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A normative modelling approach reveals
age-atypical cortical thickness in a subgroup
of males with autism spectrum disorder
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Understanding heterogeneity is an important goal on the path to precision medicine for
autism spectrum disorders (ASD). We examined how cortical thickness (CT) in ASD can be
parameterized as an individualized metric of atypicality relative to typically-developing (TD)
age-related norms. Across a large sample (n =870 per group) and wide age range (5-40
years), we applied normative modelling resulting in individualized whole-brain maps of age-
related CT atypicality in ASD and isolating a small subgroup with highly age-atypical CT. Age-
normed CT scores also highlights on-average differentiation, and associations with beha-
vioural symptomatology that is separate from insights gleaned from traditional case-control
approaches. This work showcases an individualized approach for understanding ASD het-
erogeneity that could potentially further prioritize work on a subset of individuals with cortical
pathophysiology represented in age-related CT atypicality. Only a small subset of ASD
individuals are actually highly atypical relative to age-norms. driving small on-average case-
control differences.
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consensus label we give to a diverse collection of patients

with social-communication difficulties and pronounced
repetitive, restricted, and stereotyped behaviours!. Beyond the single
label of ASD, patients are in fact widely heterogeneous in phenotype,
but also with regards to the diversity of different aetiologies?. Even
within mesoscopic levels of analysis such as examining brain
endophenotypes, heterogeneity is the rule rather than the exception’.
At the level of structural brain variation, neuroimaging studies have
identified various neuroanatomical features that might help identify
individuals with autism or reveal elements of a common underlying
biology’. However, the vast neuroimaging literature is also
inconsistent, with reports of hypo- or hyper-connectivity, cortical
thinning versus increased grey or white matter, brain overgrowth,
arrested growth, or even lack of morphological difference altogether,
etc.4-13, leaving stunted progress towards understanding mechanisms
driving cortical pathophysiology in ASD and translating neuroima-
ging into clinical utility.

Multiple explanations could be behind this inconsistency
across the literature. Methodology widely differs across studies
(e.g., low statistical power, different ways of estimating mor-
phology or volume) and is likely a very important factor®!4.
Initiatives such as the autism brain imaging data exchange
(ABIDE!); have made it possible to boost sample size by pooling
together data from several different studies. However, within-
group heterogeneity in the autism population also immediately
stands out as another factor obscuring consistency in the litera-
ture, especially when the dominant approach of case-control
models largely ignores heterogeneity within the ASD population.
In particular, some autism-related heterogeneity reported in lit-
erature might be explained by factors such as age!®!7. Indeed,
with regards to structural brain features of interest for study in
ASD (e.g., volume, cortical thickness (CT), surface area), these
features change markedly over development and may follow
altogether different trajectories in ASD18-20. Typical approaches
towards dealing with age revolve around group statistical mod-
elling of age as the variable of interest or removing age as a
covariate and then parametrically modelling on-average differ-
ences between cases versus controls. While these are common
approaches in the literature, they do not immediately provide
individualized estimates of age-related atypicality nor do they
account for individual variation in developmental trajectories. In
contrast, normative models of age-related variation may likely be
an important alternative to these approaches and may mesh
better with some conceptual views of atypicality in ASD as being
an extreme of typical population norms?!. In contrast to the
canonical case-control model, normative age modelling allows for
computation of individualized metrics that can hone in on the
precision information we are interested in—that is, atypicality of
development expressed in specific ASD individuals relative to
non-ASD norms. Such an approach may be a fruitful way forward
in isolating individuals who are ‘statistical outliers’. The reasons
behind why these individuals are outliers relative to non-ASD
norms may be of potential clinical and/or mechanistic impor-
tance. Furthermore, conventional case-control analyses may
obscure more subtle individual differences as they assume on-
average group differences. This is especially important in light of
previously reported null-findings'®. Indeed, if we are to move
forward towards stratified psychiatry and precision medicine for
ASD?2, we must go beyond case-control approaches and employ
dimensional approaches that can tell us information about which
individuals are atypical and how or why they express such aty-
picality. Thus, this approach aims to provide more than a mere
statistical advance, it aims to better conceptualize and capture
personalized inferences that may ultimately result in more
meaningful and targeted clinical inference.

Q utism spectrum disorder (ASD) is a clinical behavioural

In the present study, we employ normative modelling on age-
related variability as a means to individualize our approach to
isolate specific subsets of patients with very different neural fea-
tures. Here we focus specifically on a neural feature of cortical
morphology known as CT. CT is a well-studied neuroanatomical
feature thought to be differentially affected in autism and has
received increasing attention in recent years23-27. Recent work
from our group also identified a genetic correlate for autism-
specific CT variation despite considerable heterogeneity in group-
specific CT in children with autism?®. A study examining ABIDE
I cohort data discovered case-control differences in CT, albeit
very small in effect sizel4. Similarly, the most recent and largest
study to date, a mega-analysis combining data from ABIDE and
the ENIGMA consortium, also indicated very small on-average
case-control differences in CT restricted predominantly to areas
of frontal and temporal cortices, and indicate very subtle age-
related between-group differences and substantial within-group
age-related variability?”. Another recent study also highlighted
widespread differences in CT and several differences that were
sex-specific’. Overall, these studies emphasize three general
points of importance. First, age or developmental trajectory is
extremely important!629-31. Second, given the considerable
within-group age-related variability and the presence of a large
majority of null and/or very small between-group effects, rather
than attempting to find on-average differences between all cases
versus all controls, we should shift our focus to capitalize on this
dimension of large age-related variability and isolate autism cases
that are at the extremes of this dimension of normative varia-
bility. Third, biological sex is likely to be an important modulator
of ASD-specific morphological differences’.

Given our approach of age-related normative CT modelling, we
first compare the utility of age-related normative modelling
directly against more traditional case-control models. We then
describe the prevalence of ASD cases that show meaningful age-
related deviance in CT (i.e. >2 standard deviations from age-
related norms or outside the 95% population confidence bounds)
and show how a metric of continuous variability in age-related
atypicality in CT is expressed across the cortex in autism. Finally,
we explore age-atypical CT-behaviour associations and assess
whether such dimensional analyses associated with behaviour
identify similar or different regions than typical case-control
analyses. To show applicability of this approach we also applied
the same method to other measures of neuroanatomy; gyrifica-
tion, volume and surface area. Results and analyses of these
metrics can be found in the supplementary materials and all code
and data used are available on GitHub3?.

Results

Age-related normative modelling. Normative modelling of age-
related CT effects was done utilizing male-only data from the
typically developing group (TD) (see “Methods” section for full
sample description, Fig. 1 for a schematic overview and Supple-
mentary Figs. 1 and 2 for more demographics information). All
analyses were done on CT averaged within 308 cortical regions33.
We wused a local polynomial regression fitting procedure
(LOESS)*43>, where the local width or smoothing kernel of the
regression was determined by the model that provided the overall
smallest sum of squared errors using hyperparameter optimization
across 5-100% of the full age range using Brent’s method3® as
implemented in the R optim function from the stats package.
We also assessed consistency of our output using centiles scoring
and consistency of the normative model using extensive boot-
strapping and sensitivity analyses, both showed high outcome
consistency (see “Methods” section and Supplementary Materials;
Supplementary Figs. 3-5). To align the TD and ASD groups,
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A| Age distribution B| Age normative modelling overview
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Fig. 1 Demographics and descriptive statistics. a Histogram of age distribution per sex. Females were excluded from further analyses due to known sex

differential effects in autism and the lack of available data to estimate population norms (see “Methods” section for details). b Schematic overview of normative
modelling. In the first instance LOESS regression is used to estimate the developmental trajectory on CT for every individual brain region to obtain an age-
specific mean and standard deviation. Then we computed median for each one-year age-bin for these mean and median neurotypical estimates to align them
with the ASD group. Next, for each individual with autism and each brain region the normative mean and standard deviation are used to compute a w-score
relative to their neurotypical age-bin. Contrary to conventional boxplots, the second panel shows mean, 1sd and 2 sd for the neurotypical group (in yellow) and
individuals with an autism diagnosis in purple.
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Fig. 2 Case control difference analysis with linear mixed effect model. Panel a shows effect sizes for regions passing FDR correction for linear mixed
effect modelling of conventional case control difference analysis. Cohen’s d values represent ASD—control, thus blue denotes ASD<control and red
denotes ASD>control. Panel b shows effect sizes for regions passing FDR correction after outlier removal for the same linear mixed effect modelling of
conventional case control difference analysis.

both were binned into one-year age bins. For each age bin and every
brain region we computed a normative mean and standard devia-
tion from the TD group. This was done separately for each sex,
given known sex differential developmental trajectories. These sta-
tistical norms were then used to compute a w-score (analogous to a
z-score) for every individual with autism and every brain region as
follows:

CT. . —
W _ region nunormregion

region

0
NOMegion

The w-score for an individual thus reflects how far away their
CT is from TD norms in units of standard deviation. Because w-
scores are computed for every brain region, we get a w-score map
for each ASD participant showing how each brain region for that
individual is atypical relative to TD norms. Age bins that
contained fewer than five data-points in the TD group were
excluded from subsequent analysis as the standard deviations for
these bins would essentially be zero (and thus the w-score could
not be computed). With the inclusion of motion we also excluded
individuals for which no resting-state fMRI was available. The
characteristics of the final autism sample are listed in Table 1.
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Case-control differences versus age-normative modelling. Our
first analysis examined conventional case-control differences
using linear mixed effect modelling including site, sex, age, in-
scanner head motion3” and Euler index3® as covariates. As
expected from prior papers utilizing large-scale datasets for case-
control analysis!4#?7, a small subset of regions (8.7%, 27/308
regions) pass FDR correction. Of these regions, most are of small
effect size, with 26 of the detected 27 regions showing an effect
<0.2 standard deviations of difference (Fig. 2a). We suspected that
such small effects could be largely driven by a few ASD patients>®
with highly age-atypical CT. Because we also had computed w-
scores from our normative age-modelling approach, we identified
specific ‘statistical outlier’ patients for each individual region with
w-scores >2 standard deviations from typical norms and excluded
them from the case-control analysis. This analysis guards against
the influence of these extreme outliers, and if there are true on-
average differences in ASD, the removal of these outlier
patient*regions should have little effect on our ability to detect
case-control differences. However, removal of outlier patients
now revealed only 14 significant regions instead of 27 regions
with small case-control differences—a 1.9-fold decrease in the
number of regions detected. Indeed, the majority of case-control
differences identifying small on-average effects were primarily
driven by this small subset of highly atypical patients (Fig. 2b).
These remaining 14 regions with small on-average effects were
restricted to areas near the posterior cingulate cortex, temporo-
parietal cortex and areas of visual cortex.

In contrast to a canonical case-control model, we computed
normative models of age which resulted in individualized w-
scores that indicate how atypical CT is for an individual
compared to typical norms for that age. This modelling approach
allows for computation of w-scores for every region and in every
patient, thus resulting in a w-score map that can then itself be
tested for differences from a null hypothesis of w-score =0,

Table 1 Sample age characteristics after normative
modelling selection.

Dx Mean SD N Median Min Max
Autism 14.93 5.97 699 13.40 5.53 39.2
TD 15.35 6.37 624 13.34 5.89 39.4

A| Region specific prevalence

1 f
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indicating no significant on-average ASD atypicality in age-
normed CT. These hypothesis tests on normative w-score maps
revealed no regions surviving FDR correction.

Isolating ASD individuals with age-related CT atypicality.
While the normative modelling approach can be sensitive to
different pathology than traditional case-control models, another
strength of the approach is the ability to isolate individuals
expressing high CT-atypicality. We operationalized ‘significant’
atypicality in statistical terms as w-scores >2 SD away from TD
norms. By applying this cut-off, we can then describe what pro-
portion of the ASD population falls into this CT subgroup cate-
gory for each individual brain region. Over all brain regions the
median prevalence of these patients is around 7.6% (Fig. 3).
Meaning that in each brain region there are ~7.6% of individuals
that would be considered an outlier. This difference from an
expected proportion of 5% in the present sample corresponds to a
X2 of 3.85 (with Yates continuity correction?) that is significant
at p = 0.049 (without continuity correction: X2 = 4.32, p = 0.038).
The distribution of prevalence across brain regions also has a
positive tail indicating that for a small number of brain regions
the prevalence can jump up to more than 10%. Expressed back
into sample size numbers, if 10% of the ASD population had
significant CT abnormalities, with a sample size of n = 699, this
means that n = 70 patients possess such atypicality. Underscoring
the prevalence of these cases is important since as shown earlier,
it is likely that primarily these ‘statistical outlier’ patients drive
most of the tiny case-control differences observed.

There are other interesting attributes about this subset of brain
regions. With regard to age, these patients were almost always in
the age range of 6-20, and were much less prevalent beyond age
20 (Supplementary Figs. 6 and 7). The median age of outliers
across brain regions ranged from [10.6-20.2] years old, with an
overall skewed distribution towards the younger end of the
spectrum (Supplementary Fig. 7), showing that CT atypicality
potentially normalizes with increasing age in ASD, though it
should be noted that this may partially be explained by the overall
skewed age distribution in the overall dataset.

Patients with CT atypicality were also largely those that
expressed such atypicality within specific brain regions and were
not primarily subjects with globally atypical CT. To show this we
computed a w-score ratio across brain regions (Supplementary

0.0 |
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Percentage of subjects with atypical w—score

Fig. 3 Region specific prevalence of atypical w-scores. Panel a shows the by region prevalence of individuals with a w-score of greater than £2SD. For
visualization purposes these images are thresholded at the median prevalence of 0.076. Panel b shows the overall distribution of prevalence across all

brain regions.
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Fig. 4 Phenotype-w-score correlations. Spearman correlations between ADOS and w-score in the top panel. The lower panel shows the same for the SRS.

Figs. 6 and 7) that helps us isolate patients that show globally
atypical CT across most brain regions. The small number of
patients with a ratio indicating a global difference (ratio> 0.5,
n = 14) were those that had globally thinner cortices. This small
subset of individuals was much smaller than the number of
region-wise outliers as shown in Fig. 3. Upon visual inspection of
the raw data for these participants, it is clear that the global
thinning effect is not likely a true biological difference but rather
one likely driven by the quality of the raw images, even though
the Euler index did not indicate failure in reconstruction.
Unfortunately, we did not have enough complete phenotypic
data on these subjects to warrant further in-depth phenotypic
analysis.

Exploratory analysis of brain-behaviour relationships. An
additional advantage of the use of normative modelling over the
traditional case-control modelling is that we can use the indivi-
dualized atypicality as a novel metric for finding associations with
phenotypic features. Here we used w-scores to compute Spear-
man correlations for the most commonly shared phenotypic
features in the ABIDE dataset: ADOS, SRS, SCQ, AQ, FIQ and
Age. After correcting for multiple comparisons across phenotype
and region (6 phenotypic measures*308 regions = 1848 tests) we
identified a number of brain regions that survive multiple com-
parison corrections for the SRS and ADOS scores (Fig. 4, Sup-
plementary Fig. 8). SRS is associated with w-scores primarily in
areas of lateral frontal and parietal cortex, while ADOS is asso-
ciated with w-scores primarily in lateral and inferior temporal
cortex. Notably, these regions are largely different from regions
that appear to show on-average differentiation in case-control
and w-score analyses.

Sensitivity analysis. Sensitivity analyses on the effects of recon-
struction quality using Euler index as well as residual effects of in-
scanner head motion from the resting-state acquisition did not
reveal a significant impact on thresholded case-control differences
or w-score. Specifically, systematic exclusion of top motion and
Euler subjects resulted in highly spatially consistent effect size
maps (all r<0.7). Individuals identified as statistical outliers did
not have disproportionally high motion or high Euler indices. For
more details see “Methods” section and supplementary materials
(Supplementary Figs. 2 and 3).

0.125

0.250

Discussion

In the present study, we find that with a highly powered dataset,
conventional case-control analyses reveal small differences in CT
in autism and are restricted to a small subset of regions. In
general, this idea about subtle effect sizes for case-control com-
parisons is compatible with other recent papers utilizing partially
overlapping data—Haar and colleagues utilized only ABIDE I
datal4, while van Rooji and colleagues?” utilized both ABIDE I
and II dataset combined with further data from the ENIGMA
consortium. While these statements about small effect sizes are
not novel, our findings suggest that even these small effect sizes
may be misleading and over-optimistic. Utilizing normative
modelling as a way of identifying and removing CT-atypical
outlier patients, we find here that most small case-control dif-
ferences are driven by a small subgroup of patients with high CT-
atypicality for their age, which indeed begs the question of the
existence of on-average atypical cortical morphology in autism!4.
In contrast, we further showed that analysis of CT-normed scores
(i.e. w-scores) themselves reveals a completely different set of
regions that are on-average atypical in ASD. The directionality of
such differences also reverses in some cases. For instance, Haar
and colleagues discovered that areas of the visual cortex are
thicker in ASD compared to TD in ABIDE I'%. Our case-control
analyses here largely mirror that finding. However, re-analysis
after w-score outlier removal totally removes the effects pre-
viously reported in the visual cortex. Thus, here is a clear case
whereby our normative age modelling approach identifies effects
that are likely driven by only a small subset of individuals. New
insights via normative age modelling, alongside cleaning up
interpretations behind case-control models, both highlight the
meaningful utility of this approach. The presence of small region-
dependent outlier effects in ASD misleadingly drives on-average
inferences from case-control models. Thus, it is important for the
field to better understand how prevalent this atypicality is for a
given brain region (i.e. our analyses did not reveal a consistent
brain region or group of individuals with spatially overlapping
patterns of extreme w-scores).

We also noted that this region-specific small subgroup showing
highly age-atypical CT was predominantly restricted to the
childhood to early adult age range. In later adult ages, the pre-
valence of this subgroup drops off. This could be a potential
indicator that highly atypical CT is more prevalent and detectable
at earlier ages. It will be important to assess even earlier age
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ranges such as the first years of life3?, as well as later adult years
when aging processes begin to take effect*!. Again, it should be
noted that this may partially be explained by the overall skewed
age distribution in the overall dataset. Future studies with either
more balanced developmental samples or samples that cover the
entire lifespan will be better positioned to confirm this age-related
skewed profile in ‘atypical’ brain regions.

In addition, we also identify a very small group of individuals
that have atypical patterns in over 50% of brain regions. Unfor-
tunately, not much behavioural or phenotypic information was
available for this sub-group. We hope that future studies will
obtain more detailed phenotypic information in order to
delineate more precisely what the clinical and or more broad
behavioural implications might be of this atypicality. Further-
more, it is clear from the present work that this subgroup only
covers a very small subset in the autism population and thus
future studies will require large sample sizes to be able to identify
this subgroup. However, mirroring work in autism genetics,
whereby discoveries are continually being made regarding very
small proportions of the ASD population being explained by
highly penetrant genetic mechanisms*2, it also may be the case
that such individuals with highly age-atypical CT are individuals
with specific highly penetrant biological mechanisms underlying
them, and possibly related to neurogenesis and other factors that
are implicated in CT changes?®. With animal models of highly
penetrant genetic mechanisms linked to autism, it is notable that
such mechanisms have heterogeneous effects on brain volume?3.
Thus, the fact that this is only a small subset need not be an
obstacle for the discovery of core biological mechanisms. Ideally,
future studies will also collect detailed genetic and/or other bio-
logical information in order to probe the core biological aetiology
underlying the pattern of broad atypical CT.

We also conducted exploratory analyses to relate the w-scores
back to phenotypic information more broadly, insofar as this was
available in ABIDE. Here, we find collections of areas that are
largely different from regions normally detected with on-average
case-control or on-average non-zero w-score differences. Inter-
estingly, the associations with ADOS and SRS show somewhat
differential spatial topography which may suggest that the overall
scores are related to different underlying neurobiological
mechanisms. Overall, these results could suggest that the nor-
mative model is sensitive to signal related to behavioural varia-
bility. However, it should be emphasized that ADOS and SRS
scores are not available for the full dataset and the reported effects
were small and should thus be considered exploratory. In addi-
tion, ADOS and SRS are often only collected on individuals with a
diagnosis already, which makes the general inference of this
brain-behaviour relationship potentially biased. Based on present
results however we expect future studies, with more compre-
hensive phenotypic information such as EU-AIMS2-trials
(https://www.aims-2-trials.eu), to be able to confirm this
brain-behaviour relationship. It will be interesting to see whether
in a larger more comprehensive sample the same topological
dissociation becomes apparent as well.

The current results can be contrasted with a recent study on
the EU-AIMS LEAP cohort**. This study differs from the current
work in being based on a completely independent dataset (EU-
AIMS LEAP vs. ABIDE). The studies also differ in how normative
models are estimated—LOESS and centiles vs. Gaussian process
regression. This study applied normative modelling only to males
to reduce sex-related heterogeneity whereas Zahibi et al. utilized
both males and females and used sex as a factor in the model. The
current study also utilizes a larger sample size (autism n =699,
TD n=624; autism n =321, TD n =206 in ref. 44). Despite
these differences, some important consistencies emerge. In par-
ticular, our map of prevalence of the CT outlier group (Fig. 3) is

somewhat consistent with the spatial topology Zahibi and col-
leagues report for negative deviations from the normative model
(e.g., Fig. 4 of ref. 4%). Furthermore, while our analyses of
brain-behavioural relationships is limited, there is some con-
sistency across this study and Zahibi et al. with the correlation
between ADOS total scores and left inferior frontal gyrus. Thus,
despite the methodological differences, the overall consistency
suggests that many of the inferences from these works generalize
to the autism population.

There are a number of caveats to consider in the present study.
First and foremost, the present data are cross-sectional and the
normative age modelling approach cannot make claims about
trajectories at an individual level. With longitudinal data, this
normative modelling approach could be extended. However, at
the moment the classifications of highly age-atypical CT indivi-
duals are limited to static normative statistics within discrete age-
bins rather than based on statistics from robust normative tra-
jectories. The dataset also represents ASD within an age range
that misses very early developmental and also very late adulthood
periods. Second, the dataset also presents a post-hoc collection of
sites accumulated through the ABIDE initiative, whereby scan-
ners, imaging acquisition sequences and parameters, sample
ascertainment, etc., are highly heterogeneous. As a result, we
observed that site had a large effect on explaining variance in CT
and this is compatible with observations made by other studies!4.
Furthermore, it is likely that there may be systematic interactions
between scanner site and some variables of interest such as age
(e.g. different scanning sites will likely have recruited specific age
cohorts). Third, there are a number of different approaches to
normative modelling that all have pros and cons (see ref. 4> for an
excellent review). We chose to use LOESS estimation as it is
computationally efficient and the resulting w-scores are easily
interpretable. However, since it is based on estimation of standard
deviation from a normative sample it is potentially sensitive to
small samples in a given age-bin (e.g. if there are only four data-
points for a given age-bin there is likely to be a less reliable sd).
Hence in situations where data is spare the LOESS approach may
allow for less reliable normative scores. In order to assess the
sensitivity of our approach in the present data we implemented
the aforementioned bootstrapping procedure to identify robust-
ness of outlier detection. In addition, we also conducted a centiles
estimation that is relatively standard in for example epidemiol-
ogy*0, similar to quantile rank maps*” and arguably less sensitive
to small sample uncertainty. Both approaches showed highly
significant correlation in determining whole-brain w-score ratios
(r=0.87, p=4e—119 and r = 0.66, p = 5.7e—39 for ABIDE I and
ABIDE 1I, respectively; see supplementary materials, Supple-
mentary Fig. 5). Fourth, our current sample was matched on IQ
and as a result excluded individuals with low IQ scores (<70).
While higher IQ does not automatically imply higher overall
functioning®® it does limit the generalisability of our findings to
individuals with normal to high IQ. Finally, although in-scanner
head motion is a well-known confounder in resting-state con-
nectivity studies*>0 it has recently been shown that the same
motion may also affect structural image quality and surface
reconstruction, especially in clinical cohorts’”. To address this
issue in the present analysis we included mean framewise dis-
placement in our models. In this line, Savalia et al. ! recently
showed that framewise displacement is a sensitive proxy of
motion-related bias in structural images. We find that, while this
severely impacted the conventional case control analysis (e.g.
reducing the number of significant ROI’s from 38 to 27), it did
not impact the outlier thresholded analysis to the same extent. To
further assess the sensitivity of motion on the present approach
we include sensitivity analyses based on systematic removal of
high motion subjects and find that the spatial topology of effects
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was strongly conserved. Given the impact on the conventional
analysis approach we strongly encourage future studies to con-
sider motion as an important confounder.

In conclusion, the present study shows how normative age
modelling approach in ASD questions our interpretation of
conventional case-control modelling while shedding new insight
into heterogeneity in ASD. We show that results from case-
control analyses, even within large datasets, can be highly sus-
ceptible to the influence of ‘outlier’ subjects. Removing these
outlier subjects from analyses can considerably clean up the
inferences being made about on-average differences that apply to
a majority of the ASD population. Rather than only being nui-
sances for standard group-level analyses, these outlier patients are
meaningful in their own light, and can be identified with our
normative age modelling approach. Normative models may
provide an alternative to case-control models that test hypotheses
at a group-level, by allowing additional insight to be made at
more individualized levels, and thus help further progress
towards personalized medicine for ASD. Furthermore, the cur-
rent approach is in line with the original normative modelling
approach advocated by Marquand and colleagues?! which sug-
gested the development of methods to move away from the tra-
ditional case-vs.-control analyses. Normative modelling was
originally proposed as one solution among others like stratifica-
tion. Here, a clear path forward would be to combine both, for
instance by using output of normative models as features used in
the participant stratification, thus avoiding trivial clustering
caused by confounding factors. In the present work we show that
normative modelling is more than a purely statistical advance-
ment to improve robustness. It allows us to identify a small
subgroup that we expect to have strong relevance for the dis-
covery of core biological or phenotypic clinical targets. It allowed
for exploration of brain-behaviour relationships that reveal dif-
ferential spatial topology for ADOS and SRS scores. More
importantly however, it moves us conceptually closer to making
precise dimensional inferences rather than purely relying on
diagnostic categories.

Methods

Participants. In this study, we first sought to leverage large neuroimaging datasets
to yield greater statistical power for identifying subtle effects. To achieve this, we
utilized the ABIDE datasets (ABIDE I and II; 15) (see Supplementary Fig. 1).
Informed consent was given at each site included in the ABIDE studies, see the
website for more details: http://fcon_1000.projects.nitrc.org/indi/abide/. Given that
the normalized modelling approach gives us individual level measures we chose to
also include sites with limited numbers of subjects. Groups were subsequently
matched on age using the non-parametric nearest neighbour matching procedure
implemented in the Matchit package in R (https://cran.r-project.org/web/packages/
Matchlt/index.html)>2. After matching case and control groups and excluding
scans of poorer quality (see supplementary materials) we were left with a sample
size N = 870 per group (Tables 2 and 3).

Imaging processing and quantification. Cortical surface reconstruction was
performed using the MPRAGE (T1) image of each participant with FreeSurfer
(http://surfer.nmr.mgh.harvard.edu/) version (v5.3.0, to ensure comparability with
previous ABIDE publications). The reconstruction pipeline performed by Free-
Surfer “recon-all” involved intensity normalization, registration to Talairach space,
skull stripping, WM segmentation, tessellation of the WM boundary, and auto-
matic correction of topological defects. Briefly, non-uniformity intensity correction
algorithms were applied before skull stripping®3, resulting in resampled isotropic
images of 1 mm. An initial segmentation of the white matter tissue was performed
to generate a tessellated representation of the WM/GM boundary. The resulting
surface was deformed outwards to the volume that maximizes the intensity contrast
between GM and cerebrospinal fluid, generating the pial surface>®. Resulting sur-
faces were constrained to a spherical topology and corrected for geometrical and
topological abnormalities. CT of each vertex was defined as the shortest distance
between vertices of the GM/WM boundary and the pial surface®>. We chose to not
conduct manual segmentations and excluded failed subjects from any subsequent
analysis (and these subjects were removed prior to the matching and QC proce-
dures). To assess the quality of Freesurfer reconstructions we computed the Euler
index38. The Euler number is a quantitative proxy index of segmentation quality

Table 2 Sample characteristics of age.
Dx Sex Mean SD N Median  Min Max
Autism  Male 16.32 9.09 754 1375 5.13 64
Autism Female 15.06 8.43 neée 12.57 5.22 54
TD Male 16.64 8.98 660 13.69 5.89 64
D Female 13.25 533 210 11.09 5.91 32
Table 3 Sample characteristics.
Measure  Dx Sex Mean SD N Median
1Q Autism Male 106.13 16.51 754 107
Autism Female 105.88 16.21 e 106.5
TD Male 111.28 1213 660 m
TD Female 12.07 13.21 210 n2
ADOS Autism Male 115 3.86 505 n
Autism Female n4 3.9 63 n
Control ~ Male 1.55 1.58 38 1
Control Female 3 1.05 10 3
SRS Autism Male 80.42 21.41 421 77
Autism Female 85.95 22.07 61 88
Control Male 38.43 15.25 337 41
Control Female 39.93 1213 120 42

and has shown high overlap with manual quality control labelling®®. The index
counts the number of times the freesurfer has had to interpolate surface gaps
during the reconstruction to ensure a continuous outcome surface. As such the
index is effectively a measure for the reliability of the surface reconstruction and
the resulting CT estimates. In the full sample we found a small but significant
difference in both hemispheres (Supplementary Fig. 2) with the autism group
having overall slightly worse scan quality (d = 0.176 and d = 0.187 for left and right
hemispheres, respectively). Therefore, we chose to exclude the top 10% of subjects
with an extreme Euler index (corresponding to a Euler index of ~300) and reran
the Matchit genetic matching algorithm to check for matched samples. To further
ensure adequate control for scan quality we included the index itself as a confound
variable in all models.

Across both ABIDE I and ABIDE II CT was extracted for each subject using
two different parcellations schemes: an approximately equally sized parcellation of
308 regions (~500 mm? each parcel)33°%°7 and a parcellation of 360 regions
derived from multi-modal features extracted from the Human Connectome Project
(HCP) dataset>8. The 308-region parcellation was constructed in the FreeSurfer
fsaverage template by subdividing the 68 regions defined in the Desikan-Killiany
atlas®. Thus, each of the 68 regions was sequentially sub-parcellated by a
backtracking algorithm into regions of ~500 mm?, resulting in a high-resolution
parcellation that preserved the original anatomical boundaries defined in the
original atlas®3. Surface reconstructions of each individual were co-registered to the
fsaverage subject. The inverse transformation was used to map both parcellation
schemes into the native space of each participant.

Statistics and reproducibility. Because of power limitations in past work with
small samples, we conducted an a priori statistical power analysis indicating that a
minimum case-control effect size of d =0.1752 could be detected at this sample
size with 80% power at a conservative alpha set to 0.005%. For correlational
analyses looking at brain-behaviour associations, we examined a subset of patients
with the data from the SRS (Nautism_male = 421) and ADOS total scores (Nau-
tism_male = 505). With the same power and alpha levels, the minimum effect for
SRS is r=0.1765 and r = 0.1651 for the ADOS.

There are likely many variables that contribute to variability in CT between
individuals and across the brain. In order to visually assess the contribution of some
prominent sources of variance we adopted a visualization framework derived from
gene expression analysis (http://bioconductor.org/packages/variancePartition)°! and
included the most commonly available covariates in the ABIDE dataset: age, sex,
diagnosis, scanner site, full-scale IQ, verbal IQ, handedness and SRS. Given that
ABIDE was not designed as an integrated dataset from the outset, it seems plausible
that the scanner site might be related to autism or autism-related variables (e.g., some
sites might have different case-control ratios or only recruited specific subgroups).
Figure 5 shows the ranked contribution of those covariates. Perhaps unsurprisingly,
scanner site and age proved to be the most dominant sources of variance (each
explaining on average around 15% of the total variance). Our initial conventional
analysis was aimed to delineate potential broad case-control differences, as has been
done in previous studies'427. We used a linear mixed effects model with scanner site
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Fig. 5 Explained variance in cortical thickness for each covariate. Age age
at the time of scanning, FIQ functional intelligent quotient, VIQ verbal
intelligence quotient, SRS total score of the social responsive scale,
Diagnosis diagnostic group, i.e. ASD or TD.

as a random effect. Given the potentially strong contribution of age we chose to
include this as fixed effects covariates in the model. Multiple comparison correction
was implemented with Benjamini-Hochberg FDR at g < 0.05%2. All models also
included Euler indices*® and mean framewise displacement’” as confound regressors
(see also Supplementary Fig. 3 for sensitivity analyses on these confound regressors).

Normative modelling reliability. To assess the reliability of the normative w-score
we permuted the normative sample (1000 bootstraps, with replacement) and
computed 1000 permuted w-scores for each individual and each brain region. To
subsequently quantify the reliability of the w-score we computed an FDR corrected
analogous p-value for each subject by computing the absolute position of the real
w-score in the distribution of permuted w-scores. The rationale being that if a real
w-score would be in the top 5% of the bootstrapped distribution it would likely not
be a reliable score (e.g. the score would be influenced by only a small subset of the
normative data). The median number of brain regions per subject with a significant
p-value in the normative sample was 1 (out of 308), indicating that the normative
sample is topologically robust and that the w-score is a robust reflection of aty-
picality. More details on the bootstrapping procedure are provided in the sup-
plementary material (Supplementary Fig. 4). To further assess the distribution in
the normative group we also conducted one-sample linear mixed effects modelling
in the normative group only to determine if any of all brain regions would show
outlier consistency. There were no brain regions for which the w-score showed a
deviation significant from zero in the normative group (even without correcting for
multiple comparisons across all brain regions).

Because w-score maps are computed for each individual, we ran hypothesis tests
at each brain region to identify regions that show on-average non-zero w-scores
stratified by sex (FDR corrected at g < 0.05). To assess the effect of age-related
individual outliers on the global case-control differences we re-ran the hypotheses
tests on w-scores after removing region-wise individual outliers (based on a 2 SD
cut-off). Although for clarity the present manuscripts present only results on CT,
for completeness results from the same analysis on cortical volume, surface area
and gyrification are shown in Supplementary Figs. 9-12.

Unfortunately, despite a significant female sub-group, the age-wise binning
greatly reduced the number of bins with enough data-points in the female group.
Given the reduced sample size in the female group and the known interaction
between autism and biological sex®3%4, as well as the known sex differences in
developmental trajectories®®, we conducted normative modelling on the male
group only (Fig. 2a).

To explore isolated subsets of individuals with significant age-related CT
atypicality, we used a cut-off score of 2 standard deviations (i.e. w=2 or w<2).
This cut-off allows us to isolate specific ASD patients with abnormal CT relative to
age-norms for each individual brain region. We then calculated sample prevalence
(percentage of all ASD patients with atypical w-scores), in order to describe how
frequent such individuals are in the ASD population and for each brain region
individually. A sample prevalence map can then be computed to show the

frequency of these patients across each brain region. We also wanted to assess how
many patients have markedly atypical w-scores (beyond 2 SD) across a majority of
brain regions. This was achieved by computing an individual global w-score ratio
as follows:

_ Zlw|>2
T Xlwl<2
We also computed global w-score ratios for positive and negative w regions
separately.

Exploratory analyses. In addition to assessing the effect of normative outlier on
conventional case-control analyses we also conducted some exploratory analysis on
the normative w-scores. First, to explore whether the w-scores reflect a potentially
meaningful phenotypic feature we also computed Spearman correlations for each
brain region between the most commonly shared phenotypic features in ABIDE:
ADOS, SRS, SCQ, AQ, FIQ and Age. Resulting p-values matrices were corrected for
multiple comparisons using Benjamini-Hochberg FDR correction and only regions
surviving and FDR-corrected p-value of < 0.05 are reported.

Finally, we explored whether the raw CT values could be used in a multivariate
fashion to separate groups by diagnosis or illuminate stratification within ASD into
subgroups. Here we used k-medoid clustering on t-distributed stochastic neighbour
embedding (tSNE)%6. Barnes—Hut tSNE was used to construct a two-dimensional
embedding for all parcels in order to be able to run k-medoid clustering in a 2D
representation and in order to visually assess the most likely scenario within the
framework suggested by Marquand and colleagues?!. Next, we performed
partitioning around medoids (PAM), estimating the optimum number of clusters
using the optimum average silhouette width®’. Details of this exploratory analysis
are reported in the supplementary materials (Supplementary Fig. 13).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All data is openly available on GitHub32, this includes all measures extracted from the
raw imaging data alongside the relevant phenotypic and quality control measures.
Original unprocessed neuroimaging data is openly available through the ABIDE
consortium: http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html.

Code availability

All code is openly available on GitHub32, Cohen’s d were computed using: https://github.
com/mvlombardo/utils/blob/master/cohens_d.R and the centiles cross-validation code
can be found in https://github.com/deep-introspection/PyNM.
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