were cultured in MDCK
cells, and LAIV WSN-NA and LAIV WSN-NA-AS1 viruses were cultured in
MDCK cells with stable expression of NA. For the preparation of inactivated
viruses, viruses were inactivated by using 0.1% BPL (Acros Organics, Geel, Bel-
gium) at room temperature for 24 h followed by dialysis for 24 h against PBS
buffer. Inactivation of virus was confirmed by performing culture on MDCK cells4.
For analysis of the virulence of recombinant virus, each group of ten female 4–6-
week-old BALB/c mice was intranasally inoculated with 50 μL of virus (1 × 103 pfu
for WSN (UL) and 1 × 106 pfu for WSN, LAIV WSN-NA, LAIV WSN-NA-AS1,
LAIV WSN-NA(p), or LAIV WSN-NA-AS1(p)). The survival rate and body weight
changes were recorded daily for 14 days post-infection. For the immunogenicity
test, mice were immunized twice intranasally with 1 × 103 pfu of WSN (UL), or
with 1 × 106 pfu of LAIV WSN-NA, LAIV WSN-NA-AS1, LAIV WSN-NA(p), or
LAIV WSN-NA-AS1(p) on days 0 and 21. One week after the booster immuni-
zation, mice were anesthetized and inoculated intranasally with 10xLD50 of H5N1
virus and separated into three groups. In the first group, the survival rate and body
weight changes were recorded daily for 14 days post-infection. In the second group,
the BAL fluids were collected to measure the production of IFN-α/γ, IL-2, IL-4, IL-
6, IL-10, IL-12, IL-17D, and IL-27, and the extent of IAV replication; and in the
third group, the serum sample was collected for analysis of antiserum production.
For the challenge assay, the immunized mice were inoculated intranasally with 10 ×
LD50 of WSN, A/Puerto Rico/8/1934 (H1N1), A/Solomon Islands/3/2006 (H1N1),
A/New Caledonia/20/1999 (H1N1), A/California/07/2009 (H1N1), A/Brisbane/10/
2007 (H3N2), and H5N1, and separated into two groups. In the first group, the
survival rate and body weight changes were recorded daily for 14 days after the
infection. In the second group, the BAL fluids were collected to measure IAV

replication. All animal experiments were evaluated and approved by the Institu-
tional Animal Care and Use Committee of Academia Sinica.

Hemagglutination inhibition assay. After serum samples were serially diluted
twofold in a 96-well plate, 4 hemagglutination units (HAU) of WT WSN were
added to each well for 1 h at room temperature. After incubation, 25 µL of a 2%
(vol/vol) turkey erythrocyte solution was added to give a total volume of 125 µL
and the mixture was incubated for 1 h at room temperature. The HAI titer of
individual serum samples was determined to be the inverse of last dilution where
cells were not agglutinated4.

Measurement of IFN-α/γ and other cytokines. IFN-α/γ, IL-2, IL-4, IL-6, IL-10,
IL-12, IL-17D, and IL-27 were measured by using ELISA kit according to the
manufacturer’s protocol (IFN-α: Cloud-Clone Corp; IFN-γ: Boster Biological
Technology Co., Ltd: IL-2, IL-4, IL-6, IL-10, IL-12, IL-17D, and IL-27: R&D
Systems).

Immunofluorescence microscopy. MDCK cells grown in slide chambers were
infected by WSN, LAIV WSN-NA, or LAIV WSN-NA-AS1 at an MOI of 3. After
24 h, the cells were fixed with 4% paraformaldehyde and permeabilized with 0.5%
saponin. After being blocked with 0.25% bovine serum albumin, the cells were
incubated with mouse monoclonal anti-HA, anti-NP, anti-M2, and anti-M1 anti-
bodies (ABcam). After extensive washes, the cells were stained with goat anti-
mouse secondary antibody conjugated to Alexa Fluor 488 (ABcam). Last, images
were captured with an inverted fluorescence microscope (Leica DMI6000).

Uptake of antigens from IAV-infected cells by DCs. B cells from normal mice
were infected with LAIV or incubated with inactivated WSN (BPL treatment) at an
MOI of 1 in RPMI 1640 medium containing 0.5 μg/ml TPCK-trypsin and incu-
bated at 37 °C for 1 h. The infected cells were washed five times with PBS and
labeled with CFSE (Merck) (1 μM CFSE for 10 min at room temperature, then
washed twice with complete RPMI 1640 plus 10% FCS), then incubated with GM-
CSF-cultured bone marrow-derived dendritic cells (BMDC) (ratio: 1:3) in DC
culture medium (RPMI 1640 supplemented with 20 ng/mL murine GM-CSF (R&D
Systems), 10% FBS, 50 μM 2-ME, 100 units/mL penicillin, and 100 μg/mL strep-
tomycin) for 24 h at 37 °C. After incubation, DCs were isolated by M-pluriBead
Cell Separation kit (pluriSelect) following the procedure from the company. The
number of DCs with the green fluorescent signal was analyzed by flow cytometry,
and viral proteins were analyzed by western blot41. Some isolated DCs were
incubated in DC culture medium for another 24 h at 37 °C for detection of virus
replication.
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released from LAIVWSN-NA(p) and WSN-NA-AS1(p) infected A549 cells, and f vRNA in A549 cells infected with the NA-deffective viral particles at 24-h
post-infection. g Cell viability of A549 cells infected with the NA-deffective viral particles. h The sera of immunized mice were analyzed using
hemagglutination inhibition assay to measure the anti-HA antibody level. i Analysis of the survival rate of mice immunized with WSN, LAIV WSN-NA(p),
WSN-NA-AS1(p), or PBS after challenge with H5N1. j Following (i), IFNγfrom BAL fluid was measured at day-4 post-infection. The control indicated the
group of mice without IAV infection. e, f, g Mean ± SD of three independent experiments. h, j Mean ± SD of five independent experiments. i Ten
independent experiments are shown. *P < 0.001.
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MHC I and MHC II expression on DCs infected by IAV or co-cultured with
IAV-infected cells. DCs were infected with live WSN or incubated with inac-
tivated WSN (BPL treatment) at an MOI of 3 in RPMI 1640 medium containing
0.5 μg/ml TPCK-trypsin and incubated at 37 °C for 1 h. Then, the DC cells were
washed twice and incubated in DC culture medium for 24 h at 37 °C, then
analyzed for MHC I and MHC II expression by flow cytometry. For the study of
DCs interacting with IAV-infected cells, IAV-infected B cells (as described
previously) were co-cultured with DCs (ratio: 3:1) in DC culture medium for 24
h at 37 °C. Then, DCs were isolated by using M-pluriBead Cell Separation kit
(pluriSelect) and analyzed to measure the MHC I and MHC II expression by
flow cytometry.

IAV-infected cells regulate DCs to affect the proliferation of CD8+ T cells.
After DCs were incubated with the B cells infected by WSN or LAIV WSN-NA virus,
DCs were isolated and co-cultured with CFSE-labeled CD8+ T cells (1 μM CFSE for
10min at room temperature, then washed twice with complete RPMI 1640) (ratio:
1:2) from mice treated with PBS, WSN, or LAIV WSN-NA in complete RPMI 1640
with 0.5 ng/mL IL-7 (R&D Systems), 30 U/mL IL-2 (R&D Systems), and 50 μM 2-ME
for 24 h at 37 °C. CD8+ T cells were then isolated by Dynabeads Untouched Mouse
CD8 Cells kit (Invitrogen) following the procedure from the company and the
number of cells with FITC signal was analyzed by flow cytometry.

Suppression of CD8+ T-cell activity by IL-17D. After DCs incubated with the B
cells infected by LAIV WSN-NA virus, the DCs were isolated and co-cultured with
CD8+ T cells (from PBS or LAIV WSN-NA treated mice) (ratio: 1:2) and IL-17D
(0–200 ng/mL, R&D Systems). After 3 days, the supernatants were collected to
measure the IFN-γ production by ELISA kit. Heat inactivated IL-17D was prepared
by heating at 56 °C for 30 min.

CD8+ T cytotoxicity assay. CD8+ T cells were isolated from the mice immu-
nized with WSN, LAIV WSN-NA, or PBS using Dynabeads Untouched Mouse
CD8 Cells kit (Invitrogen) and co-cultured with CFSE-labeled B cells infected
with LAIV WSN-NA at an MOI of 3 in complete RPMI 1640. The co-cultures
were run at different cell ratios (i.e., 1:1, 2:1, and 4:1 CD8+ T cell/IAV-infected
cell) in 200 μl of RPMI 20% in U-bottom 96-well plates. Afterward, the mortality
of IAV-infected cells was scored by flow cytometry. The value of cell mortality
was normalized to that of IAV-infected cells without co-culturing with CD8+

T cells as IAV-infected cells would cause cell apoptosis.

Flow cytometry. Cells were harvested and suspended in FACS buffer [2% (vol/vol)
FBS in PBS] at a density of 106/ml. The antibody used in this study was anti-MHC
I, anti-MHC II, or anti-granzyme B antibody. Cellular fluorescence intensity was
analyzed by FACS Canto (BD Biosciences) and FCS Express 3.0 software.

Cell-binding assay. Turkey erythrocytes were pretreated with different amounts
(0–60 μg/mL) of Vibrio cholerae neuraminidase [receptor destroying enzyme
(RDE)] (Sigma) for 60 min at 37 °C, then washed once with PBS and divided into
2% (vol/vol) erythrocyte solutions in PBS. Twenty-five microliters of each 2%
solution were added to a solution of virus containing the same amount of M1
protein (determined by western blot) to give a total volume of 125 μL. The virus
and RDE-treated erythrocytes were incubated for 1 h at room temperature, and
agglutination was then measured. Data were expressed as the maximal con-
centration of RDE that gave full agglutination4.

Transmission electron microscopy. MDCK cells were grown on ACLAR
embedding film with 7.8-mil thickness (E, M, S) for 1 day followed by infection
with influenza virus at an MOI of 5. At 24 hpi, the virus-infected cells were rinsed
with 0.1 M cacodylate buffer and fixed with 2.5% glutaraldehyde in 0.1 M caco-
dylate buffer at 4 °C for 30 min. Then cells were postfixed with 1% osmium tetr-
oxide in 0.1 M cacodylate for 30 min, stained with 1% uranyl acetate and lead
citrate for 1 h, dehydrated with ethanol, and embedded with resin. After baking, the
sample was cut into 80-nanometer thin sections using ultramicrotome and
examined with Tecnai G2 Spirit TWIN (FEI Company)36.

Statistics and reproducibility. All data were presented as means ± standard error
of the mean. The numbers of sample and replicates of experiments were shown as
mentioned in the figure legends. Comparisons between groups were determined
using Student’s t test. Differences were considered significant at *P < 0.001, **P <
0.05. All data were analyzed using GraphPad Prism 6 software.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All relevant data are available from the authors upon request and the corresponding
author will be responsible for replying to the request. Source data underlying plots shown

in figures are provided in Supplementary Data 1. Full blots are shown in Supplementary
Fig. 7 of Supplementary Information.
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