Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intrinsically stable in situ generated electrocatalyst for long-term oxidation of acidic water at up to 80 °C

Abstract

Electrochemical water splitting in acidic conditions offers important advantages over that in alkaline systems, but the technological progress is limited by the lack of inexpensive and efficient anode catalysts that can stably operate at a low pH and elevated temperature. Here we demonstrate oxygen evolution catalysts that are based on non-noble metals, are formed in situ during electrooxidation of acidic water and exhibit a high stability in operation due to a self-healing mechanism. The highly disordered mixed metal oxides generated from dissolved cobalt, lead and iron precursors sustain high water oxidation rates at reasonable overpotentials. Moreover, utilizing a sufficiently robust electrode substrate allows for a continuous water oxidation at temperatures up to 80 °C and rates up to 500 mA cm−2 at overpotentials below 0.7 V with an essentially flat support and with no loss in activity. This robust operation of the catalysts is provided by the thermodynamically stable lead oxide matrix that accommodates homogeneously distributed catalytic dopants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cyclic voltammetric (scan rate 0.020 V s−1) oxidation of aqueous H2SO4 that contains Co2+ (5 mM), Fe3+ (1 mM) and Pb2+ (0.5 mM).
Fig. 2: Potentiostatic oxidation of aqueous H2SO4 that contains Co2+ (5 mM), Fe3+ (1 mM) and Pb2+ (0.5 mM) under different conditions.
Fig. 3: Microscopic analysis of the CoFePbOx catalysts deposited on FTO.
Fig. 4: Characterization of CoFePbOx.

Similar content being viewed by others

Data availability

The data that support all findings of this study are available from the corresponding author upon request.

References

  1. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Article  CAS  Google Scholar 

  2. Lewis, N. S. Research opportunities to advance solar energy utilization. Science 351, 353 (2016).

    Article  CAS  Google Scholar 

  3. Nielander, A. C., Shaner, M. R., Papadantonakis, K. M., Francis, S. A. & Lewis, N. S. A taxonomy for solar fuels generators. Energy Environ. Sci. 8, 16–25 (2015).

    Article  CAS  Google Scholar 

  4. González, E. L., Llerena, F. I., Pérez, M. S., Iglesias, F. R. & Macho, J. G. Energy evaluation of a solar hydrogen storage facility: Comparison with other electrical energy storage technologies. Int. J. Hydrog. Energy 40, 5518–5525 (2015).

    Article  Google Scholar 

  5. Moreno-Hernandez, I. A. et al. Crystalline nickel manganese antimonate as a stable water-oxidation catalyst in aqueous 1.0 M H2SO4. Energy Environ. Sci. 10, 2103–2108 (2017).

    Article  CAS  Google Scholar 

  6. Jiao, F. & Frei, H. Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ. Sci. 3, 1018–1027 (2010).

    Article  CAS  Google Scholar 

  7. Gong, M. & Dai, H. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 8, 23–39 (2014).

    Article  Google Scholar 

  8. Chatti, M. et al. Sustainable energy & fuels highly dispersed and disordered nickel–iron layered hydroxides and sulphides: robust and high-activity water oxidation catalysts. Sustain. Energ. Fuels 2, 1561–1573 (2018).

    Article  CAS  Google Scholar 

  9. Roger, I., Shipman, M. A. & Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017).

    Article  CAS  Google Scholar 

  10. Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

    Article  CAS  Google Scholar 

  11. McKone, J. R., Sadtler, B. F., Werlang, C. A., Lewis, N. S. & Gray, H. B. Ni–Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal. 3, 166–169 (2013).

    Article  CAS  Google Scholar 

  12. Carmo, M., Fritz, D. L., Mergel, J. & Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 38, 4901–4934 (2013).

    Article  CAS  Google Scholar 

  13. Huynh, M., Ozel, T., Liu, C., Lau, E. C. & Nocera, D. G. Design of template-stabilized active and Earth-abundant oxygen evolution catalysts in acid. Chem. Sci. 8, 4779–4794 (2017).

    Article  CAS  Google Scholar 

  14. Park, S., Shao, Y., Liu, J. & Wang, Y. Oxygen electrocatalysts for water electrolyzers and reversible fuel cells : status and perspective. Energy Environ. Sci. 5, 9331–9344 (2012).

    Article  CAS  Google Scholar 

  15. Leng, Y. et al. Solid-state water electrolysis with an alkaline membrane. J. Am. Chem. Soc. 134, 9054–9057 (2012).

    Article  CAS  Google Scholar 

  16. Reier, T., Nong, H. N., Teschner, D., Schlögl, R. & Strasser, P. Electrocatalytic oxygen evolution reaction in acidic environments—reaction mechanisms and catalysts. Adv. Energy Mater. 7, 1601275 (2017).

    Article  Google Scholar 

  17. Schalenbach, M. et al. Acidic or alkaline? Towards a new perspective on the efficiency of water electrolysis. J. Electrochem. Soc. 163, F3197–F3208 (2016).

    Article  CAS  Google Scholar 

  18. Hinnemann, B. et al. Biomimetic hydrogen evolution : MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).

    Article  CAS  Google Scholar 

  19. McCrory, C. C. L. et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015).

    Article  CAS  Google Scholar 

  20. Mondschein, J. S. et al. Crystalline cobalt oxide films for sustained electrocatalytic oxygen evolution under strongly acidic conditions. Chem. Mater. 29, 950–957 (2017).

    Article  CAS  Google Scholar 

  21. Mondschein, J. S. et al. Intermetallic Ni2Ta electrocatalyst for the oxygen evolution reaction in highly acidic electrolytes. Inorg. Chem. 57, 6010–6015 (2018).

    Article  CAS  Google Scholar 

  22. Li, X., Pletcher, D. & Walsh, F. C. Electrodeposited lead dioxide coatings. Chem. Soc. Rev. 40, 3879–3894 (2011).

    Article  CAS  Google Scholar 

  23. Musiani, M. Anodic deposition of PbO2/Co3O4 composites and their use as electrodes for oxygen evolution reaction. Chem. Commun. 2, 2403–2404 (1996).

    Article  Google Scholar 

  24. Velichenko, A. B. et al. Oxygen evolution on lead dioxide modified with fluorine and iron. Russ. J. Electrochem. 36, 1216–1220 (2000).

    Article  CAS  Google Scholar 

  25. Yu, P. & Keefe, T. J. O. Evaluation of lead anode reactions in acid sulfate electrolytes. J. Electrochem. Soc. 149, 558–569 (2002).

    Article  Google Scholar 

  26. Velichenko, A. B., Amadelli, R., Baranova, E. A., Girenko, D. V. & Danilov, F. I. Electrodeposition of Co-doped lead dioxide and its physicochemical properties. J. Electroanal. Chem. 527, 56–64 (2002).

    Article  CAS  Google Scholar 

  27. Nikoloski, A. N. & Nicol, M. J. Addition of cobalt to lead anodes used for oxygen evolution: a literature review. Miner. Process. Extr. Metall. Rev. 31, 30–57 (2010).

    Article  CAS  Google Scholar 

  28. Yu, P. & OKeefe, T. J. Evaluation of lead anode reactions in acid sulfate electrolytes. I. Lead alloys with cobalt additives. J. Electrochem. Soc. 146, 1361–1369 (1999).

    Article  CAS  Google Scholar 

  29. Nikoloski, A. N. & Barmi, M. J. Novel lead–cobalt composite anodes for copper electrowinning. Hydrometallurgy 137, 45–52 (2013).

    Article  CAS  Google Scholar 

  30. Schmachtel, S. et al. Simulation of electrochemical processes during oxygen evolution on Pb–MnO2 composite electrodes. Electrochim. Acta 245, 512–525 (2017).

    Article  CAS  Google Scholar 

  31. Lutterman, D. A., Surendranath, Y. & Nocera, D. G. A self-healing oxygen-evolving catalyst. J. Am. Chem. Soc. 131, 3838–3839 (2009).

    Article  CAS  Google Scholar 

  32. Bloor, L. G., Molina, P. I., Symes, M. D. & Cronin, L. Low pH electrolytic water splitting using Earth-abundant metastable catalysts that self-assemble in situ. J. Am. Chem. Soc. 136, 3304–3311 (2014).

    Article  CAS  Google Scholar 

  33. Bonke, S. A. et al. Electrolysis of natural waters contaminated with transition-metal ions: identification of a metastable FePb-based oxygen-evolution catalyst operating in weakly acidic solutions. ChemPlusChem 83, 704–710 (2018).

    Article  CAS  Google Scholar 

  34. Cattarin, S. & Musiani, M. Electrosynthesis of nanocomposite materials for electrocatalysis. Electrochim. Acta 52, 2796–2805 (2007).

    Article  CAS  Google Scholar 

  35. Huang, L. F., Hutchison, M. J., Santucci, R. J., Scully, J. R. & Rondinelli, J. M. Improved electrochemical phase diagrams from theory and experiment: the Ni–water system and its complex compounds. J. Phys. Chem. C 121, 9782–9789 (2017).

    Article  CAS  Google Scholar 

  36. Tekerlekopoulou, A. G., Pavlou, S. & Vayenas, D. V. Removal of ammonium, iron and manganese from potable water in biofiltration units: a review. J. Chem. Technol. Biotechnol. 88, 751–773 (2013).

    Article  CAS  Google Scholar 

  37. Velichenko, A. B., Amadelli, R., Zucchini, G. L., Girenko, D. V. & Danilov, F. I. Electrosynthesis and physicochemical properties of Fe-doped lead dioxide electrocatalysts. Electrochim. Acta 45, 4341–4350 (2000).

    Article  CAS  Google Scholar 

  38. Musiani, M., Furlanetto, F. & Bertoncello, R. Electrodeposited PbO2 + RuO2: a composite anode for oxygen evolution from sulphuric acid solution. J. Electroanal. Chem. 465, 160–167 (1999).

    Article  CAS  Google Scholar 

  39. Han, S., He, S., Xu, R., Wang, J. & Chen, B. An RDE research on the preparation process of β-PbO2–CoOx composite coatings. Int. J. Electrochem. Sci. 11, 8391–8404 (2016).

    Article  CAS  Google Scholar 

  40. Cattarin, S., Guerriero, P. & Musiani, M. Preparation of anodes for oxygen evolution by electrodeposition of composite Pb and Co oxides. Electrochim. Acta 46, 4229–4234 (2001).

    Article  CAS  Google Scholar 

  41. Bonke, S. A., Bond, A. M., Spiccia, L. & Simonov, A. N. Parameterization of water electrooxidation catalyzed by metal oxides using Fourier transformed alternating current voltammetry. J. Am. Chem. Soc. 138, 16095–16104 (2016).

    Article  CAS  Google Scholar 

  42. Costentin, C., Porter, T. R. & Savéant, J. M. Conduction and reactivity in heterogeneous-molecular catalysis: new insights in water oxidation catalysis by phosphate cobalt oxide films. J. Am. Chem. Soc. 138, 5615–5622 (2016).

    Article  CAS  Google Scholar 

  43. Fang, Y. & Liu, Z. Mechanism and Tafel lines of electro-oxidation of water to oxygen on RuO2(110). J. Am. Chem. Soc. 132, 18214–18222 (2010).

    Article  CAS  Google Scholar 

  44. Halck, N. B., Petrykin, V., Krtil, P. & Rossmeisl, J. Beyond the volcano limitations in electrocatalysis—oxygen evolution reaction. Phys. Chem. Chem. Phys. 16, 13682–13688 (2014).

    Article  CAS  Google Scholar 

  45. Mahalingam, T. et al. Electrosynthesis and characterization of lead oxide thin films. Mater. Charact. 58, 817–822 (2007).

    Article  CAS  Google Scholar 

  46. Figueiredo, M. O., Silva, T. P. & Veiga, J. P. A XANES study of the structural role of lead in glazes from decorated tiles, XVI to XVIII century manufacture. Appl. Phys. A 83, 209–211 (2006).

    Article  CAS  Google Scholar 

  47. Liang, Y. et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011).

    Article  CAS  Google Scholar 

  48. Kanan, M. W. et al. Structure and valency of a cobalt–phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J. Am. Chem. Soc. 132, 13692–13701 (2010).

    Article  CAS  Google Scholar 

  49. King, H. J. et al. Engineering disorder into heterogenite-like cobalt oxides by phosphate doping: implications for the design of water-oxidation catalysts. ChemCatChem 9, 511–521 (2017).

    Article  CAS  Google Scholar 

  50. Westre, T. E. et al. A multiplet analysis of Fe K-edge 1s → 3d pre-edge features of iron complexes. J. Am. Chem. Soc. 119, 6297–6314 (1997).

    Article  CAS  Google Scholar 

  51. Benck, J. D., Pinaud, B. A., Gorlin, Y. & Jaramillo, T. F. Substrate selection for fundamental studies of electrocatalysts and photoelectrodes: inert potential windows in acidic, neutral, and basic electrolyte. PLoS ONE 9, e107942 (2014).

    Article  Google Scholar 

  52. Staszak-jirkovský, J. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1–8 (2015).

    Google Scholar 

  53. Geiger, S. et al. The stability number as a metric for electrocatalyst stability benchmarking. Nat. Catal. 1, 508–515 (2018).

    Article  Google Scholar 

  54. Hu, F. et al. Amorphous metallic NiFeP: a conductive bulk material achieving high activity for oxygen evolution reaction in both alkaline and acidic media. Adv. Mater. 29, 1–9 (2017).

    Google Scholar 

  55. Lei, C. et al. Fe-N4 sites embedded into carbon nanofiber integrated with electrochemically exfoliated graphene for oxygen evolution in acidic medium. Adv. Energy Mater. 8, 1801912 (2018).

    Article  Google Scholar 

  56. Blasco-Ahicart, M., Soriano-Lopez, J., Carbo, J. J., Poblet, J. M. & Galan-Mascaros, J. R. Polyoxometalate electrocatalysts based on Earth-abundant metals for efficient water oxidation in acidic media. Nat. Chem 10, 24–30 (2018).

    Article  CAS  Google Scholar 

  57. Yang, H. T. et al. Electrochemical behavior of rolled Pb–0.8%Ag anodes. Hydrometallurgy 140, 144–150 (2013).

    Article  CAS  Google Scholar 

  58. Ma, R. et al. Oxygen evolution and corrosion behavior of low-MnO2-content Pb–MnO2 composite anodes for metal electrowinning. Hydrometallurgy 159, 6–11 (2016).

    Article  CAS  Google Scholar 

  59. Hoogeveen, D. A. et al. Photo-electrocatalytic hydrogen generation at dye-sensitised electrodes functionalised with a heterogeneous metal catalyst. Electrochim. Acta 219, 773–780 (2016).

    Article  CAS  Google Scholar 

  60. Hoogeveen, D. A. et al. Origin of photoelectrochemical generation of dihydrogen by a dye-sensitized photocathode without an intentionally introduced catalyst. J. Phys. Chem. C 121, 25836–25846 (2017).

    Article  CAS  Google Scholar 

  61. Glover, C. et al. Status of the X-ray absorption spectroscopy (XAS) beamline at the Australian synchrotron. AIP Conf. Proc. 882, 884–886 (2007).

    Article  CAS  Google Scholar 

  62. Cramer, S. P. & Hodgson, K. O. X-ray absorption spectroscopy: a new structural method and its applications to bioinorganic chemistry. Prog. Inorg. Chem 25, 1–39 (1979).

    CAS  Google Scholar 

  63. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank B.H.R. Suryanto (Monash University) for the instrumental support throughout the study, and P. Kappen and C. Glover (Australian Synchrotron) for support in the XAS experiments. The authors acknowledge the use of facilities within the Monash Centre for Electron Microscopy (funded by the Australian Research Council grant LE110100223) and Monash X-ray Platform (funded by Australian Research Council grant LE130100072). Part of this research was undertaken on the XAS beamline at the Australian Synchrotron, part of ANSTO. Funding of this work by the Australian Research Council through the ARC Centre of Excellence for Electromaterials Science (CE140100012) and by the Australian Renewable Energy Agency (ARENA contract no. 2018/RND008) is appreciated.

Author information

Authors and Affiliations

Authors

Contributions

M.C. designed and undertook electrochemical experiments, performed the SEM/EDX and XRD analysis, analysed and interpreted data, and co-wrote the paper. J.G. undertook electrochemical experiments, analysed and interpreted data, and co-wrote the paper. M.F. undertook O2 detection and ICP-OES analysis, and contributed to data analysis. B.J. undertook XAS experiments. T.W. collected and analysed TEM data. T.R.G. collected and analysed XPS data. N.P. undertook cross-sectional SEM and ICP-OES analyses. C.N. undertook SEM analysis and assisted with data analysis. D.R.M. interpreted data and contributed to the manuscript preparation. R.K.H. collected and analysed XAS data, interpreted data and contributed to the manuscript preparation. A.N.S. conceived and directed the project, designed experiments, analysed and interpreted data, and co-wrote the paper.

Corresponding author

Correspondence to Alexandr N. Simonov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Figures 1–29, Supplementary Tables 1–6 and Supplementary References.

Supplementary Video

In situ generation and operation of the CoFePbOx water oxidation catalyst in 0.1 M H2SO4 at 23 °C.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatti, M., Gardiner, J.L., Fournier, M. et al. Intrinsically stable in situ generated electrocatalyst for long-term oxidation of acidic water at up to 80 °C. Nat Catal 2, 457–465 (2019). https://doi.org/10.1038/s41929-019-0277-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0277-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing