Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

C–O bond activation using ultralow loading of noble metal catalysts on moderately reducible oxides

Abstract

Selective C–O activation of multifunctional molecules is essential for many important chemical processes. Although reducible metal oxides are active and selective towards reductive C–O bond scission via the reverse Mars–van Krevelen mechanism, the most active oxides undergo bulk reduction during reaction. Here, motivated by the enhanced oxide reducibility by metals, we report a strategy for C–O bond activation by doping the surface of moderately reducible oxides with an ultralow loading of noble metals. We demonstrate the principle using highly dispersed Pt anchored onto TiO2 for furfuryl alcohol conversion to 2-methylfuran. A combination of density functional theory calculations, catalyst characterization (scanning transmission electron microscopy, electron paramagnetic resonance, Fourier-transform infrared spectroscopy and X-ray absorption spectroscopy), kinetic experiments and microkinetic modelling expose substantial C–O activation rate enhancement, without bulk catalyst reduction or unselective ring hydrogenation. A methodology is introduced to quantify various types of sites, revealing that the cationic redox Pt on the TiO2 surface is more active than metallic sites for C–O bond activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Catalytic cycle for FA upgrade on (101) TiO2 anatase surface.
Fig. 2: Characterization results from HAADF-STEM, EXAFS and FTIR of CO sorption.
Fig. 3: Promotional effect of Pt dopant on oxygen vacancy formation and selective C–O bond scission.
Fig. 4: Site quantification.

Similar content being viewed by others

Data availability

The data that support the findings of this paper are available from the corresponding author upon reasonable request. The microkinetic models and the data that support the plots in this paper are available on Mendeley Data59.

Code availability

The code to convert ab initio data to microkinetic model inputs are available on Mendeley Data59.

References

  1. Gallezot, P. & Richard, D. Selective hydrogenation of α,β-unsaturated aldehydes. Catal. Rev. Sci. Eng. 40, 81–126 (1998).

    CAS  Google Scholar 

  2. Murillo, L. E., Goda, A. M. & Chen, J. G. Selective hydrogenation of the C=O bond in acrolein through the architecture of bimetallic surface structures. J. Am. Chem. Soc. 129, 7101–7105 (2007).

    CAS  PubMed  Google Scholar 

  3. Su, X. et al. Catalytic carbon dioxide hydrogenation to methane: a review of recent studies. J. Energy Chem. 25, 553–565 (2016).

    Google Scholar 

  4. Mironenko, A. V. & Vlachos, D. G. Conjugation-driven ‘reverse Mars-van Krevelen’-type radical mechanism for low-temperature C-O bond activation. J. Am. Chem. Soc. 138, 8104–8113 (2016).

    CAS  PubMed  Google Scholar 

  5. Luo, J. et al. The H2 pressure dependence of hydrodeoxygenation selectivities for furfural over Pt/C Catalysts. Catal. Lett. 146, 711–717 (2016).

    CAS  Google Scholar 

  6. Zacharopoulou, V., Vasiliadou, E. S. & Lemonidou, A. A. Exploring the reaction pathways of bioglycerol hydrodeoxygenation to propene over molybdena-based catalysts. ChemSusChem 11, 264–275 (2018).

    CAS  PubMed  Google Scholar 

  7. Liu, G. et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 9, 810–816 (2017).

    CAS  PubMed  Google Scholar 

  8. Murugappan, K. et al. Operando NAP-XPS unveils differences in MoO3 and Mo2C during hydrodeoxygenation. Nat. Catal. 1, 960–967 (2018).

    CAS  Google Scholar 

  9. Wang, C. et al. Mechanistic study of the direct hydrodeoxygenation of m-cresol over WOx-decorated Pt/C catalysts. ACS Catal. 8, 7749–7759 (2018).

    CAS  Google Scholar 

  10. Goulas, K. A., Mironenko, A. V., Jenness, G. R., Mazal, T. & Vlachos, D. G. Fundamentals of C–O bond activation on metal oxide catalysts. Nat. Catal. 2, 269–276 (2019).

    CAS  Google Scholar 

  11. Zhang, C., He, H. & Tanaka, K. Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature. Appl. Catal. B 65, 37–43 (2006).

    CAS  Google Scholar 

  12. Briggs, N. M. et al. Identification of active sites on supported metal catalysts with carbon nanotube hydrogen highways. Nat. Commun. 9, 3872 (2018).

    Google Scholar 

  13. Boonyasuwat, S., Omotoso, T., Resasco, D. E. & Crossley, S. P. Conversion of guaiacol over supported Ru catalysts. Catal. Lett. 143, 783–791 (2013).

    CAS  Google Scholar 

  14. Griffin, M. B. et al. Role of the support and reaction conditions on the vapor-phase deoxygenation of m-cresol over Pt/C and Pt/TiO2 catalysts. ACS Catal. 6, 2715–2727 (2016).

    CAS  Google Scholar 

  15. Pham, T. N., Shi, D., Sooknoi, T. & Resasco, D. E. Aqueous-phase ketonization of acetic acid over Ru/TiO2/carbon catalysts. J. Catal. 295, 169–178 (2012).

    CAS  Google Scholar 

  16. Pham, T. N., Shi, D. & Resasco, D. E. Kinetics and mechanism of ketonization of acetic acid on Ru/TiO2 catalyst. Top. Catal. 57, 706–714 (2014).

    CAS  Google Scholar 

  17. Pacchioni, G. Ketonization of carboxylic acids in biomass conversion over TiO2 and ZrO2 surfaces: a DFT perspective. ACS Catal. 4, 2874–2888 (2014).

    CAS  Google Scholar 

  18. Tosoni, S. & Pacchioni, G. Acetic acid ketonization on tetragonal zirconia: role of surface reduction. J. Catal. 344, 465–473 (2016).

    CAS  Google Scholar 

  19. Merat, N., Godawa, C. & Gaset, A. High selective production of tetrahydrofurfuryl alcohol: catalytic hydrogenation of furfural and furfuryl alcohol. J. Chem. Technol. Biotechnol. 48, 145–159 (1990).

    CAS  Google Scholar 

  20. Iglesia, E. & Boudart, M. Structure-sensitivity and ensemble effects in reactions of strongly adsorbed intermediates. Catalytic dehydrogenation and dehydration of formic acid on nickel. J. Phys. Chem. 95, 7011–7016 (1991).

    CAS  Google Scholar 

  21. Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    CAS  PubMed  Google Scholar 

  23. Lin, J. et al. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 135, 15314–15317 (2013).

    CAS  PubMed  Google Scholar 

  24. Yang, M., Allard, L. F. & Flytzani-Stephanopoulos, M. Atomically dispersed Au-(OH)x species bound on titania catalyze the low-temperature water-gas shift reaction. J. Am. Chem. Soc. 135, 3768–3771 (2013).

    CAS  PubMed  Google Scholar 

  25. Zhang, L., Ren, Y., Liu, W., Wang, A. & Zhang, T. Single-atom catalyst: a rising star for green synthesis of fine chemicals. Natl Sci. Rev. 5, 653–672 (2018).

    CAS  Google Scholar 

  26. Sitthisa, S., An, W. & Resasco, D. E. Selective conversion of furfural to methylfuran over silica-supported NiFe bimetallic catalysts. J. Catal. 284, 90–101 (2011).

    CAS  Google Scholar 

  27. DeRita, L. et al. Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2. J. Am. Chem. Soc. 139, 14150–14165 (2017).

    CAS  PubMed  Google Scholar 

  28. Ding, K. et al. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 350, 189–192 (2015).

    CAS  PubMed  Google Scholar 

  29. Luo, J. et al. Mechanisms for high selectivity in the hydrodeoxygenation of 5-hydroxymethylfurfural over PtCo nanocrystals. ACS Catal. 6, 4095–4104 (2016).

    CAS  Google Scholar 

  30. Gilkey, M. J. et al. Mechanistic insights into metal Lewis acid-mediated catalytic transfer hydrogenation of furfural to 2-methylfuran. ACS Catal. 5, 3988–3994 (2015).

    CAS  Google Scholar 

  31. Cargnello, M. et al. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 341, 771–773 (2013).

    CAS  PubMed  Google Scholar 

  32. Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    CAS  PubMed  Google Scholar 

  33. Vorotnikov, V., Mpourmpakis, G. & Vlachos, D. G. DFT study of furfural conversion to furan, furfuryl alcohol, and 2-methylfuran on Pd(111). ACS Catal. 2, 2496–2504 (2012).

    CAS  Google Scholar 

  34. Zhang, J., Wang, B., Nikolla, E. & Medlin, J. W. Heterogeneous catalysis directing reaction pathways through controlled reactant binding at Pd-TiO2 interfaces. Angew. Chem. 129, 6694–6698 (2017).

    Google Scholar 

  35. DeRita, L. et al. Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 18, 746–751 (2019).

    CAS  PubMed  Google Scholar 

  36. Kuo, C.-T., Lu, Y., Kovarik, L., Engelhard, M. & Karim, A. M. Structure sensitivity of acetylene semi-hydrogenation on Pt single atoms and subnanometer clusters. ACS Catal. 9, 11030–11041 (2019).

    CAS  Google Scholar 

  37. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS  Google Scholar 

  38. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  39. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  40. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    CAS  Google Scholar 

  41. Bahn, S. R. & Jacobsen, K. W. An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng. 4, 56–66 (2002).

    CAS  Google Scholar 

  42. Larsen, A. H. et al. The atomic simulation environment – a python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Google Scholar 

  43. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  PubMed  Google Scholar 

  44. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Google Scholar 

  45. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  46. Downs, R. T. & Hall-Wallace, M. The American mineralogist crystal structure database. Am. Mineral. 88, 247–250 (2003).

    CAS  Google Scholar 

  47. Islam, M. M., Calatayud, M. & Pacchioni, G. Hydrogen adsorption and diffusion on the anatase TiO2(101) surface: a first-principles investigation. J. Phys. Chem. C 115, 6809–6814 (2011).

    CAS  Google Scholar 

  48. Huang, W. F., Raghunath, P. & Lin, M. C. Computational study of the reactions of H2O2 on TiO2 anatase (101) and rutile (110) surfaces. J. Comput. Chem. 32, 1065–1081 (2011).

    CAS  PubMed  Google Scholar 

  49. Esch, T. R., Gadaczek, I. & Bredow, T. Surface structures and thermodynamics of low-index of rutile, brookite and anatase – a comparative DFT study. Appl. Surf. Sci. 288, 275–287 (2014).

    CAS  Google Scholar 

  50. Howard, C. J., Sabine, T. M. & Dickson, F. Structural and thermal parameters for rutile and anatase. Acta Crystallogr. B 47, 462–468 (1991).

    Google Scholar 

  51. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    PubMed  Google Scholar 

  52. Sheppard, D., Terrell, R. & Henkelman, G. Optimization methods for finding minimum energy paths. J. Chem. Phys. 128, 134106 (2008).

    PubMed  Google Scholar 

  53. Sheppard, D., Xiao, P., Chemelewski, W., Johnson, D. D. & Henkelman, G. A generalized solid-state nudged elastic band method. J. Chem. Phys. 136, 074103 (2012).

    PubMed  Google Scholar 

  54. Momma, K. & Izumi, F. VESTA 3 for three-dimentional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    CAS  Google Scholar 

  55. Momma, K. & Izumi, F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653–658 (2008).

    CAS  Google Scholar 

  56. Coltrin, M. E., Kee, R. J. & Rupley, F. M. SURFACE CHEMKIN: A Fortran Package for Analyzing Heterogeneous Chemical Kinetics at a Solid-Surface– Gas-Phase Interface Sandia Report SAND90-2003B 3–91 (Sandia National Laboratories, 1991).

  57. Kee, R. J., Rupley, F. M., Meeks, E. & Miller, J. A. CHEMKIN-III: A Fortran Package for the Analysis of Gas-Phase Chemical and Plasma Kinetics Sandia Report SAND96-8216 3–164 (Sandia National Laboratories, 1996).

  58. Lym, J., Wittreich, G. R. & Vlachos, D. G. A Python Multiscale Thermochemistry Toolbox (pMuTT) for thermochemical and kinetic parameter estimation. Comput. Phys. Commun. 247, 106864 (2019).

    Google Scholar 

  59. Fu, J. et al. Dataset for C–O bond activation using ultra-low loading noble metal catalysts on moderately reducible oxides. Mendeley Data https://doi.org/10.17632/pgmcmfb243.1 (2020).

Download references

Acknowledgements

This work was financially supported by the Catalysis Center for Energy Innovation, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DESC0001004. Portions of this work were performed at the DuPont–Northwestern–Dow Collaborative Access Team (DND-CAT) located at Sector 5 of the Advanced Photon Source. DND-CAT is supported by Northwestern University, E.I. DuPont de Nemours and Co., and The Dow Chemical Company. This research used resources of the Advanced Photon Source, a US Department of Energy, Office of Science user facility operated for the Department of Energy, Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. The research is carried out in part at the Center for Functional Nanomaterials, the 23-ID-2 (IOS) beamline of the National Synchrotron Light Source II at Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences under contract no. DE-SC0012704 and at the beamline 7-BM (QAS), which is supported by the Synchrotron Catalysis Consortium, US Department of Energy under grant no. DE-SC0012335. We acknowledge the groups of Jingguang Chen, Anatoly Frenkel and Raymond Gorte for valuable discussions, Konstantinos Goulas and Qing Ma for X-ray absorption spectroscopy (XAS) measurements, Sibao Liu for assisting with XPS measurements and Sooyeon Hwang for some of the HAADF-STEM images. We thank Lan Wang for assisting in EPR sample preparation. W.Z. gratefully acknowledges the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research.

Author information

Authors and Affiliations

Authors

Contributions

J.F. performed experimental kinetic studies, XAS analysis and active site quantification. J.L. carried out DFT calculations and microkinetic modelling. W.Z. performed catalyst synthesis and XPS, IR and TEM analyses. J.A.B. conducted the XPS experiments. N.L. and D.S. carried out the HAADF-STEM analysis. R.T.W. carried out the EPR analysis. A.V.M. and K.A. provided insights into DFT calculations. D.G.V. directed the project and provided guidance for the experimental and theoretical work. The manuscript was written by J.F., J.L., W.Z. and D.G.V. with input from all the authors.

Corresponding author

Correspondence to Dionisios G. Vlachos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1–30, Tables 1–10, Notes 1–7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Lym, J., Zheng, W. et al. C–O bond activation using ultralow loading of noble metal catalysts on moderately reducible oxides. Nat Catal 3, 446–453 (2020). https://doi.org/10.1038/s41929-020-0445-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-020-0445-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing