Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective electrocatalysis imparted by metal–insulator transition for durability enhancement of automotive fuel cells

An Author Correction to this article was published on 03 August 2020

This article has been updated

Abstract

Repetitive start-up and shut-down events in polymer electrolyte membrane fuel cells for automotive applications lead to serious corrosion of the cathode due to an instantaneous potential jump that results from unintended air leakage into the anodic flow field followed by a parasitic oxygen reduction reaction (ORR) on the anode. Here we report a solution to the cathode corrosion issue during the start-up/shut-down events whereby intelligent catalyst design is used to selectively promote the hydrogen oxidation reaction (HOR) while concomitantly suppressing the ORR on the anode. Platinum thin layers supported on hydrogen tungsten bronze (Pt/HxWO3) suppressed the ORR by converting themselves into an insulator following exposure to oxygen, while selectively promoting the HOR by regaining metallic conductivity following subsequent exposure to hydrogen. The HOR-selective electrocatalysis imparted by a metal–insulator transition in Pt/HxWO3 demonstrated a remarkably enhanced durability of membrane electrode assemblies compared to those with commercial Pt/C catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A schematic of anodic and cathodic electrochemical processes occurring during SU/SD of PEMFCs.
Fig. 2: Electrochemical measurement of HOR-selectivity.
Fig. 3: Characteristic of HxWO3/W in hydrogen/oxygen atmosphere.
Fig. 4: Electrochemical measurements of Pt/m-HxWO3 nanoparticle catalysts.
Fig. 5: Measurement of single-cell performance and durability.

Similar content being viewed by others

Data availability

The data that support the plots in this paper and other findings of this study are available from the corresponding author on reasonable request.

Change history

References

  1. Yu, P. T. et al. The impact of carbon stability on PEM fuel cell startup and shutdown voltage degradation. ECS Trans. 3, 797–809 (2006).

    Article  CAS  Google Scholar 

  2. Borup, R. et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 107, 3904–3951 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. de Bruijn, F. A., Dam, V. A. T. & Janssen, G. J. M. Review: durability and degradation issues of PEM fuel cell components. Fuel Cells 8, 3–22 (2008).

    Article  CAS  Google Scholar 

  4. Kaspar, R. B. et al. Reverse-current decay in hydroxide exchange membrane fuel cells. J. Electrochem. Soc. 163, F377–F383 (2016).

    Article  CAS  Google Scholar 

  5. Reiser, C. A. et al. A reverse-current decay mechanism for fuel cells. Electrochem. Solid-State Lett. 8, A273–A276 (2005).

    Article  CAS  Google Scholar 

  6. Tang, H. et al. PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode. J. Power Sources 158, 1306–1312 (2006).

    Article  CAS  Google Scholar 

  7. Baumgartner, W. R. et al. Polarization study of a PEMFC with four reference electrodes at hydrogen starvation conditions. J. Power Sources 182, 413–421 (2008).

    Article  CAS  Google Scholar 

  8. Patterson, T. W. & Darling, R. M. Damage to the cathode catalyst of a PEM fuel cell caused by localized fuel starvation. Electrochem. Solid-State Lett. 9, A183–A185 (2006).

    Article  CAS  Google Scholar 

  9. Yousfi-Steiner, N., Moçotéguy, P. H., Candusso, D. & Hissel, D. A review on polymer electrolyte membrane fuel cell catalyst degradation and starvation issues: causes, consequences and diagnostic for mitigation. J. Power Sources 194, 130–145 (2009).

    Article  CAS  Google Scholar 

  10. Ishigami, Y. et al. Corrosion of carbon supports at cathode during hydrogen/air replacement at anode studied by visualization of oxygen partial pressures in a PEFC—start-up/shut-down simulation. J. Power Sources 196, 3003–3008 (2011).

    Article  CAS  Google Scholar 

  11. Linse, N. et al. Quantitative analysis of carbon corrosion during fuel cell start-up and shut-down by anode purging. J. Power Sources 219, 240–248 (2012).

    Article  CAS  Google Scholar 

  12. Chan, S. H. et al. Gas purging effect on the degradation characteristic of a proton exchange membrane fuel cell with dead-ended mode operation II. Under different operation pressures. Energy 131, 50–57 (2017).

    Article  CAS  Google Scholar 

  13. Yu, Y. et al. Effect of gas shutoff sequences on the degradation of proton exchange membrane fuel cells with dummy load during startup and shutdown cycles. Electrochim. Acta 71, 181–193 (2012).

    Article  CAS  Google Scholar 

  14. Chen, Y.-S. et al. A purge strategy for proton exchange membrane fuel cells under varying-load operations. Int. J. Hydrog. Energy 41, 12369–12376 (2016).

    Article  CAS  Google Scholar 

  15. Selvaganesh, S. V. et al. Graphitic carbon as durable cathode-catalyst support for PEFCs. Fuel Cells 11, 372–384 (2011).

    Article  CAS  Google Scholar 

  16. Wang et al. Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. J. Power Sources 158, 154–159 (2006).

    Article  CAS  Google Scholar 

  17. Watanabe, M. et al. Characterization of Pt catalysts on Nb-doped and Sb-doped SnO2–δ support materials with aggregated structure by rotating disk electrode and fuel cell measurements. Electrochim. Acta 110, 316–324 (2013).

    Article  CAS  Google Scholar 

  18. Uchida, M. et al. Novel strategy to mitigate cathode catalyst degradation during air/air startup cycling via the atmospheric resistive switching mechanism of a hydrogen anode with a platinum catalyst supported on tantalum-doped titanium dioxide. J. Power Sources 294, 292–298 (2015).

    Article  CAS  Google Scholar 

  19. Hara, M. et al. Electrochemical and Raman spectroscopic evaluation of Pt/graphitized carbon black catalyst durability for the start/stop operating condition of polymer electrolyte fuel cells. Electrochim. Acta 70, 171–181 (2012).

    Article  CAS  Google Scholar 

  20. Uchida, M. et al. Durability of Pt catalysts supported on graphitized carbon-black during gas-exchange start-up operation similar to that used for fuel cell vehicles. J. Electrochem. Soc. 163, F644–F650 (2016).

    Article  CAS  Google Scholar 

  21. Dubau, L. et al. A review of PEM fuel cell durability: materials degradation, local heterogeneities of aging and possible mitigation strategies. WIREs Energy Eviron. 3, 540–560 (2014).

    Article  CAS  Google Scholar 

  22. Srivastava, R. & Strasser, P. Oxygen evolution co-catalysts at fuel cell cathodes for degradation mitigation during simulated start-up shut-down cycles. ECS Trans. 25, 565–571 (2009).

    Article  CAS  Google Scholar 

  23. Jang, S.-E. & Kim, H. Effect of water electrolysis catalysts on carbon corrosion in polymer electrolyte membrane fuel cells. J. Am. Chem. Soc. 132, 14700–14701 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Genorio, B. et al. Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4]arene molecules. Nat. Mater. 9, 998–1003 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Genorio, B. et al. Tailoring the selectivity and stability of chemically modified platinum nanocatalysts to design highly durable anodes for PEM fuel cells. Angew. Chem. Int. Ed. Engl. 50, 5468–5472 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Kim, Y.-T. et al. Hydrogen oxidation-selective electrocatalysis by fine tuning of Pt ensemble sites to enhance the durability of automotive fuel cells. ChemSusChem 10, 489–493 (2017).

    Article  PubMed  CAS  Google Scholar 

  27. Ogi, T. et al. Electrospun Pt/SnO2 nanofibers as an excellent electrocatalysts for hydrogen oxidation reaction with ORR-blocking characteristic. Catal. Commun. 33, 11–14 (2013).

    Article  CAS  Google Scholar 

  28. Romano-Rodriguez, A. et al. Insight into the role of oxygen diffusion in the sensing mechanisms of SnO2 nanowires. Adv. Funct. Mater. 18, 2990–2994 (2008).

    Article  CAS  Google Scholar 

  29. Granqvist, C. G. Electrochromic tungsten oxide films: review of progress 1993–1998. Sol. Energy Mater. Sol. Cells 60, 201–262 (2000).

    Article  CAS  Google Scholar 

  30. Georg, A., Graf, W., Neumann, R. & Wittwer, V. The role of water in gasochromic WO films. Thin Solid Films 384, 269–275 (2001).

    Article  CAS  Google Scholar 

  31. Tseung, A. C. C. & Chen, K. Y. Hydrogen spill-over effect on Pt/WO3 anode catalysts. Catal. Today 38, 439–443 (2014).

    Article  Google Scholar 

  32. Xi, Y. et al. Mechanism of hydrogen spillover on WO3(001) and formation of HxWO3 (x = 0.125, 0.25, 0.375, and 0.5). J. Phys. Chem. C. 118, 494–501 (2014).

    Article  CAS  Google Scholar 

  33. Shi, J. et al. Electrochemical catalytic activity for the hydrogen oxidation of mesoporous WO3 and WO3/C composites. J. Mater. Chem. 18, 3575–3580 (2008).

    Article  Google Scholar 

  34. Kawazoe, H. et al. Formation of hydrogen tungsten bronze by proton implantation. Mater. Res. Bull. 34, 115–121 (1999).

    Article  Google Scholar 

  35. Kamal, H. et al. Influence of proton insertion on the conductivity, structural and optical properties of amorphous and crystalline electrochromic WO3 films. Phys. B: Condens. Matter 349, 192–205 (2004).

    Article  CAS  Google Scholar 

  36. Adzic, R. R. et al. Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction. Langmuir 22, 10409–10415 (2006).

    Article  PubMed  CAS  Google Scholar 

  37. Tseung, A. C. C. et al. High performance, platinum activated tungsten oxide fuel cell electrodes. Nature 222, 556–558 (1969).

    Article  Google Scholar 

  38. Fabregat-Santiago, F. et al. Dynamic processes in the coloration of WO3 by lithium insertion. J. Electrochem. Soc. 148, E302–E309 (2001).

    Article  CAS  Google Scholar 

  39. Bisquert, J. & Vikhrenko, V. S. Analysis of the kinetics of ion intercalation. Two state model describing the coupling of solid state ion diffusion and ion binding processes. Electrochim. Acta 47, 3977–3988 (2002).

    Article  CAS  Google Scholar 

  40. Kim, D.-J. et al. A study on the hydrogen intercalation into rf-magnetron sputtered amorphous WO3 film using cyclic voltammetry combined with electrochemical quartz crystal microbalance technique. Solid State Ion. 109, 81–87 (1998).

    Article  CAS  Google Scholar 

  41. Lee, S.-H. et al. Crystalline WO3 nanoparticles for highly improved electrochromic applications. Adv. Mater. 18, 763–766 (2006).

    Article  CAS  Google Scholar 

  42. Wen, R.-T. et al. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films. Nat. Mater. 14, 996–1001 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wen, R.-T. et al. Sustainable rejuvenation of electrochromic WO3 films. ACS Appl. Mater. Interfaces 7, 28100–28104 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Mortimer, R. J. Electrochromic material. Annu. Rev. Mater. Res. 41, 241–268 (2011).

    Article  CAS  Google Scholar 

  45. Reich, S. et al. A possible 2D HxWO3 Superconductor with a Tc of 120 K. J. Supercond. Nov. Magn. 22, 343–346 (2009).

    Article  CAS  Google Scholar 

  46. Tong, Q. et al. Rhenium-promoted Pt/WO3/ZrO2: an efficient catalyst for aqueous glycerol hydrogenolysis under reduced H2 pressure. RSC Adv. 6, 86663–86672 (2016).

    Article  CAS  Google Scholar 

  47. Li, Haizeng et al. Self-seeded growth of nest-like hydrated tungsten trioxide film directly on FTO substrate for highly enhanced electrochromic performance. J. Mater. Chem. A 2, 11305–11310 (2014).

    Article  CAS  Google Scholar 

  48. Hsu, W.-C. et al. Hydrogen sensing characteristics of an electrodeposited WO3 thin film gasochromic sensor activated by Pt catalyst. Thin Solid Films 516, 407–411 (2007).

    Article  CAS  Google Scholar 

  49. Nørskov, J. K. et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. 118, 2963–2967 (2006).

    Article  Google Scholar 

  50. Nørskov, J. K. et al. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 114, 18182–18197 (2010).

    Article  CAS  Google Scholar 

  51. Bard, A. J. et al. in Electrochemical Methods: Fundamentals and Applications 351 (Wiley, 1980).

  52. Garsany, Y. et al. Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal. Chem. 82, 6321–6328 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Kresse, G. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 169 (1996).

    Article  Google Scholar 

  54. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  55. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    CAS  Google Scholar 

  56. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within density-fuctional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation (NRF) of Korea grants (nos. 2019M3D1A1079306, 2019M3E6A1064521). V.S. and N.M.M. were supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Hydrogen and Fuel Cells Technologies Office.

Author information

Authors and Affiliations

Authors

Contributions

Y.-T.K. conceived and designed the experiments. S.-M.J., S.-W.Y., J.-H.K., S.-H.Y, J.P., S.L., S.H.C. and S.C.C. performed the experiments. Y.-T.K., S.H.J., J.L., Y.J., J. Son, V.S. and N.M.M. analysed the data. Y.-T.K., J. Snyder and N.M.M. co-wrote the paper.

Corresponding author

Correspondence to Yong-Tae Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs 1–30 and Tables 1–3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, SM., Yun, SW., Kim, JH. et al. Selective electrocatalysis imparted by metal–insulator transition for durability enhancement of automotive fuel cells. Nat Catal 3, 639–648 (2020). https://doi.org/10.1038/s41929-020-0475-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-020-0475-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing