Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photoelectrocatalytic arene C–H amination

Abstract

Photoelectrochemical cells are widely studied for solar energy conversion. However, they have rarely been used for the synthesis of high added-value organic molecules. Here we describe a strategy to use haematite, an abundant and robust photoanode, for non-directed arene C–H amination. Under illumination, the photogenerated holes in haematite oxidize electron-rich arenes to radical cations, which further react with azoles to give nitrogen heterocycles of medicinal interest. Unusual ortho selectivity was achieved, probably due to a hydrogen-bonding interaction between the substrates and the hexafluoroisopropanol co-solvent. The method exhibits broad scope and is successfully applied for the late-stage functionalization of several pharmaceutical molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PEC cells.
Fig. 2: Arene C–H amination.
Fig. 3: Late-stage functionalization of pharmaceuticals.
Fig. 4: (Photo)electrochemical measurements.
Fig. 5: Mechanistic hypothesis.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    Article  Google Scholar 

  2. Tachibana, Y., Vayssieres, L. & Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photon. 6, 511–518 (2012).

    Article  CAS  Google Scholar 

  3. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  CAS  Google Scholar 

  4. Cha, H. G. & Choi, K.-S. Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat. Chem. 7, 328–333 (2015).

    Article  CAS  Google Scholar 

  5. Li, T. et al. Photoelectrochemical oxidation of organic substrates in organic media. Nat. Commun. 8, 390 (2017).

    Article  Google Scholar 

  6. Tateno, H., Miseki, Y. & Sayama, K. Photoelectrochemical oxidation of benzylic alcohol derivatives on BiVO4/WO3 under visible light irradiation. ChemElectroChem 4, 3283–3287 (2017).

    Article  CAS  Google Scholar 

  7. Tateno, H., Miseki, Y. & Sayama, K. Photoelectrochemical dimethoxylation of furan via a bromide redox mediator using a BiVO4/WO3 photoanode. Chem. Commun. 53, 4378–4381 (2017).

    Article  CAS  Google Scholar 

  8. Tateno, H., Iguchi, S., Miseki, Y. & Sayama, K. Photo-electrochemical C−H bond activation of cyclohexane using a WO3 photoanode and visible light. Angew. Chem. Int. Ed. 57, 11238–11241 (2018).

    Article  CAS  Google Scholar 

  9. Tran, L. D., Roane, J. & Daugulis, O. Directed amination of non-acidic arene C–H bonds by a copper–silver catalytic system. Angew. Chem. Int. Ed. 52, 6043–6046 (2013).

    Article  CAS  Google Scholar 

  10. Xu, H., Qiao, X., Yang, S. & Shen, Z. Cu-catalyzed direct amidation of aromatic C–H bonds: an access to arylamines. J. Org. Chem. 79, 4414–4422 (2014).

    Article  CAS  Google Scholar 

  11. Matsubara, T., Asako, S., Ilies, L. & Nakamura, E. Synthesis of anthranilic acid derivatives through iron-catalyzed ortho amination of aromatic carboxamides with N-chloroamines. J. Am. Chem. Soc. 136, 646–649 (2014).

    Article  CAS  Google Scholar 

  12. Kim, H. J., Kim, J., Cho, S. H. & Chang, S. Intermolecular oxidative C–N bond formation under metal-free conditions: control of chemoselectivity between aryl sp 2 and benzylic sp 3 C–H bond imidation. J. Am. Chem. Soc. 133, 16382–16385 (2011).

    Article  CAS  Google Scholar 

  13. Kantak, A. A., Potavathri, S., Barham, R. A., Romano, K. M. & DeBoef, B. Metal-free intermolecular oxidative C–N bond formation via tandem C–H and N–H bond functionalization. J. Am. Chem. Soc. 133, 19960–19965 (2011).

    Article  CAS  Google Scholar 

  14. Romero, N. A., Margrey, K. A., Tay, N. E. & Nicewicz, D. A. Site-selective arene C–H amination via photoredox catalysis. Science 349, 1326–1330 (2015).

    Article  CAS  Google Scholar 

  15. Margrey, K. A., McManus, J. B., Bonazzi, S., Zecri, F. & Nicewicz, D. A. Predictive model for site-selective aryl and heteroaryl C–H functionalization via organic photoredox catalysis. J. Am. Chem. Soc. 139, 11288–11299 (2017).

    Article  CAS  Google Scholar 

  16. Niu, L. et al. Photo-induced oxidant-free oxidative C–H/N–H cross-coupling between arenes and azoles. Nat. Commun. 8, 14226 (2017).

    Article  Google Scholar 

  17. Song, C. et al. Visible-light-mediated C2-amination of thiophenes by using DDQ as an organophotocatalyst. Chem. Commun. 53, 3689–3692 (2017).

    Article  CAS  Google Scholar 

  18. Das, S., Natarajan, P. & König, B. Teaching old compounds new tricks: DDQ-photocatalyzed C−H amination of arenes with carbamates, urea, and N-heterocycles. Chem. Eur. J. 23, 18161–18165 (2017).

    Article  CAS  Google Scholar 

  19. Sauermann, N., Mei, R. & Ackermann, L. Electrochemical C−H amination by cobalt catalysis in a renewable solvent. Angew. Chem. Int. Ed. 57, 5090–5094 (2018).

    Article  CAS  Google Scholar 

  20. Gao, X., Wang, P., Zeng, L., Tang, S. & Lei, A. Cobalt(ii)-catalyzed electrooxidative C–H amination of arenes with alkylamines. J. Am. Chem. Soc. 140, 4195–4199 (2018).

    Article  CAS  Google Scholar 

  21. Yang, Q.-L. et al. Copper-catalyzed electrochemical C–H amination of arenes with secondary amines. J. Am. Chem. Soc. 140, 11487–11494 (2018).

    Article  CAS  Google Scholar 

  22. Morofuji, T., Shimizu, A. & Yoshida, J.-I. Electrochemical C–H amination: synthesis of aromatic primary amines via N-arylpyridinium Ions. J. Am. Chem. Soc. 135, 5000–5003 (2013).

    Article  CAS  Google Scholar 

  23. Morofuji, T., Shimizu, A. & Yoshida, J.-I. Direct C–N coupling of imidazoles with aromatic and benzylic compounds via electrooxidative C–H functionalization. J. Am. Chem. Soc. 136, 4496–4499 (2014).

    Article  CAS  Google Scholar 

  24. Morofuji, T., Shimizu, A. & Yoshida, J.-I. Heterocyclization approach for electrooxidative coupling of functional primary alkylamines with aromatics. J. Am. Chem. Soc. 137, 9816–9819 (2015).

    Article  CAS  Google Scholar 

  25. Morofuji, T., Shimizu, A. & Yoshida, J.-I. Electrochemical intramolecular C−H amination: synthesis of benzoxazoles and benzothiazoles. Chem. Eur. J. 21, 3211–3214 (2015).

    Article  CAS  Google Scholar 

  26. Tamirat, A. G., Rick, J., Dubale, A. A., Su, W.-N. & Hwang, B.-J. Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Nanoscale Horiz. 1, 243–267 (2016).

    Article  CAS  Google Scholar 

  27. Sivula, K., Le Formal, F. & Grätzel, M. Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4, 432–449 (2011).

    Article  CAS  Google Scholar 

  28. Tilley, S. D., Cornuz, M., Sivula, K. & Grätzel, M. Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed. 49, 6405–6408 (2010).

    Article  CAS  Google Scholar 

  29. Kirste, A., Elsler, B., Schnakenburg, G. & Waldvogel, S. R. Efficient anodic and direct phenol–arene C,C cross-coupling: the benign role of water or methanol. J. Am. Chem. Soc. 134, 3571–3576 (2012).

    Article  CAS  Google Scholar 

  30. Wiebe, A. et al. Electrifying organic synthesis. Angew. Chem. Int. Ed. 57, 5594–5619 (2018).

    Article  CAS  Google Scholar 

  31. Elsler, B. et al. Source of selectivity in oxidative cross-coupling of aryls by solvent effect of 1,1,1,3,3,3-hexafluoropropan-2-ol. Chem. Eur. J. 21, 12321–12325 (2015).

    Article  CAS  Google Scholar 

  32. Bechgaard, K. & Parker, V. D. Mono-, di-, and trications of hexamethoxytriphenylene. Novel anodic trimerization. J. Am. Chem. Soc. 94, 4749–4750 (1972).

    Article  CAS  Google Scholar 

  33. Schubert, M. et al. Over-oxidation as the key step in the mechanism of the MoCl5-mediated dehydrogenative coupling of arenes. Angew. Chem. Int. Ed. 55, 1156–1159 (2016).

    Article  CAS  Google Scholar 

  34. Grundy, S. M., Ahrens, E. H., Salen, G., Schreibman, P. H. & Nestel, P. J. Mechanisms of action of clofibrate on cholesterol metabolism in patients with hyperlipidemia. J. Lipid Res. 13, 531–551 (1972).

    CAS  PubMed  Google Scholar 

  35. See, S. & Ginzburg, R. Skeletal muscle relaxants. Pharmacotherapy 28, 207–213 (2008).

    Article  CAS  Google Scholar 

  36. Sickbert-Bennett, E. E. et al. Comparative efficacy of hand hygiene agents in the reduction of bacteria and viruses. Am. J. Infect. Control 33, 67–77 (2005).

    Article  Google Scholar 

  37. Colomer, I., Chamberlain, A. E. R., Haughey, M. B. & Donohoe, T. J. Hexafluoroisopropanol as a highly versatile solvent. Nat. Rev. Chem. 1, 0088 (2017).

    Article  CAS  Google Scholar 

  38. Eberson, L., Persson, O. & Hartshorn, M. P. Detection and reactions of radical cations generated by photolysis of aromatic compounds with tetranitromethane in 1,1,1,3,3,3-hexafluoro-2-propanol at room temperature. Angew. Chem. Int. Ed. Engl. 34, 2268–2269 (1995).

    Article  Google Scholar 

  39. Eberson, L., Hartshorn, M. P., Persson, O. & Radner, F. Making radical cations live longer. Chem. Commun. 0, 2105–2112 (1996).

    Article  CAS  Google Scholar 

  40. Berkessel, A., Adrio, J. A., Hüttenhain, D. & Neudörfl, J. M. Unveiling the ‘booster effect’ of fluorinated alcohol solvents: aggregation-induced conformational changes and cooperatively enhanced H-bonding. J. Am. Chem. Soc. 128, 8421–8426 (2006).

    Article  CAS  Google Scholar 

  41. Colomer, I., Batchelor-McAuley, C., Odell, B., Donohoe, T. J. & Compton, R. G. Hydrogen bonding to hexafluoroisopropanol controls the oxidative strength of hypervalent iodine reagents. J. Am. Chem. Soc. 138, 8855–8861 (2016).

    Article  CAS  Google Scholar 

  42. Ben-Daniel, R., de Visser, S. P., Shaik, S. & Neumann, R. Electrophilic aromatic chlorination and haloperoxidation of chloride catalyzed by polyfluorinated alcohols: a new manifestation of template catalysis. J. Am. Chem. Soc. 125, 12116–12117 (2003).

    Article  CAS  Google Scholar 

  43. Berkessel, A. & Adrio, J. A. Kinetic studies of olefin epoxidation with hydrogen peroxide in 1,1,1,3,3,3-hexafluoro-2-propanol reveal a crucial catalytic role for solvent clusters. Adv. Synth. Catal. 346, 275–280 (2004).

    Article  CAS  Google Scholar 

  44. de Visser, S. P., Kaneti, J., Neumann, R. & Shaik, S. Fluorinated alcohols enable olefin epoxidation by H2O2: template catalysis. J. Org. Chem. 68, 2903–2912 (2003).

    Article  Google Scholar 

  45. Morales-Guio, C. G. et al. An optically transparent iron nickel oxide catalyst for solar water splitting. J. Am. Chem. Soc. 137, 9927–9936 (2015).

    Article  CAS  Google Scholar 

  46. Al-Awadi, S. A. et al. Kinetics and mechanism of thermal gas-phase elimination of β-substituted carboxylic acids. Tetrahedron 61, 5769–5777 (2005).

    Article  CAS  Google Scholar 

  47. Ankner, T. & Hilmersson, G. Instantaneous deprotection of tosylamides and esters with SmI2/amine/water. Org. Lett. 11, 503–506 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the EPFL, a consolidator grant from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (no. 681292 to X.H.), the PECHouse3 project from the Swiss Federal Office of Energy (no. SI/500090-03, M.G. and J.L.), the Strategic Japanese–Swiss Science and Technology Programme from the Swiss National Science Foundation (no. 514259, M.G. and J.L.) and the Chinese Thousand Talents Program for Young Professionals (J.L.).

Author information

Authors and Affiliations

Authors

Contributions

X.H. directed the project. L.Z. conceived and performed most of experiments. L.L. prepared the haematites and conducted the EIS analysis. J.L. and D.R. measured the IPCE. X.H. and L.Z. wrote the paper, with input from others. All the authors analysed the results and reviewed the paper.

Corresponding author

Correspondence to Xile Hu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Methods, Supplementary References, Supplementary Figures 1–6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Liardet, L., Luo, J. et al. Photoelectrocatalytic arene C–H amination. Nat Catal 2, 366–373 (2019). https://doi.org/10.1038/s41929-019-0231-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0231-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing