Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors

Abstract

Metal-halide perovskites have long carrier diffusion lengths, low trap densities and high carrier mobilities, and are therefore of value in the development of photovoltaics and light-emitting diodes. However, the presence of thermally activated carriers in the materials leads to high noise levels, which limits their photodetection capabilities. Here, we show that ultrasensitive photodetectors can be created from single-crystalline nanowire arrays of layered metal-halide perovskites. A series of nanowires was fabricated in which layer-by-layer self-organization of insulating organic cations and conductive inorganic frameworks, along the nanowire length, creates high resistance in the interior of the crystals and high conductivity at the edges of the crystals. Using these structures, high-performance photodetection was achieved with responsivities exceeding 1.5 × 104 A W−1 and detectivities exceeding 7 × 1015 jones. Our state-of-the-art device performance originates from a combination of efficient free-carrier edge conduction and resistive hopping barriers in the layered perovskites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematics of 2D-perovskite photodetectors.
Fig. 2: Single-crystalline 2D-perovskite nanowires with free-carrier generation at layer edges.
Fig. 3: Photodetector performance of single-crystalline nanowire arrays.
Fig. 4: Transient absorption for 2D-perovskite single-crystalline nanowire arrays.

Similar content being viewed by others

References

  1. Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  Google Scholar 

  2. Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342, 344–347 (2013).

    Article  Google Scholar 

  3. Dong, Q. et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  Google Scholar 

  4. Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Article  Google Scholar 

  5. Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotech. 10, 391–402 (2015).

    Article  Google Scholar 

  6. Sutherland, B. R. & Sargent, E. H. Perovskite photonic sources. Nat. Photon. 10, 295–302 (2016).

    Article  Google Scholar 

  7. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    Article  Google Scholar 

  8. Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotech. 9, 687–692 (2014).

    Article  Google Scholar 

  9. Hong, X., Ishihara, T. & Nurmikko, A. V. Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys. Rev. B 45, 6961–6964 (1992).

    Article  Google Scholar 

  10. Mitzi, D. B., Wang, S., Feild, C. A., Chess, C. A. & Guloy, A. M. Conducting layered organic-inorganic halides containing < 110 > -oriented perovskite sheets. Science 267, 1473–1476 (1995).

    Article  Google Scholar 

  11. Mitzi, D. B., Feild, C. A., Harrison, W. T. A. & Guloy, A. M. Conducting tin halides with a layered organic-based perovskite structure. Nature 369, 467–469 (1994).

    Article  Google Scholar 

  12. Dou, L. et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349, 1518–1521 (2015).

    Article  Google Scholar 

  13. Blancon, J.-C. et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 355, 1288–1292 (2017).

    Article  Google Scholar 

  14. Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).

    Article  Google Scholar 

  15. Liao, Y. et al. Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance. J. Am. Chem. Soc. 139, 6693–6699 (2017).

    Article  Google Scholar 

  16. Cao, D. H., Stoumpos, C. C., Farha, O. K., Hupp, J. T. & Kanatzidis, M. G. 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 137, 7843–7850 (2015).

    Article  Google Scholar 

  17. Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotech. 11, 872–877 (2016).

    Article  Google Scholar 

  18. Quan, L. N. et al. Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission. Nano Lett. 17, 3701–3709 (2017).

    Article  Google Scholar 

  19. Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 10, 699–704 (2016).

    Article  Google Scholar 

  20. Xing, G. et al. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun. 8, 14558 (2017).

    Article  Google Scholar 

  21. Zhang, S. et al. Efficient red perovskite light-emitting diodes based on solution-processed multiple quantum wells. Adv. Mater. 29, 1606600 (2017).

    Article  Google Scholar 

  22. Li, F. et al. Ambipolar solution-processed hybrid perovskite phototransistors. Nat. Commun. 6, 8238 (2015).

    Article  Google Scholar 

  23. Dou, L. et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014).

    Article  Google Scholar 

  24. Lin, Q., Armin, A., Burn, P. L. & Meredith, P. Filterless narrowband visible photodetectors. Nat. Photon. 9, 687–694 (2015).

    Article  Google Scholar 

  25. Shen, L. et al. A self-powered, sub-nanosecond-response solution-processed hybrid perovskite photodetector for time-resolved photoluminescence-lifetime detection. Adv. Mater. 28, 10794–10800 (2016).

    Article  Google Scholar 

  26. Saidaminov, M. I. et al. Planar-integrated single-crystalline perovskite photodetectors. Nat. Commun. 6, 8724 (2015).

    Article  Google Scholar 

  27. Fang, Y., Dong, Q., Shao, Y., Yuan, Y. & Huang, J. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photon. 9, 679–686 (2015).

    Article  Google Scholar 

  28. Han, Q. et al. Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv. Mater. 28, 2253–2258 (2016).

    Article  Google Scholar 

  29. Liu, X. et al. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat. Commun. 5, 4007 (2014).

    Article  Google Scholar 

  30. Wu, X. et al. Trap states in lead iodide perovskites. J. Am. Chem. Soc. 137, 2089–2096 (2015).

    Article  Google Scholar 

  31. de Quilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).

    Article  Google Scholar 

  32. Stoumpos, C. C. et al. Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016).

    Article  Google Scholar 

  33. Yamada, Y., Nakamura, T., Endo, M., Wakamiya, A. & Kanemitsu, Y. Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. J. Am. Chem. Soc. 136, 11610–11613 (2014).

    Article  Google Scholar 

  34. Blancon, J.-C. et al. The effects of electronic impurities and electron–hole recombination dynamics on large-grain organic–inorganic perovskite photovoltaic efficiencies. Adv. Funct. Mater. 26, 4283–4292 (2016).

    Article  Google Scholar 

  35. Manser, J. S. & Kamat, P. V. Band filling with free charge carriers in organometal halide perovskites. Nat. Photon. 8, 737–743 (2014).

    Article  Google Scholar 

  36. Jiang, Z. GIXSGUI: a MATLAB toolbox for grazing-incidence X-ray scattering data visualization and reduction, and indexing of buried three-dimensional periodic nanostructured films. J. Appl. Cryst. 48, 917–926 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Natural Science Foundation (21703268, 21633014), the Beijing Natural Science Foundation (2182081), and the Ministry of Science and Technology (MOST) of China (2017YFA0204504).

Author information

Authors and Affiliations

Authors

Contributions

J.F., C.G., Yuchen W., L.J. and X.Z. initiated the research and designed the experiments; J.F. and H.G. prepared layered-perovskite nanowire arrays; J.F. performed material characterizations, device fabrication and measurements; J.F., W.W. and Y.G. performed the confocal PL mapping and power-dependent PL characterizations to confirm the edge states; Yishi W. carried out transient absorption measurements under the guidance of H.F.; B.Z. performed wettability simulation. J.F., C.G., Yuchen W., L.J. and X.Z. analysed data; J.F., C.G. and Yuchen W. wrote the manuscript. C.G. and X.Z. provided insights into the physical mechanisms. Yuchen W. and X.Z. guided the work. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yuchen Wu, Hongbing Fu or Xiang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–6, Supplementary Figures 1–32 and Supplementary Tables 1–3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Gong, C., Gao, H. et al. Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nat Electron 1, 404–410 (2018). https://doi.org/10.1038/s41928-018-0101-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-018-0101-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing