Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multidimensional device architectures for efficient power electronics

Abstract

Power semiconductor devices are key to delivering high-efficiency energy conversion in power electronics systems, which is critical in efforts to reduce energy loss, cut carbon dioxide emissions and create more sustainable technology. Although the use of wide or ultrawide-bandgap materials will be required to develop improved power devices, multidimensional architectures can also improve performance, regardless of the underlying material technology. In particular, multidimensional device architectures—such as superjunction, multi-channel and multi-gate technologies—can enable advances in the speed, efficiency and form factor of power electronics systems. Here we review the development of multidimensional device architectures for efficient power electronics. We explore the rationale for using multidimensional architectures and the different architectures available. We also consider the performance limits, scaling and material figure of merits of the architectures, and identify key technological challenges that need to be addressed to realize the full potential of the approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Power capacity and frequency trade-off of 1D and multidimensional power devices.
Fig. 2: Specific on-resistance and breakdown voltage trade-off of 1D and multidimensional power devices.
Fig. 3: Superjunction power devices.
Fig. 4: Multi-channel heterostructures and multi-channel power HEMTs.
Fig. 5: Power FinFETs and trigate HEMTs covering a broad range of the fin dimension.

Similar content being viewed by others

References

  1. Baliga, B. J. Fundamentals of Power Semiconductor Devices (Springer Science & Business Media, 2010).

  2. She, X., Huang, A. Q., Lucía, Ó. & Ozpineci, B. Review of silicon carbide power devices and their applications. IEEE Trans. Ind. Electron. 64, 8193–8205 (2017).

    Google Scholar 

  3. Kimoto, T. Material science and device physics in SiC technology for high-voltage power devices. Jpn J. Appl. Phys. 54, 040103 (2015).

    Google Scholar 

  4. Jones, E. A., Wang, F. F. & Costinett, D. Review of commercial GaN power devices and GaN-based converter design challenges. IEEE J. Emerg. Sel. Top. Power Electron. 4, 707–719 (2016).

    Google Scholar 

  5. Amano, H. et al. The 2018 GaN power electronics roadmap. J. Phys. D 51, 163001 (2018).

    Google Scholar 

  6. Chen, K. J. et al. GaN-on-Si power technology: devices and applications. IEEE Trans. Electron Devices 64, 779–795 (2017).

    Google Scholar 

  7. Tsao, J. Y. et al. Ultrawide-bandgap semiconductors: research opportunities and challenges. Adv. Electron. Mater. 4, 1600501 (2018).

    Google Scholar 

  8. Green, A. J. et al. β-Gallium oxide power electronics. APL Mater. 10, 029201 (2022).

    Google Scholar 

  9. Kaplar, R. J. et al. Review—ultra-wide-bandgap algan power electronic devices. ECS J. Solid State Sci. Technol. 6, Q3061 (2016).

    Google Scholar 

  10. Donato, N., Rouger, N., Pernot, J., Longobardi, G. & Udrea, F. Diamond power devices: state of the art, modelling, figures of merit and future perspective. J. Phys. D 53, 093001 (2020).

    Google Scholar 

  11. Udrea, F., Deboy, G. & Fujihira, T. Superjunction power devices, history, development, and future prospects. IEEE Trans. Electron Devices 64, 720–734 (2017).

    Google Scholar 

  12. Baliga, B. J. Semiconductors for high‐voltage, vertical channel field‐effect transistors. J. Appl. Phys. 53, 1759–1764 (1982).

    Google Scholar 

  13. Cooper, J. A. & Morisette, D. T. Performance limits of vertical unipolar power devices in GaN and 4H-SiC. IEEE Electron Device Lett. 41, 892–895 (2020).

    Google Scholar 

  14. Hudgins, J. L., Simin, G. S., Santi, E. & Khan, M. A. An assessment of wide bandgap semiconductors for power devices. IEEE Trans. Power Electron. 18, 907–914 (2003).

    Google Scholar 

  15. Liu, G., Tuttle, B. R. & Dhar, S. Silicon carbide: a unique platform for metal-oxide-semiconductor physics. Appl. Phys. Rev. 2, 021307 (2015).

    Google Scholar 

  16. Ji, D. et al. Demonstrating >1.4 kV OG-FET performance with a novel double field-plated geometry and the successful scaling of large-area devices. In 2017 IEEE International Electron Devices Meeting 9.4.1–9.4.4 (IEEE, 2017); https://doi.org/10.1109/IEDM.2017.8268359

  17. Tanaka, R., Takashima, S., Ueno, K., Matsuyama, H. & Edo, M. Demonstration of 1200 V / 1.4 mΩ cm2 vertical GaN planar MOSFET fabricated by an all ion implantation process. Jpn J. Appl. Phys. 59, SGGD02 (2020).

    Google Scholar 

  18. Nakamura, T. et al. High performance SiC trench devices with ultra-low Ron. In 2011 International Electron Devices Meeting 26.5.1–26.5.3 (IEEE, 2011); https://doi.org/10.1109/IEDM.2011.6131619

  19. Zhang, Y. & Palacios, T. (Ultra)wide-bandgap vertical power FinFETs. IEEE Trans. Electron Devices 67, 3960–3971 (2020).

    Google Scholar 

  20. Kaminski, N. & Hilt, O. SiC and GaN devices–wide bandgap is not all the same. IET Circuits Devices Syst. 8, 227–236 (2014).

    Google Scholar 

  21. Saito, W., Omura, I., Ogura, T. & Ohashi, H. Theoretical limit estimation of lateral wide band-gap semiconductor power-switching device. Solid State Electron. 48, 1555–1562 (2004).

    Google Scholar 

  22. Ma, Y. et al. Tri-gate GaN junction HEMT. Appl. Phys. Lett. 117, 143506 (2020).

    Google Scholar 

  23. Zhang, Y. et al. Electrothermal simulation and thermal performance study of GaN vertical and lateral power transistors. IEEE Trans. Electron Devices 60, 2224–2230 (2013).

    Google Scholar 

  24. Williams, R. K. et al. The trench power MOSFET: Part I—history, technology, and prospects. IEEE Trans. Electron Devices 64, 674–691 (2017).

    Google Scholar 

  25. Palmour, J. W. et al. Silicon carbide power MOSFETs: breakthrough performance from 900 V up to 15 kV. In 2014 IEEE 26th International Symposium on Power Semiconductor Devices and IC’s 79–82 (IEEE, 2014); https://doi.org/10.1109/ISPSD.2014.6855980

  26. Oka, T. Recent development of vertical GaN power devices. Jpn J. Appl. Phys. 58, SB0805 (2019).

    Google Scholar 

  27. Li, W. et al. Single and multi-fin normally-off Ga2O3 vertical transistors with a breakdown voltage over 2.6 kV. In 2019 IEEE International Electron Devices Meeting 12.4.1–12.4.4 (IEEE, 2019); https://doi.org/10.1109/IEDM19573.2019.8993526

  28. Bhattacharyya, A. et al. Multi-kV class β-Ga2O3 MESFETs with a lateral figure of merit up to 355 MW/cm2. IEEE Electron Device Lett. 42, 1272–1275 (2021).

    Google Scholar 

  29. Wu, Y. et al. More than 3000 V reverse blocking Schottky-drain AlGaN-channel HEMTs with >230 MW/cm2 power figure-of-merit. IEEE Electron Device Lett. 40, 1724–1727 (2019).

    Google Scholar 

  30. Abid, I. et al. Remarkable breakdown voltage on AlN/AlGaN/AlN double heterostructure. In 2020 32nd International Symposium on Power Semiconductor Devices and ICs 310–312 (IEEE, 2020); https://doi.org/10.1109/ISPSD46842.2020.9170170

  31. Kitabayashi, Y. et al. Normally-off C–H diamond MOSFETs with partial C–O channel achieving 2-kV breakdown voltage. IEEE Electron Device Lett. 38, 363–366 (2017).

    Google Scholar 

  32. Iwasaki, T. et al. 600 V diamond junction field-effect transistors operated at 200 °C. IEEE Electron Device Lett. 35, 241–243 (2014).

    Google Scholar 

  33. Masuda, T., Saito, Y., Kumazawa, T., Hatayama, T. & Harada, S. 0.63 mΩ·cm2 / 1170 V 4H-SiC super junction V-groove trench MOSFET. In 2018 IEEE International Electron Devices Meeting 8.1.1–8.1.4 (IEEE, 2018); https://doi.org/10.1109/IEDM.2018.8614610

  34. Baba, M. et al. Ultra-low specific on-resistance achieved in 3.3 kV-class SiC superjunction MOSFET. In 2021 33rd International Symposium on Power Semiconductor Devices and ICs 83–86 (IEEE, 2021); https://doi.org/10.23919/ISPSD50666.2021.9452273

  35. Kosugi, R. et al. Breaking the theoretical limit of 6.5 kV-class 4H-SiC super-junction (SJ) MOSFETs by trench-filling epitaxial growth. In 2019 31st International Symposium on Power Semiconductor Devices and ICs 39–42 (IEEE, 2019); https://doi.org/10.1109/ISPSD.2019.8757632

  36. Nela, L. et al. Multi-channel nanowire devices for efficient power conversion. Nat. Electron. 4, 284–290 (2021).

    Google Scholar 

  37. Xiao, M. et al. Multi-channel monolithic-cascode HEMT (MC2-HEMT): a new GaN power switch up to 10 kV. In 2021 IEEE International Electron Devices Meeting 5.5.1–5.5.4 (IEEE, 2021); https://doi.org/10.1109/IEDM19574.2021.9720714

  38. Zhang, Y. et al. GaN FinFETs and trigate devices for power and RF applications: review and perspective. Semicond. Sci. Technol. 36, 054001 (2021).

    Google Scholar 

  39. Kato, T. et al. Enhanced performance of 50 nm ultra-narrow-body silicon carbide MOSFETs based on FinFET effect. In 2020 32nd International Symposium on Power Semiconductor Devices and ICs 62–65 (IEEE, 2020); https://doi.org/10.1109/ISPSD46842.2020.9170182

  40. Udrea, F. et al. The FinFET effect in silicon carbide MOSFETs. In 2021 33rd International Symposium on Power Semiconductor Devices and ICs 75–78 (IEEE, 2021); https://doi.org/10.23919/ISPSD50666.2021.9452282

  41. Ramamurthy, R. P., Islam, N., Sampath, M., Morisette, D. T. & Cooper, J. A. The tri-Gate MOSFET: a new vertical power transistor in 4H-SiC. IEEE Electron Device Lett. 42, 90–93 (2021).

    Google Scholar 

  42. Udrea, F. et al. Experimental demonstration, challenges, and prospects of the vertical SiC FinFET. In 2022 34rd International Symposium on Power Semiconductor Devices and ICs 253–256 (IEEE, 2022); https://doi.org/10.1109/ISPSD49238.2022.9813617

  43. Ma, J. et al. 1200 V multi-channel power devices with 2.8 Ω·mm on-resistance. In 2019 IEEE International Electron Devices Meeting 4.1.1–4.1.4 (IEEE, 2019); https://doi.org/10.1109/IEDM19573.2019.8993536

  44. Liu, J. et al. 1.2-kV vertical GaN Fin-JFETs: high-temperature characteristics and avalanche capability. IEEE Trans. Electron Devices 68, 2025–2032 (2021).

    Google Scholar 

  45. Disney, D. & Dolny, G. JFET depletion in superjunction devices. In 2008 20th International Symposium on Power Semiconductor Devices and IC’s 157–160 (IEEE, 2008); https://doi.org/10.1109/ISPSD.2008.4538922

  46. Kang, H. & Udrea, F. True material limit of power devices—applied to 2-D superjunction MOSFET. IEEE Trans. Electron Devices 65, 1432–1439 (2018).

    Google Scholar 

  47. Kang, H. & Udrea, F. Theory of 3-D superjunction MOSFET. IEEE Trans. Electron Devices 66, 5254–5259 (2019).

    Google Scholar 

  48. Deboy, G. et al. A new generation of high voltage MOSFETs breaks the limit line of silicon. In 1998 IEEE International Electron Devices Meeting 683–685 (IEEE, 1998); https://doi.org/10.1109/IEDM.1998.746448

  49. Lorenz, L., Deboy, G., Knapp, A. & Marz, M. COOLMOSTM—a new milestone in high voltage power MOS. In 1999 11th International Symposium on Power Semiconductor Devices and IC’s 3–10 (IEEE, 1999); https://doi.org/10.1109/ISPSD.1999.764028

  50. Hattori et al. Design of a 200V super junction MOSFET with n-buffer regions and its fabrication by trench filling. In 2004 16th International Symposium on Power Semiconductor Devices and IC’s 189–192 (IEEE, 2004); https://doi.org/10.1109/WCT.2004.239903

  51. Zhong, X., Wang, B. & Sheng, K. Design and experimental demonstration of 1.35 kV SiC super junction Schottky diode. In 2016 28th International Symposium on Power Semiconductor Devices and IC’s 231–234 (IEEE, 2016); https://doi.org/10.1109/ISPSD.2016.7520820

  52. Wang, H., Wang, C., Wang, B., Ren, N. & Sheng, K. 4H-SiC super-junction JFET: design and experimental demonstration. IEEE Electron Device Lett. 41, 445–448 (2020).

    Google Scholar 

  53. Fujihira, T. Theory of semiconductor superjunction devices. Jpn J. Appl. Phys. 36, 6254 (1997).

    Google Scholar 

  54. Kang, H., Lee, J., Lee, K. & Choi, Y. Trench angle: a key design factor for a deep trench superjunction MOSFET. Semicond. Sci. Technol. 30, 125008 (2015).

    Google Scholar 

  55. Chen, X.-B. & Sin, J. K. O. Optimization of the specific on-resistance of the COOLMOSTM. IEEE Trans. Electron Devices 48, 344–348 (2001).

    Google Scholar 

  56. Saito, W. Comparison of theoretical limits between superjunction and field plate structures. In 2013 25th International Symposium on Power Semiconductor Devices and IC’s 241–244 (IEEE, 2013); https://doi.org/10.1109/ISPSD.2013.6694461

  57. Saito, W. Theoretical limits of superjunction considering with charge imbalance margin. In 2015 IEEE 27th International Symposium on Power Semiconductor Devices and IC’s 125–128 (IEEE, 2015); https://doi.org/10.1109/ISPSD.2015.7123405

  58. Kang, H. & Udrea, F. Material limit of power devices—applied to asymmetric 2-D superjunction MOSFET. IEEE Trans. Electron Devices 65, 3326–3332 (2018).

    Google Scholar 

  59. Harada, S. et al. First demonstration of dynamic characteristics for SiC superjunction MOSFET realized using multi-epitaxial growth method. In 2018 IEEE International Electron Devices Meeting 8.2.1–8.2.4 (IEEE, 2018); https://doi.org/10.1109/IEDM.2018.8614670

  60. Udrea, F., Popescu, A. & Milne, W. I. 3D RESURF double-gate MOSFET: a revolutionary power device concept. Electron. Lett. 34, 808–809 (1998).

    Google Scholar 

  61. Udrea, F. et al. Ultra-high voltage device termination using the 3D RESURF (super-junction) concept—experimental demonstration at 6.5 kV. In 2001 13th International Symposium on Power Semiconductor Devices and IC’s 129–132 (IEEE, 2001); https://doi.org/10.1109/ISPSD.2001.934573

  62. Ishida, H. et al. GaN-based natural super junction diodes with multi-channel structures. In 2008 IEEE International Electron Devices Meeting 1–4 (IEEE, 2008); https://doi.org/10.1109/IEDM.2008.4796636

  63. Cao, Y. et al. MBE growth of high conductivity single and multiple AlN/GaN heterojunctions. J. Cryst. Growth 323, 529–533 (2011).

    Google Scholar 

  64. Xiao, M. et al. 3.3 kV multi-channel AlGaN/GaN Schottky barrier diodes with p-GaN termination. IEEE Electron Device Lett. 41, 1177–1180 (2020).

    Google Scholar 

  65. Lingaparthi, R. et al. Source of two-dimensional electron gas in unintentionally doped AlGaN/GaN multichannel high-electron-mobility transistor heterostructures. Appl. Phys. Lett. 118, 122105 (2021).

    Google Scholar 

  66. Heikman, S., Keller, S., Green, D. S., DenBaars, S. P. & Mishra, U. K. High conductivity modulation doped AlGaN/GaN multiple channel heterostructures. J. Appl. Phys. 94, 5321–5325 (2003).

    Google Scholar 

  67. Nela, L., Xiao, M., Zhang, Y. & Matioli, E. A perspective on multi-channel technology for the next-generation of GaN power devices. Appl. Phys. Lett. 120, 190501 (2022).

    Google Scholar 

  68. Xiao, M., Ma, Y., Liu, K., Cheng, K. & Zhang, Y. 10 kV, 39 mΩ·cm2 multi-channel AlGaN/GaN Schottky barrier diodes. IEEE Electron Device Lett. 42, 808–811 (2021).

    Google Scholar 

  69. Ma, J., Kampitsis, G., Xiang, P., Cheng, K. & Matioli, E. Multi-channel tri-gate GaN power Schottky diodes with low on-resistance. IEEE Electron Device Lett. 40, 275–278 (2019).

    Google Scholar 

  70. Xiao, M. et al. 5 kV multi-channel AlGaN/GaN power Schottky barrier diodes with junction-fin-anode. In 2020 IEEE International Electron Devices Meeting 5.4.1–5.4.4 (IEEE, 2020); https://doi.org/10.1109/IEDM13553.2020.9372025

  71. Nakajima, A., Sumida, Y., Dhyani, M. H., Kawai, H. & Narayanan, E. M. S. GaN-based super heterojunction field effect transistors using the polarization junction concept. IEEE Electron Device Lett. 32, 542–544 (2011).

    Google Scholar 

  72. Howell, R. S. et al. The super-lattice castellated field effect transistor (SLCFET): a novel high performance transistor topology ideal for RF switching. In 2014 IEEE International Electron Devices Meeting 11.5.1–11.5.4 (IEEE, 2014); https://doi.org/10.1109/IEDM.2014.7047033

  73. Raj, A. et al. GaN/AlGaN superlattice based E-mode p-channel MES-FinFET with regrown contacts and >50 mA/mm on-current. In 2021 IEEE International Electron Devices Meeting 5.4.1–5.4.4 (IEEE, 2021); https://doi.org/10.1109/IEDM19574.2021.9720496

  74. Hisamoto, D. et al. FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Devices 47, 2320–2325 (2000).

    Google Scholar 

  75. Bohr, M. T. & Young, I. A. CMOS scaling trends and beyond. IEEE Micro 37, 20–29 (2017).

    Google Scholar 

  76. Razavieh, A., Zeitzoff, P. & Nowak, E. J. Challenges and limitations of CMOS scaling for FinFET and beyond architectures. IEEE Trans. Nanotechnol. 18, 999–1004 (2019).

    Google Scholar 

  77. Veliadis, V. 1200 V SiC vertical-channel-JFETs and cascode switches. Phys. Status Solidi A 206, 2346–2362 (2009).

    Google Scholar 

  78. Liu, J. et al. 1.2 kV vertical GaN Fin JFETs with robust avalanche and fast switching capabilities. In 2020 IEEE International Electron Devices Meeting 23.2.1–23.2.4 (IEEE, 2020); https://doi.org/10.1109/IEDM13553.2020.9372048

  79. Xiao, M., Gao, X., Palacios, T. & Zhang, Y. Leakage and breakdown mechanisms of GaN vertical power FinFETs. Appl. Phys. Lett. 114, 163503 (2019).

    Google Scholar 

  80. Zhang, Y. et al. 1200 V GaN vertical fin power field-effect transistors. In 2017 IEEE International Electron Devices Meeting 9.2.1–9.2.4 (IEEE, 2017); https://doi.org/10.1109/IEDM.2017.8268357

  81. Zhang, Y. et al. Large-area 1.2-kV GaN vertical power FinFETs with a record switching figure of merit. IEEE Electron Device Lett. 40, 75–78 (2019).

    Google Scholar 

  82. Balestra, F., Cristoloveanu, S., Benachir, M., Brini, J. & Elewa, T. Double-gate silicon-on-insulator transistor with volume inversion: a new device with greatly enhanced performance. IEEE Electron Device Lett. 8, 410–412 (1987).

    Google Scholar 

  83. Alsharef, M. A., Granzner, R. & Schwierz, F. Theoretical Investigation of trigate AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 60, 3335–3341 (2013).

    Google Scholar 

  84. Tamura, T., Kotani, J., Kasai, S. & Hashizume, T. Nearly temperature-independent saturation drain current in a multi-mesa-channel AlGaN/GaN high electron mobility transistor. Appl. Phys. Express 1, 023001 (2008).

    Google Scholar 

  85. Lu, B., Matioli, E. & Palacios, T. Tri-gate normally-off GaN power MISFET. IEEE Electron Device Lett. 33, 360–362 (2012).

    Google Scholar 

  86. Wu, C.-H. et al. Normally-off tri-gate GaN MIS-HEMTs with 0.76 mΩ·cm 2 specific on-resistance for power device applications. IEEE Trans. Electron Devices 66, 3441–3446 (2019).

    Google Scholar 

  87. Ma, Y., Xiao, M., Du, Z., Wang, H. & Zhang, Y. Tri-gate GaN junction HEMTs: physics and performance space. IEEE Trans. Electron Devices 68, 4854–4861 (2021).

    Google Scholar 

  88. Huang, A. Q. Power semiconductor devices for smart grid and renewable energy systems. Proc. IEEE 105, 2019–2047 (2017).

    Google Scholar 

  89. Xiong, Y., Sun, S., Jia, H., Shea, P. & John Shen, Z. New physical insights on power MOSFET switching losses. IEEE Trans. Power Electron. 24, 525–531 (2009).

    Google Scholar 

  90. Li, X. et al. A SiC power MOSFET loss model suitable for high-frequency applications. IEEE Trans. Ind. Electron. 64, 8268–8276 (2017).

    Google Scholar 

  91. Li, A. et al. Lattice-matched AlInN/GaN multi-channel heterostructure and HEMTs with low on-resistance. Appl. Phys. Lett. 119, 122104 (2021).

    Google Scholar 

  92. Zhou, X., Howell-Clark, J. R., Guo, Z., Hitchcock, C. W. & Chow, T. P. Performance limits of vertical GaN of conventional doped pn and natural polarization superjunction devices. Appl. Phys. Lett. 115, 112104 (2019).

    Google Scholar 

  93. Huang, H., Cheng, J., Yi, B., Zhang, W. & Ng, W. T. A unified model for vertical doped and polarized superjunction GaN devices. Appl. Phys. Lett. 116, 102103 (2020).

    Google Scholar 

  94. Kang, H. & Udrea, F. Static and dynamic figures of merits (FOM) for superjunction MOSFETs. In 2019 31st International Symposium on Power Semiconductor Devices and IC’s 319–322 (IEEE, 2019); https://doi.org/10.1109/ISPSD.2019.8757689

  95. Chen, Y.-K., Sivananthan, A. & Chang, T.-H. Emerging high power mm-wave RF transistors. In 2020 IEEE/MTT-S International Microwave Symposium 562–565 (IEEE, 2020); https://doi.org/10.1109/IMS30576.2020.9224064

  96. Chen, B.-Y., Chen, K.-M., Chiu, C.-S., Huang, G.-W. & Chang, E. Y. High-frequency performances of superjunction laterally diffused metal–oxide–semiconductor transistors for RF power applications. Jpn J. Appl. Phys. 55, 04ER09 (2016).

    Google Scholar 

  97. Chang, J. et al. The super-lattice castellated field-effect transistor: a high-power, high-performance RF amplifier. IEEE Electron Device Lett. 40, 1048–1051 (2019).

    Google Scholar 

  98. Afroz, S. et al. Diamond superjunction (SJ) process development: super-lattice power amplifier with diamond enhanced superjunction (SPADES). In 2019 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium 1–4 (IEEE, 2019); https://doi.org/10.1109/BCICTS45179.2019.8972725

  99. Joglekar, S., Radhakrishna, U., Piedra, D., Antoniadis, D. & Palacios, T. Large signal linearity enhancement of AlGaN/GaN high electron mobility transistors by device-level Vt engineering for transconductance compensation. In 2017 IEEE International Electron Devices Meeting 25.3.1–25.3.4 (IEEE, 2017); https://doi.org/10.1109/IEDM.2017.8268457

  100. Choi, W. et al. Intrinsically linear transistor for millimeter-wave low noise amplifiers. Nano Lett. 20, 2812–2820 (2020).

    Google Scholar 

  101. Middleton, C. et al. Thermal transport in superlattice castellated field effect transistors. IEEE Electron Device Lett. 40, 1374–1377 (2019).

    Google Scholar 

  102. Cao, Y., Pomeroy, J. W., Uren, M. J., Yang, F. & Kuball, M. Electric field mapping of wide-bandgap semiconductor devices at a submicrometre resolution. Nat. Electron. 4, 478–485 (2021).

    Google Scholar 

  103. Zulauf, G. D., Roig-Guitart, J., Plummer, J. D. & Rivas-Davila, J. M. C. O. S. S. Measurements for superjunction MOSFETs: limitations and opportunities. IEEE Trans. Electron Devices 66, 578–584 (2019).

    Google Scholar 

  104. Wang, H., Xiao, M., Sheng, K., Palacios, T. & Zhang, Y. Switching performance analysis of vertical GaN FinFETs: impact of interfin designs. IEEE J. Emerg. Sel. Top. Power Electron. 9, 2235–2246 (2021).

    Google Scholar 

  105. Zhang, R. et al. Breakthrough short circuit robustness demonstrated in vertical GaN Fin JFET. IEEE Trans. Power Electron. 37, 6253–6258 (2022).

    Google Scholar 

  106. Zhang, R. et al. Robust through-fin avalanche in vertical GaN Fin-JFET with soft failure mode. IEEE Electron Device Lett. 43, 366–369 (2022).

    Google Scholar 

  107. Okada, M. et al. Superior short-circuit performance of SiC superjunction MOSFET. In 2020 32nd International Symposium on Power Semiconductor Devices and IC’s 70–73 (IEEE, 2020); https://doi.org/10.1109/ISPSD46842.2020.9170126

  108. Fabris, E. et al. Trapping and detrapping mechanisms in β-Ga2O3 vertical FinFETs investigated by electro-optical measurements. IEEE Trans. Electron Devices 67, 3954–3959 (2020).

    Google Scholar 

  109. Antoniou, M., Udrea, F. & Bauer, F. Robustness of superjunction structures against cosmic ray induced breakdown. Solid State Electron. 54, 385–391 (2010).

    Google Scholar 

  110. Liu, J. et al. Tuning avalanche path in vertical GaN JFETs by gate driver design. IEEE Trans. Power Electron. 37, 5433–5443 (2022).

    Google Scholar 

  111. Alexandru, M. et al. SiC integrated circuit control electronics for high-temperature operation. IEEE Trans. Ind. Electron. 62, 3182–3191 (2015).

    Google Scholar 

  112. Zheng, Z. et al. Gallium nitride-based complementary logic integrated circuits. Nat. Electron. 4, 595–603 (2021).

    Google Scholar 

  113. Bader, S. J. et al. Prospects for wide bandgap and ultrawide bandgap CMOS Devices. IEEE Trans. Electron Devices 67, 4010–4020 (2020).

    Google Scholar 

  114. Then, H. W. et al. Advanced scaling of enhancement mode high-K gallium nitride-on-300mm-Si(111) transistor and 3D layer transfer GaN–silicon FinFET CMOS integration. In 2021 IEEE International Electron Devices Meeting 11.1.1–11.1.4 (IEEE, 2021); https://doi.org/10.1109/IEDM19574.2021.9720710

Download references

Acknowledgements

Y.Z. acknowledges support from the National Science Foundation (grants ESSC-2036740 and ESSC-2045001). F.U. acknowledges support from the Engineering and Physical Science Research Council (grant EP/W007614/1). H.W. acknowledges support from the National Science Foundation (grant ESSC-2036915). We thank D. Boroyevich and K. Ngo at Virginia Tech for valuable feedback on the manuscript. We thank the support by M. Xiao for designing Figs. 1, 4 and 5, X. Yan for designing Fig. 3, and H. Wang for designing Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z., F.U. and H.W. conceived the concepts and perspectives in this article together and co-wrote the manuscript.

Corresponding authors

Correspondence to Yuhao Zhang, Florin Udrea or Han Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Udrea, F. & Wang, H. Multidimensional device architectures for efficient power electronics. Nat Electron 5, 723–734 (2022). https://doi.org/10.1038/s41928-022-00860-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-022-00860-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing