Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Bracing copper for the catalytic oxidation of C–H bonds

Abstract

A structural unit found in the active site of some copper proteins, the histidine brace, is comprised of an N-terminal histidine that chelates a single copper ion through its amino terminus NH2 and the π–N of its imidazole side chain. Coordination is completed by the τ-N of a further histidine side chain, to give an overall N3 T-shaped coordination at the copper ion. The histidine brace appears in several proteins, including lytic polysaccharide monooxygenases LPMOs and particulate methane monooxygenases pMMOs, both of which catalyse the oxidation of substrates with strong C–H bonds (bond dissociation enthalpies ~100 kcal mol–1). As such, the copper histidine brace is the focus of research aimed at understanding how nature catalyses the oxidation of unactivated C–H bonds. In this Perspective, we evaluate these studies, which further give bioinspired direction to coordination chemists in the design and preparation of small molecule copper oxidation catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The copper histidine brace.
Fig. 2: LPMO active sites.
Fig. 3: The changing structure of the active site of pMMO.
Fig. 4: Deprotonation of the amino terminus.

Similar content being viewed by others

References

  1. Quinlan, R. J. et al. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc. Natl Acad. Sci. USA 108, 15079–15084 (2011).

    Article  PubMed  Google Scholar 

  2. Phillips, C. M., Beeson, W. T., Cate, J. H. & Marletta, M. A. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem. Biol. 6, 1399–1406 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, L. et al. Intermolecular transfer of copper ions from the CopC protein of pseudomonas syringae. Crystal structures of fully loaded CuICuII forms. J. Am. Chem. Soc. 128, 5834–5850 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Vaaje-Kolstad, G. et al. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330, 219–222 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Hemsworth, G. R., Davies, G. J. & Walton, P. H. Recent insights into copper-containing lytic polysaccharide mono-oxygenases. Curr. Opin. Struct. Biol. 23, 660–668 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Walton, P. H. & Davies, G. J. On the catalytic mechanisms of lytic polysaccharide monooxygenases. Curr. Opin. Chem. Biol. 31, 195–207 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Gao, J., Thomas, D. A., Sohn, C. H. & Beauchamp, J. L. Biomimetic reagents for the selective free radical and acid–base chemistry of glycans: application to glycan structure determination by mass spectrometry. J. Am. Chem. Soc. 135, 10684–10692 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Vu, V. V. & Ngo, S. T. Copper active site in polysaccharide monooxygenases. Coord. Chem. Rev. 368, 134–157 (2018).

    Article  CAS  Google Scholar 

  9. Lieberman, R. L. & Rosenzweig, A. C. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434, 177–182 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies (CRC, 2007).

  11. Solomon, E. I. et al. Copper active sites in biology. Chem. Rev. 114, 3659–3853 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vaaje-Kolstad, G. et al. The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J. Biol. Chem. 280, 28492–28497 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Vaaje-Kolstad, G. et al. Crystal structure and binding properties of the Serratia marcescens chitin-binding Protein CBP21. J. Biol. Chem. 280, 11313–11319 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Harris, P. V. et al. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49, 3305–3316 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Karkehabadi, S. et al. The first structure of a glycoside hydrolase family 61 member, Cel61B from hypocrea jecorina, at 1.6 Å resolution. J. Mol. Biol. 383, 144–154 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Hemsworth, G. R., Johnston, E. M., Davies, G. J. & Walton, P. H. Lytic polysaccharide monooxygenases in biomass conversion. Trends Biotechnol. 33, 747–761 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Levasseur, A. et al. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol. Biofuels 6, 41 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hemsworth, G. R., Henrissat, B., Davies, G. J. & Walton, P. H. Discovery of a new family of lytic polysaccharide mono-oxygenases. Nat. Chem. Biol. 10, 122–126 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Vu, V. V. et al. A family of starch-active polysaccharide monooxygenases. Proc. Natl Acad. Sci. USA 111, 13822–13827 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Lo Leggio, L. et al. Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat. Commun. 6, 5961 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Couturier, M. et al. Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nat. Chem. Biol. 14, 306–310 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Sabbadin, F. et al. An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion. Nat. Commun. 9, 756 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meier, K. K. et al. Oxygen activation by Cu LPMOs in recalcitrant carbohydrate polysaccharide conversion to monomer sugars. Chem. Rev. 118, 2593–2635 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vaaje-Kolstad, G. et al. Structural diversity of lytic polysaccharide monooxygenases. Curr. Opin. Struct. Biol. 44, 67–76 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Span, E. A. et al. The role of the secondary coordination ssphere in a fungal polysaccharide monooxygenase. ACS Chem. Biol. 12, 1095–1103 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mann, S. I., Heinisch, T., Ward, T. R. & Borovik, A. S. Peroxide activation regulated by hydrogen bonds within artificial Cu proteins. J. Am. Chem. Soc. 139, 17289–17292 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hemsworth, G. R. The copper active site of CBM33 polysaccharide oxygenases. J. Am. Chem. Soc. 135, 6069–6077 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Forsberg, Z. et al. Structural determinants of bacterial lytic polysaccharide monooxygenase functionality. J. Biol. Chem. 293, 1397–1412 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Frandsen, K. E. H. et al. The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases. Nat. Chem. Biol. 12, 298–303 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Evans, J. P., Ahn, K. & Klinman, J. P. Evidence that dioxygen and substrate activation are tightly coupled in dopamine β-monooxygenase: implications for the reactive oxygen species. J. Biol. Chem. 278, 49691–49698 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Sevrioukova, I. F. & Poulos, T. L. Understanding the mechanism of cytochrome P450 3A4: recent advances and remaining problems. Dalton Trans. 42, 3116–3126 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Gudmundsson, M. et al. Structural and electronic snapshots during the transition from a Cu(ii) to Cu(i) metal center of a lytic polysaccharide monooxygenase by X-ray photoreduction. J. Biol. Chem. 289, 18782–18792 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hedegard, E. D. & Ryde, U. Molecular mechanism of lytic polysaccharide monooxygenases. Chem. Sci. 9, 3866–3880 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kjaergaard, C. H. et al. Spectroscopic and computational insight into the activation of O2 by the mononuclear Cu center in polysaccharide monooxygenases. Proc. Natl Acad. Sci. USA 111, 8797–8802 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Li, X. et al. Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure 20, 1051–1061 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McDonald, M. R., Fredericks, F. C. & Margerum, D. W. Characterization of copper(iii)−tetrapeptide complexes with histidine as the third residue. Inorg. Chem. 36, 3119–3124 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Bacik, J.-P. et al. Neutron and atomic resolution X-ray structures of a lytic polysaccharide monooxygenase reveal copper-mediated dioxygen binding and evidence for N-terminal deprotonation. Biochemistry 56, 2529–2532 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Balasubramanian, R. et al. Oxidation of methane by a biological dicopper centre. Nature 465, 115–119 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee, J. Y. & Karlin, K. D. Elaboration of copper-oxygen mediated C–H activation chemistry in consideration of future fuel and feedstock generation. Curr. Opin. Chem. Biol. 25, 184–193 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, V. C. C. et al. Alkane oxidation: methane monooxygenases, related enzymes, and their biomimetics. Chem. Rev. 117, 8574–8621 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Sommerhalter, M., Lieberman, R. L. & Rosenzweig, A. C. X-ray crystallography and biological metal centers: is seeing believing? Inorg. Chem. 44, 770–778 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Lieberman, R. L. et al. Characterization of the particulate methane monooxygenase metal centers in multiple redox states by X-ray absorption spectroscopy. Inorg. Chem. 45, 8372–8381 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Culpepper, M. A. et al. Identification of the valence and coordination environment of the particulate methane monooxygenase copper centers by advanced EPR characterization. J. Am. Chem. Soc. 136, 11767–11775 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Culpepper, M. A., Cutsail, G. E., Hoffman, B. M. & Rosenzweig, A. C. Evidence for oxygen binding at the active site of particulate methane monooxygenase. J. Am. Chem. Soc. 134, 7640–7643 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Itoyama, S. et al. Possible peroxo state of the dicopper site of particulate methane monooxygenase from combined quantum mechanics and molecular mechanics calculations. Inorg. Chem. 55, 2771–2775 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Yumura, T. et al. Roles of water molecules in modulating the reactivity of dioxygen-bound Cu-ZSM-5 toward methane: a theoretical prediction. ACS Catalysis 6, 2487–2495 (2016).

    Article  CAS  Google Scholar 

  47. Yoshizawa, K. & Shiota, Y. Conversion of methane to methanol at the mononuclear and dinuclear copper sites of particulate methane monooxygenase (pMMO): a DFT and QM/MM study. J. Am. Chem. Soc. 128, 9873–9881 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Citek, C., Herres-Pawlis, S. & Stack, T. D. P. Low temperature syntheses and reactivity of Cu2O2 active-site models. Acc. Chem. Res. 48, 2424–2433 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Elwell, C. E. et al. Copper–oxygen complexes revisited: structures, spectroscopy, and reactivity. Chem. Rev. 117, 2059–2107 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Smith, S. M. et al. Crystal structure and characterization of particulate methane monooxygenase from methylocystis species strain M. Biochemistry 50, 10231–10240 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cao, L., Caldararu, O., Rosenzweig, A. C. & Ryde, U. Quantum refinement does not support dinuclear copper sites in crystal structures of particulate methane monooxygenase. Angew. Chem. Int. Ed. 57, 162–166 (2018).

    Article  CAS  Google Scholar 

  52. Ro, S. Y. et al. From micelles to bicelles: effect of the membrane on particulate methane monooxygenase activity. J. Biol. Chem. https://doi.org/10.1074/jbc.RA1118.003348 (2018).

  53. Allen, S. E., Walvoord, R. R., Padilla-Salinas, R. & Kozlowski, M. C. Aerobic copper-catalyzed organic reactions. Chem. Rev. 113, 6234–6458 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bissaro, B. et al. Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2. Nat. Chem. Biol. 13, 1123–1128 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Hangasky, J. A., Iavarone, A. T. & Marletta, M. A. Reactivity of O2 versus H2O2 with polysaccharide monooxygenases. Proc. Natl Acad. Sci. USA 115, 4915–4920 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Kim, S. et al. Amine oxidative N-dealkylation via cupric hydroperoxide Cu–OOH homolytic cleavage followed by site-specific fenton chemistry. J. Am. Chem. Soc. 137, 2867–2874 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mirica, L. M., Ottenwaelder, X. & Stack, T. D. P. Structure and spectroscopy of copper−dioxygen complexes. Chem. Rev. 104, 1013–1046 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Lewis, E. A. & Tolman, W. B. Reactivity of dioxygen−copper systems. Chem. Rev. 104, 1047–1076 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Liu, J. J., Diaz, D. E., Quist, D. A. & Karlin, K. D. Copper(i)–dioxygen adducts and copper enzyme mechanisms. Isr. J. Chem. 56, 9–10 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Quist, D. A., Diaz, D. E., Liu, J. J. & Karlin, K. D. Activation of dioxygen by copper metalloproteins and insights from model complexes. J. Biol. Inorg. Chem. 22, 253–288 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Cramer, C. J. & Tolman, W. B. Mononuclear Cu–O2 complexes: geometries, spectroscopic properties, electronic structures, and reactivity. Acc. Chem. Res. 40, 601–608 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Itoh, S. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions. Acc. Chem. Res. 48, 2066–2074 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Gagnon, N. & Tolman, W. B. [CuO]+ and [CuOH]2+ complexes: intermediates in oxidation catalysis? Acc. Chem. Res. 48, 2126–2131 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Iovan, D. A. et al. Reactivity of a stable copper-dioxygen complex. Chem. Commun. 53, 10306–10309 (2017).

    Article  CAS  Google Scholar 

  65. Peterson, R. L. et al. Cupric superoxo-mediated intermolecular C–H activation chemistry. J. Am. Chem. Soc. 133, 1702–1705 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tomson, N. C. et al. Re-evaluating the Cu K pre-edge XAS transition in complexes with covalent metal–ligand interactions. Chem. Sci. 6, 2474–2487 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hedegård, E. D. & Ryde, U. Targeting the reactive intermediate in polysaccharide monooxygenases. J. Biol. Inorg. Chem. 22, 1029–1037 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, B. et al. QM/MM Studies into the H2O2-dependent activity of lytic polysaccharide monooxygenases: evidence for the formation of a caged hydroxyl radical intermediate. ACS Catalysis 8, 1346–1351 (2018).

    Article  CAS  Google Scholar 

  69. Neisen, B. D. et al. Formally copper(iii)–alkylperoxo complexes as models of possible intermediates in monooxygenase enzymes. J. Am. Chem. Soc. 139, 10220–10223 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yamaguchi, S. & Masuda, H. Basic approach to development of environment-friendly oxidation catalyst materials. Mononuclear hydroperoxo copper(ii) complexes. Sci. Technol. Adv. Mater. 6, 34–47 (2005).

    Article  CAS  Google Scholar 

  71. Kitajima, N. et al. Synthesis, molecular structure, and reactivity of (alkylperoxo)copper(ii) complex. J. Am. Chem. Soc. 115, 7872–7873 (1993).

    Article  CAS  Google Scholar 

  72. Peterson, R. L. et al. Stepwise protonation and electron-transfer reduction of a primary copper–dioxygen adduct. J. Am. Chem. Soc. 135, 16454–16467 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Trammell, R. et al. Decoding the mechanism of intramolecular Cu-directed hydroxylation of sp 3 C–H bonds. J. Org. Chem. 82, 7887–7904 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Maiti, D. et al. Reactions of a copper(ii) superoxo complex lead to C–H and O–H substrate oxygenation: modeling copper-monooxygenase C–H hydroxylation. Angew. Chem. Int. Ed. 47, 82–85 (2008).

    Article  CAS  Google Scholar 

  75. Tano, T. et al. Reactivity of copper(ii)-alkylperoxo complexes. Dalton Trans. 40, 10326–10336 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Bertini, L. et al. Catalytic mechanism of fungal lytic polysaccharide monooxygenases investigated by first-principles calculations. Inorg. Chem. 57, 86–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Osborne, R. L. & Klinman, J. P. in Copper-Oxygen Chemistry (eds Karlin, K. D., Itoh, S.) Ch. 1, 1–22 (John Wiley & Sons, 2011).

  78. Dietl, N. et al. Diatomic [CuO]+ and its role in the spin-selective hydrogen- and oxygen-atom transfers in the thermal activation of methane. Angew. Chem. Int. Ed. 50, 4966–4969 (2011).

    Article  CAS  Google Scholar 

  79. Schröder, D., Holthausen, M. C. & Schwarz, H. Radical-like activation of alkanes by the ligated copper oxide cation (Phenanthroline)CuO+. J. Phys. Chem. B 108, 14407–14416 (2004).

    Article  CAS  Google Scholar 

  80. Yoshizawa, K., Kihara, N., Kamachi, T. & Shiota, Y. Catalytic mechanism of dopamine β-monooxygenase mediated by Cu(iii)−oxo. Inorg. Chem. 45, 3034–3041 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Dietl, N., Schlangen, M. & Schwarz, H. Thermal hydrogen-atom transfer from methane: the role of radicals and spin states in oxo-cluster chemistry. Angew. Chem. Int. Ed. 51, 5544–5555 (2012).

    Article  CAS  Google Scholar 

  82. Donoghue, P. J. et al. Rapid C–H bond activation by a monocopper(iii)–hydroxide complex. J. Am. Chem. Soc. 133, 17602–17605 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dhar, D. & Tolman, W. B. Hydrogen atom abstraction from hydrocarbons by a copper(iii)–hydroxide complex. J. Am. Chem. Soc. 137, 1322–1329 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dhar, D. et al. Perturbing the copper(iii)–hydroxide unit through ligand structural variation. J. Am. Chem. Soc. 138, 356–368 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Dhar, D. et al. Reactivity of the copper(iii)–hydroxide unit with phenols. Chem. Sci. 8, 1075–1085 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Spaeth, A. D. et al. Determination of the Cu(iii)–OH bond distance by resonance raman spectroscopy using a normalized version of badger’s rule. J. Am. Chem. Soc. 139, 4477–4485 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Donoghue, P. J. et al. An anionic, tetragonal copper(ii) superoxide complex. J. Am. Chem. Soc. 132, 15869–15871 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pirovano, P. et al. Nucleophilic reactivity of a copper(ii)–superoxide complex. Angew. Chem. Int. Ed. 126, 6056–6060 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

W.B.T. thanks the US National Institute of Health (grant R37GM47365) for financial support. L.C., G.J.D. and P.H.W. gratefully acknowledge the support of the UK’s Biotechnology and Biological Sciences Research Council (BBSRC) through grants BB/L001926/1 and BB/L021633/1. G.J.D. is a Royal Society Ken Murray Research Professor.

Author information

Authors and Affiliations

Authors

Contributions

W.B.T. and P.H.W. wrote the manuscript, G.J.D. analysed LPMO and pMMO. protein structures and contributed to the writing of the manuscript. L.C. prepared metrical data for structure analysis and contributed to the writing of the manuscript.

Corresponding authors

Correspondence to William B. Tolman or Paul H. Walton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3

Supplementary Data Set 1

Data from Supplementary Table 1: Collective metrics for copper histidine brace active site in known LPMO structures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciano, L., Davies, G.J., Tolman, W.B. et al. Bracing copper for the catalytic oxidation of C–H bonds. Nat Catal 1, 571–577 (2018). https://doi.org/10.1038/s41929-018-0110-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0110-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing