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Catalytic synthesis of β-lactam derivatives  
by carbonylative cycloaddition of  
acylsilanes with imines via a palladium 
Fischer-carbene intermediate

Tetsuya Inagaki1, Takuya Kodama    1,2 & Mamoru Tobisu    1,2 

Fischer-type carbene complexes are characterized by the presence of a 
π-donating group, such as an alkoxy group on the carbene carbon.  
Despite the notable progress that has been made in synthetic methods 
that involve the use of Fischer-type carbene complexes, stoichiometric 
amounts of carbene complexes are still required for such reactions and 
catalytic variants remain elusive. This limitation primarily stems from 
the lack of suitable carbene precursors, which is in sharp contrast to the 
fact that carbene complexes bearing an electron-withdrawing group 
can be readily generated from the corresponding diazo esters. Here we 
report that acylsilanes can function as a precursor for a Fischer-carbene 
complex by the action of a palladium catalyst. This system can be used 
in catalytic carbonylative cycloaddition reactions with imines to form 
densely substituted β-lactam derivatives. A key siloxycarbene–palladium 
intermediate complex was isolated and successfully characterized  
by X-ray crystallography.

Since the first report in 1964 (ref. 1), Fischer-carbene complexes (FCs) 
have evolved into powerful reagents for organic synthesis, encompass-
ing cycloaddition, carbene transfer and addition reactions of electro-
philes and nucleophiles2–5. Although transformations enabled by FCs 
are unique, their use in catalytic reactions lags far behind from those 
involving metal carbene species bearing an electron-withdrawing 
group6. This is primarily because common diazo compounds cannot 
be used as precursors due to their instability of the corresponding 
heteroatom-substituted derivatives7. Therefore, FCs are typically 
accessed by the addition of organolithium (RLi) to a metal–carbonyl 
complex (M–CO) and the subsequent capture with an alkyl halide 
(R′X) (Fig. 1a)2,4. A few catalytic reactions that involve FCs have been 
reported so far, including the addition of heteroatom nucleophiles to 
vinylidene complexes8–12, the substitution of Rh(II) carbenes bearing an 
iodonium leaving group by a tethered nucleophile13, and the trapping 

of photochemically generated siloxycarbenes from acylsilanes with a 
Cu(I) catalyst14,15. However, the scope of these catalytic protocols for 
FCs remains limited, and the vast majority of intriguing transforma-
tions mediated by FCs requires the use of stoichiometric amounts 
of metal reagents. Among such transformations that are awaiting a 
catalytic protocol is the chromium FC-mediated synthesis of β-lactam 
derivatives, which proceed via the photo-induced carbonylation of an 
alkoxycarbene ligand to form a ketene, followed by a [2 + 2] cycloaddi-
tion with imines (Fig. 1b)16–20.

We envisioned that this FC-mediated β-lactam synthesis might 
be conducted in a catalytic manner without photoirradiation based 
on a palladium/acylsilane reaction system (Fig. 1c). We previously 
reported on the palladium-catalysed siloxycyclopropanation of 
alkenes using acylsilanes, in which the oxidative addition of a C–Si 
bond triggers the in situ generation of a siloxycarbene–palladium 
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An elusive siloxycarbene–palladium intermediate was isolated and 
characterized.

Results
Reaction development
Based on our previous studies on palladium-catalysed reactions of 
acylsilanes21,29,30, we examined the reaction of the acylsilane 1a (3.0 
equiv.) and the imine 2a in the presence of Pd2(dba)3 (10 mol% [Pd]), 
1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) (10 mol%) 
and CO (1.5 equiv.) in toluene at 110 °C, which afforded the expected 

intermediate21. If the thus generated siloxycarbene–palladium spe-
cies would react with external CO to provide a ketene, this would 
lead to the formation of a β-lactam product without producing 
stoichiometric amounts of chromium waste or the need for pho-
toirradiation22,23. The α-hydroxy-β-lactam skeleton24–27 that would 
be made accessible by this catalytic method represents a major 
motif that is found in a variety of bioactive substances (Fig. 1d)28. 
In this Article, we describe that a palladium-mediated protocol for 
the generation of a siloxycarbene–palladium intermediate from 
acylsilanes can be applied to the catalytic synthesis of β-lactams. 
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Table 1 | Pd-catalysed carbonylative annulation of acylsilane 1a and imine 2a

O

Ph SiMe3
+

1a 2a
(3.0 equiv.)

CO  (1.5 equiv.)
Toluene

110 ˚C, 17 h 

Pd2(dba)3   (5.0 mol%)
IPr  (10 mol%)

3aa

N

O

Ph

Me3SiO

Ph

N
Ph

+ Ph SiMe3

4

Ph

Ph

Entry Deviation from entry 1 Yield (%)a,b

3aa Recovered 2a 4

1 None 40 (4.3:1) 56 9

2 No CO 48 (4.2:1) 54 30

3 No CO with IPr* instead of IPr 93 (6.4:1) 5 65

4c No palladium with IPr* instead of IPr 0 76 0

5d No CO under dark conditions with IPr* instead of IPr 88 (6.4:1) 9 69

IPr = N N

Ph
Ph

Ph
Ph

Ph
Ph

Ph
Ph

IPr* =N N

a1a (0.60 mmol), 2a (0.20 mmol), Pd2(dba)3 (0.010 mmol), IPr (0.020 mmol) and toluene (0.60 ml) in COware at 110 °C for 17 h. CO was generated from p-methoxyphenyl formate and Et3N. 
For details of COware, see Supplementary Tables 4–6. bYields were determined by GC or NMR analysis. Stereoisomeric ratio is shown in the parentheses. cRun at 160 °C. dThe reaction was 
performed in the absence of any light by covering the reaction vessel with aluminium foil.
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β-lactam 3aa in 40% yield (entry 1, Table 1). Interestingly, this reac-
tion proceeded even in the absence of CO to furnish 3aa in 48% yield 
(entry 2, Table 1). In this case, the phenylsilane 4, which we assume 
was formed by the decarbonylation of 1a (refs. 31–33), was also 
obtained in 30% yield. It therefore appears that palladium catalysis 
allows acylsilanes to serve not only as a carbene precursor but also as 
a source of CO, making this protocol operationally simple. The use of 
1,3-bis(2,6-bis(diphenylmethyl)-4-methylphenyl)imidazol-2-ylidene 
(IPr*) substantially improved the yield of 3aa to 93% (entry 3, Table 1). 
No reaction occurred in the absence of a palladium catalyst, excluding 
the possibility that IPr* functions as an organocatalyst (entry 4, Table 1).  

This reaction proceeds in the absence of light, which excludes a mecha-
nistic scenario involving the photo-induced isomerization of 1a to 
metal-free siloxycarbene (entry 5, Table 1)34,35 (for additional data for 
optimization, see Supplementary Tables 1–6).

This palladium-catalysed method allows the synthesis of a 
diverse range of complex β-lactams from readily available acylsi-
lane and imine building blocks (Fig. 2). Imines bearing functional 
groups, such as methoxy (that is, 2b), trifluoromethyl (that is, 2c) on 
the aromatic rings successfully participated in this reaction with the 
corresponding β-lactams being formed. Imines with a bulky 2,6-xylyl 
group (that is, 2d) were also applicable to this reaction. The cyclic 
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Fig. 2 | Scope of the palladium-catalysed synthesis of β-lactams by the 
reaction of acylsilanes and imines. Acylsilane (0.60 mmol), imine (0.20 mmol), 
Pd2(dba)3 (0.010 mmol), IPr* (0.020 mmol) and toluene (0.60 ml) in a sealed 
tube at 110 °C for 17 h. Isolated yields are shown. Ratios in parentheses are 

stereoisomer ratios, and the structure of the major isomer was determined by 
nuclear Overhauser effect spectroscopy. aThe structure of the major isomer 
was determined by X-ray crystallography (Supplementary Fig. 4). bAcylsilane 
(1.0 mmol) was used. cRun at 160 °C.
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imine 2e served as a competent substrate, which allows access to com-
plex polycyclic β-lactam skeleton (that is, 3ae). Not only aldimines 
but also ketimines (that is, 2f–2l) can be coupled successfully to 
form the corresponding β-lactams bearing contiguous quaternary 
stereocentres (that is, 3af–3al). Regarding the nitrogen substituent 
on the imine substrates, aryl, benzyl and amino (that is, 2i) groups 
were all compatible. Moreover, imines derived from cyclic ketones 
(that is, 2j and 2k) were transformed into spirocylic β-lactams that 
are otherwise synthesized with difficulty (that is, 3aj and 3ak). Imines 
bearing heteroaryl groups, such as thiophene (that is, 2l) and indole 
(that is, 2m), were also applicable to this reaction. With respect to the 
acylsilane component, various benzoylsilane derivatives, including 
those bearing methoxy (1b), fluoride (1c), ester (1d), trifluorome-
thyl (1e), cyano (1f) and 3,5-xylyl (1g) groups, readily participated 
in this reaction. Acylsilanes bearing a PhMe2Si group (that is, 1h) 
can also be used successfully to form the corresponding β-lactam. 
This β-lactam synthesis is also applicable to the synthesis of a scaf-
fold found in antibiotics. For example, the reaction of acylsilane 1a 
with the cyclic imine 2n furnished the bicyclic β-lactam 3an, which 
possesses a molecular skeleton analogous to thienamycin. It should 
also be noted that a silyl group in the products obtained in this study 
can be removed by treatment with tetrabutylammonium fluoride to 
form the corresponding α-hydroxy-β-lactam derivative (for details, 
see Supplementary Methods).

Mechanistic studies
Some mechanistic studies were conducted to obtain insights into the 
reaction mechanism. The reaction of 1a with diethylamine, instead of 
an imine, under the standard catalytic condition was found to afford the 
amide 5 in 97% yield (Fig. 3a). This observation supports the interme-
diacy of siloxyketene, which could be captured by diethylamine to form 
5. Second, the reaction of the 13C-labelled acylsilane 1a–13C and the imine 
2g afforded the β-lactam 3ag–13C, in which C1 and C2 were both labelled, 
which is consistent with our mechanistic proposal that acylsilanes serve 
both as carbene and CO sources (Fig. 3b). Lastly, we successfully isolated 
a key siloxycarbene–palladium intermediate complex 6 by the reaction 
of Pd(CH2SiMe3)2(cod), IPr** (1.0 equiv.)36, and acylsilane 1i (Fig. 3c). The 
structure of 6 was unambiguously determined by X-ray crystallography. 
It should be noted that complex 6 represents a sought-after isolated 
palladium complex bearing an alkoxycarbene ligand.

We also studied the mechanism for the generation of Pd–ketene 
complexes computationally using density functional theory (DFT) 
calculations at the ωB97XD/SDD-6-311+G*-SMD(toluene)//ωB97XD/
LANL2DZ-6-31G*-SMD(toluene) level of theory (Fig. 4). Calculations 
were conducted using a model reaction of 1a with a Pd–IPr complex. 
It was revealed that oxidative addition of the C(acyl)–Si bond in 1a 
to the Pd–IPr complex proceeds through transition state TS1 with a 
relatively low energetic barrier (8.5 kcal mol−1), forming complex INT2. 
The silyl group INT2 subsequently migrates to the oxygen atom of the 
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acyl ligand via the four-centred transition state TS2 with a feasible 
activation barrier (24.1 kcal mol−1), leading to carbene complex INT3. 
The coordination of CO, which is generated by a palladium-catalysed 
decarbonylation of 1a, stabilizes INT3 by 5.2 kcal mol−1 to form INT4. 
INT4 then undergoes CO insertion via TS3 with a viable activation 
barrier (17.2 kcal mol−1), generating the Pd–ketene complex INT5 (for 
an energy profile of the reaction of INT3 with 2a, see Supplementary 
Figs. 2 and 3). DFT calculations of the following [2 + 2] cycloaddition 
reactions with imines were reported for related Cr and Pd–ketene 
complexes37–39.

Conclusions
We report on the palladium-catalysed carbonylative cycloaddition of 
acylsilanes and imines, leading to the formation of densely functional-
ized β-lactam derivatives. Using this catalytic method, stoichiometric 
amounts of chromium–Fischer carbenes can be avoided. The key mech-
anistic feature of the reaction is the generation of a Fischer-type carbene 
complex from an acylsilane by a palladium/NHC catalyst, which was 
verified both experimentally and theoretically. The addition of external 
carbon monoxide, which is required for the formation of ketenes, is 
not necessary, because it is produced during the decarbonylation of 
acylsilanes, which is also catalysed by the same catalyst in the same 
reaction vessel. This operationally simple catalytic protocol allows for 
the rapid access to complex β-lactams from readily available building 
blocks. The system established in this study provides a reliable design 
principle in elusive Fischer-carbene catalysis. Further applications of 
this catalytic Fischer-carbene generation to other synthetic methods 
is currently ongoing in our laboratory.

Methods
A representative procedure for palladium-catalysed carbon-
ylative cycloaddition of acylsilanes with imines
In a glovebox filled with nitrogen, Pd2(dba)3 (9.2 mg, 0.010 mmol), 
IPr* (18.3 mg, 0.020 mmol), acylsilane 1a (107.0 mg, 0.6 mmol) and 
imine 2a (37.3 mg, 0.21 mmol) were added to a 10-ml sample vial with 
a Teflon-sealed screwcap. Toluene (0.60 ml) was then added, and the 
vial was sealed with the cap. The vial was stirred at 110 °C for 17 h. After 
allowing the mixture to cool to room temperature, SiO2 (Silica Gel 60 
(spherical) NH2) was added to the crude mixture, and the suspension 
was stirred at room temperature for 5 min. It was then filtered through 
a pad of SiO2 (Silica Gel 60 (spherical) NH2), and the pad was washed 
with EtOAc. The filtrate was concentrated in vacuo and purified by gel 
permeation chromatography (column: JAICEL-2HR-40, solvent: CHCl3, 
flow rate: 25 ml min−1) to give 3aa as a white solid (55.9 mg, 70% yield).

Data availability
Experimental procedures and characterization data for all the catalytic 
and stoichiometric experiments along with computational information 
are included in Supplementary Information. Crystallographic data are 
available from the Cambridge Crystallographic Data Centre with the 
following codes: Z-3aa (2248876) and 6 (2255595). All other data are 
available from the corresponding author upon reasonable request.
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