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editorial

Computing on the brain
Neuromorphic computing might be the answer to AI’s hardware problem.

When trying to build something 
new, researchers often turn 
to nature for inspiration. Dry 

adhesives that mimic the feet of gecko 
lizards1, electronic materials with a skin-like 
ability to self-heal2, and wide-field-of-view 
cameras that resemble the vision of aquatic 
animals3, to name just a few. When building 
computers, the brain is an obvious starting 
place. But current machines are distinctly 
unnatural — and supremely successful none 
the less. The rise of machine learning and 
artificial intelligence (AI), and the energy 
demands they place on computing hardware, 
is though driving a search for alternative 
approaches and those that derive inspiration 
from the brain could provide a solution.  
In a Focus in this issue of Nature Electronics, 
we explore what neuromorphic computing 
can do.

Brain-like approaches to computing can 
be traced back to the 1980s and the work of 
Carver Mead at the California Institute of 
Technology. As Mead recounts in our Reverse 
Engineering column, his work in the field 
is linked to a lunch with Caltech colleagues 
Richard Feynman and John Hopfield, and 
their decision then to teach a joint course 
on the physics of computation. “After 
three years, the course split and we went 
in different directions: Feynman launched 
quantum computation; Hopfield developed 
a new class of neural networks; and I saw 
analogue silicon technology as a promising 
vehicle for neuromorphic systems.”

Mead, and the collection of talented 
researchers that subsequently joined 
his group, began by developing sensory 
systems: retina chips for vision and 
cochlea chips for hearing. They would 
also go on to develop the address-event 
representation protocol for transmitting 
signals between neuromorphic chips. Today, 
neuromorphic computing takes a variety of 
forms: some analogue, some digital, some 
hybrid; some based on traditional silicon 
CMOS (complementary metal–oxide–
semiconductor) devices and some based on 
novel material devices. One key approach 
is to try to move away from conventional 
von Neumann computing systems, where 
computation and memory are physically 
separated, and closer to the sparse networks 
of neurons and synapses found in the brain, 
where there is no such separation.

Memristive devices (or memristors) can 
provide both information processing and 
memory4, and have been used to create a 
variety of neuromorphic hardware systems. 
(See, for example, work in this issue on the 
use of memristor-based Hopfield neural 
networks: the networks, incidentally, 
developed by Mead’s lunchtime colleague.) 
Memristors are typically based on metal 
oxides or phase-change materials, but can 
also be made from other systems, including 
organic materials5. Magnetic materials 
are another option and such spintronic 
devices, which exploit both the electrical 
and magnetic properties of electrons, offer 
a compact and low-power approach to 
emulating neurons and synapses.

In a Review Article in this issue, Julie 
Grollier and colleagues explore the potential 
of such neuromorphic spintronics. The 
researchers consider how magnetic tunnel 
junctions can function as synapses and 
neurons, and how magnetic textures, 
including domain walls and skyrmions, can 
function as neurons. They also discuss the 
neuromorphic computing demonstrations 

that have already been created with small 
spintronic systems, and consider the 
challenges involved in scaling them up.

Neuromorphic spintronics is still at a 
relatively early stage of development, but 
other approaches are approaching their 
adolescence. In a further Review Article, 
Huaqiang Wu and colleagues discuss the 
latest advances in neuro-inspired computing 
chips. They examine spiking neural network 
chips (where information is encoded into 
the interval between spikes) and artificial 
neural network chips (where neuron states 
are encoded as digital bits, clock cycles or 
voltage levels). These chips are typically 
based on CMOS technology, but can also be 
based on non-volatile memory technology 
(which includes memristive devices) — and 
it is this approach, the researchers argue, that 
shows particular promise. They outline four 
key metrics for evaluating the performance 
of the chips — computing density, energy 
efficiency, computing accuracy, and learning 
capability — and propose a technological 
roadmap for the development of large-scale 
neuro-inspired computing chips based on 
non-volatile memory.

The potential of neuromorphic 
computing, and the role it could play in 
addressing the increasing computational 
demands of AI, has also helped reawaken 
interest in computer chip start-ups. In a 
News Feature in this issue, Sunny Bains 
explores these emerging companies and the 
technology they offer. The competition here is 
though intense. Beyond the established giants, 
there are also numerous other start-ups 
focused on developing chips for machine 
learning and AI using relatively conventional 
approaches. But AI is asking questions about 
what is the best way to build computers, and 
opportunities are there. ❐
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An optical microscopy image of a programmable 
neuromorphic computing chip created by 
integrating a memristor crossbar array with 
CMOS control circuitry6. Credit: Seung Hwan Lee, 
University of Michigan

Nature electroNics | VOL 3 | JULy 2020 | 347 | www.nature.com/natureelectronics

http://crossmark.crossref.org/dialog/?doi=10.1038/s41928-020-0457-1&domain=pdf
https://www.nature.com/collections/cdadajcjjc
https://doi.org/10.1038/s41928-020-0448-2
https://doi.org/10.1038/s41928-020-0448-2
https://www.nature.com/articles/s41928-020-0436-6
https://www.nature.com/articles/s41928-019-0360-9
https://doi.org/10.1038/s41928-020-0435-7
https://doi.org/10.1038/s41928-020-0449-1
https://doi.org/10.1038/s41928-020-0457-1
https://doi.org/10.1038/s41928-020-0429-5
https://doi.org/10.1038/s41928-020-0429-5
http://www.nature.com/natureelectronics

	Computing on the brain



