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Automated online cognitive assessments are set to revolutionise clinical research and healthcare.
However, their applicability for Parkinson’sDisease (PD) andREMSleepBehavioural Disorder (RBD), a
strong PD precursor, is underexplored. Here, we developed an online battery to measure early
cognitive changes in PD and RBD. Evaluating 19 candidate tasks showed significant global accuracy
deficits inPD (0.65 SD,p = 0.003) andRBD (0.45 SD,p = 0.027), drivenbymemory, language, attention
and executive underperformance, and global reaction time deficits in PD (0.61 SD, p = 0.001). We
identified a brief 20-min battery that had sensitivity to deficits across these cognitive domains while
being robust to the device used. This battery wasmore sensitive to early-stage and prodromal deficits
than the supervised neuropsychological scales. It also diverged from those scales, capturing
additional cognitive factors sensitive to PD and RBD. This technology offers an economical and
scalable method for assessing these populations that can complement standard supervised
practices.

Parkinson’s disease (PD) is a complexneurological disorder that is primarily
defined by its motor symptoms. However, this heterogeneous condition is
also associatedwith a heightened risk of cognitive impairment, which serves
as a marker for disease severity1 and can progress to PD-dementia2. These
impairments have significant ramifications for patients and their carers,
motivating a focus on developing new technologies to monitor cognitive
decline in PD3.

A notable advance in our understanding of PD manifestations,
including cognitive deficits, comes from the study of rapid eye movement
(REM) sleep behaviour disorder (RBD). RBD is a sleep disorder char-
acterised by the acting out of vivid, often unpleasant, dreams with vocal
sounds and sudden, violent arm and leg movements during REM sleep. It
has been estimated to affect approximately 1% of older adults, which is
comparable to PD4. Critically, individuals diagnosed with RBD have a
heightened risk of PD and related neurodegenerative disorders. This risk is
not homogeneous: about 30% of RBDpatients develop a neurodegenerative
disorder within three years of diagnosis, but specific subpopulations iden-
tified through predictive markers have risks as high as 65%5. Cognitive
impairments have been detected in up to 50% of RBD patients6. These

heightened risks present an opportunity to investigate cognition across the
disease continuum spanning from the RBD prodrome to later stage PD7.
However, this potential is hindered by the high cost and limited scalability
and repeatability of standard face-to-face assessment tools8.

Automated online assessment technologies offer a new approach for
screening and examining cognitive performance that has advantages over
traditional supervised assessment scales9. Most notably, reliance on pen-
and-paper scales incurs significant costs associated with administration, as
well as additional burdens on patients and their carers who must travel for
face-to-face appointments. Online testing alleviates these burdens and
reduces costs.With careful design, it has the potential to engage participants
more effectively through gamification and, crucially, may be repeatedmany
times10, enabling large-scale regular longitudinalmonitoring accessible from
individuals’ homes for research purposes11 and as an adjunct to in-person
assessments12. The advantages of unsupervisedonlinedeployment extend to
automated scoring and data export, minimising the time individual asses-
sors spend on data management following appointments12. Furthermore,
modelling of detailed performance timecourses can output model-based
and contrast measures of specific aspects of cognitive processing, e.g.,
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subtracting out and quantifying components of performance variance that
relate to basic visuomotor slowing13,14.

To date, this potential has not been realised for PD, though researchers
have begun to develop computerised assessment batteries that are sensitive
to cognitive change in this population. Early work applied the Cambridge
Cognitive Assessment battery15 and the Frontal Assessment Battery16.
However, these pioneering tools were designed to assess a wide range of
patients with varying pathologies and were originally intended for deploy-
ment under supervised conditions, placing limits on their repeatability and
scalability.

With the advancement of internet-based technologies, cognitive
assessment tools have transitioned from bedside/clinical administration to
both online-supervised17 and unsupervised in-home delivery18. Concerning
cognition in PD, Hanna-Plady et al. (2010) evaluated the NeuroTrax
computerised battery in a study of 50 PD patients with mild to moderate
disease severity19. However, they concluded that akin to the mini-mental
state examination (MMSE), it lacked the necessary sensitivity for assessing
PD-specific cognitive deficits. Others have focused on remote screening and
monitoring PD-specific motor characteristics, such as gait issues20, and
cognitive symptomatology, including visuospatial deficits21. Despite these
advances, few, if any, current tools offer ease of deployment in clinical
populations and high sensitivity in detecting subtle cognitive changes at the
early-mid stages of PD or in prodromal conditions like RBD. Such a tool
could be transformative for early screening of patients and monitoring to
identify those at risk of accelerated cognitive decline based on their
trajectories10 and when validating early-stage cognitive interventions.

When tailoring a cognitive testing battery for RBD and early- to mid-
stagePD, several factorsmerit consideration. First, cognition ismultifaceted,
encompassing distinct domains including attention, memory, reasoning,
and language. PD is heterogeneous, with different patients having different
combinations of deficits across these domains that have distinct neuro-
biological and genetic underpinnings22,23. For example, PD-associated
cognitive deficits have been reported to include memory, attention,
visuospatial abilities, and particularly executive functions, such as mental
flexibility, set-shifting, switching, efficient planning of future actions, and
problem-solving1. Meanwhile, RBD deficits have also been reported in
attention and memory domains24. An optimal assessment battery should
encompass and differentiate between these cognitive domains, i.e., with
tasks that have sensitivity to PDorRBD and that are decorrelated fromeach
other to provide detailed multivariate deficit profiles.

Currently, the MMSE and Montreal Cognitive Assessment (MoCA)
are amongst the most widely employed cognitive assessment tools in PD,
whereas more detailed comprehensive cognitive assessment is often con-
sidered too time-consuming for repeat or large-scale deployment25. A new
battery assessing cognition in PD should be at least as sensitive to PD and
RBD as these scales. Indeed, it would be advantageous to outperform them,
as they are known to have limited detail across cognitive domains and poor
sensitivity to subtle cognitive changes12, especially in early-stage PD26,
whereas computerised assessments can provide more detailed and precise
outputs13. Consequently, an optimal assessment battery might also capture
cognitive domains that are divergent from those scales whilst being affected
in early and prodromal PD. Moreover, people, when assessed online, may
not tolerate long sessions or tedious tasks. Therefore, the battery should
achieve that detail while being engaging and concise, ideally requiring no
more than 20–30min to complete.

In developing an online cognitive assessment battery, it is also essential
to consider the potential challenges patients may face, whether due to their
condition or unfamiliarity with computerised testing. As such, the battery
should feature a user-friendly interface, incorporating intuitive tasks and
clear instructions. Furthermore, there should be minimal sensitivity to
variability in personal devices that participants use to perform the tasks.
Differences in screen size and response time recording should beminimised
as they can influence the measurement of cognitive performance27. Finally,
algorithms can be programmed that generate novel stimuli on the fly, with
careful balancing along relevant difficulty dimensions, to minimise cross-

session learning effects and enhance the interpretability of longitudinal
timecourses from repeat assessments.

Here, we sought to develop such an assessment battery. Specifically, we
objectively assessed the cognitive performance of control, PD and RBD
participants from the Oxford Discovery Cohort28 using a superset of 19
candidate tasks spanning cognitive domains previously reported to be
affected in these populations. The tasks were selected from the broad library
available on the Cognition online assessment platform, which has been
successfully deployed in diverse clinical and non-clinical population studies
with >500,000 participants12,29–32. First, we identified tasks that were (a)
sensitive to cognitive deficits in PD and RBD, (b) insensitive to device-
related confounds, and (c) decorrelated in relation to each other within a
data-driven factor model of cognitive domains. Then, we evaluated the
convergence and divergence of online task scores with the Montreal Cog-
nitive Assessment (MoCA) to determine whether they captured additional
cognitive constructs that were sensitive to subtle early cognitive changes in
these populations. Based on these results, we proposed a brief assessment
batterywith optimal properties for research and clinical application in early-
stage and prodromal PD.

Results
Clinical characteristics and cognitive assessment engagement
Demographics and numbers of participants completing each task are
reported in Table 1 and Supplementary Table S2. There was no significant
difference in the average education levels of patient groups and controls.
There was a difference in mean ages at both clinical and cognitive assess-
ment time points, with controls being, on average, half a decade older than
the patient population. Also, as expected, given the population distribution
of RBD, this group was ~90% male. In line with the RBD state being a
prodrome, PD patients had worse scores than RBD patients on the updated
Unified Parkinson’s Disease Rating Scale (MDS-UPDPRS) I-III scales, as
well as on the Purdue dexterity scale, but not on the REM Sleep Behaviour
Disorder Screening Questionnaire (RBDSQ). There was no difference
between patients and controlsMoCAorMMSE scores at baseline or at their
most recent clinical assessment.

PD, RBD and age-related decline have distinct patterns of cog-
nitive deficit
R-squared ofmodels adjusting sociodemographic confounds showed that
they accounted for a substantial proportion of variance in task perfor-
mance (R-squared values range up to ~0.3).When using linear modelling
to assess differences betweenpatients and controls (Fig. 1) for the adjusted
primary task scores, both PD and RBD showed deficits in immediate and
delayed recognition memory, word definitions and verbal analogies.
Additional deficits were evident in the PD cohort, including Target
Detection, Switching Stroop and Trail Making. For secondary scores, PD
patients consistently took longer to respond acrossmultiple tasks,whereas
RBD patients showed more selective impairments, notably in simple
reaction time tasks and Trail Making. Contrasting directly between the
two patient groups showed superior performance for RBD patients in
Spatial Span, Motor Control, and Picture Completion (Supplementary
Materials–Supplementary Discussion).

For comparison, sensitivities of the same task measures were analysed
in relation to age decade in the large independent online cohort, contrasting
people who were in their 80s, 70s and 60s relative to those in their 50s
(Fig. 1b) and Fig. 1d), participant N per age decade in Supplementary Table
15, model outputs in Supplementary Materials – Supplementary Model
Outputs). The pattern of cognitive differences was distinct from that of PD
or RBD. A prominent example is the performance on theWordDefinitions
task,where healthy participants improvewith age, as expected for ameasure
of crystallised intelligence, whereas both PD and RBD show significant
deficits relative to controls.

Finally, both patient groups had overall poorer performance for the
global composite calculated via factor analysis across all task summary
scores. PD but not RBD patients had poorer performance on the global
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response time composite than healthy controls. The difference between
RBD and PD was non-significant.

Discriminability of primary task outcomes to patient groups
vs. device
Before calculating the ranges of effect size differences between patient
vs. control groups and assessment devices, we first accounted for
potential confounding effects of population factors, specifically, age-
decade, gender, and education among the patients (Fig. 2). Tower of
London and Card Pairs were excluded from the final battery, as they
had low discrimination of patient groups. SRT, Motor Control and
Picture Completion were excluded from the final battery due to
higher device sensitivity.

Latent factors captured by the primary measures of the 19
candidate tasks
Applying the Kaiser convention to the eigenvalues identified a five-
factor solution as optimal (Fig. 3b)). Applying factor analysis with
varimax rotation resulted in interpretable task-factor loadings, spe-
cifically, visuospatial ability, executive function, short-term memory,
word knowledge, and motor reaction time (Fig. 3c)). Notably, the
most discriminative tasks for PD and RBD loaded onto different
factors, which can therefore enable multivariate profiling of cognitive
deficits. SRT loaded onto the reaction time factor, but since it has
high discrimination of devices, we did not retain this task. This is not
problematic, as reaction times are measured for all tasks. We also
excluded paired associate learning (PAL) from the recommended
battery as it did not load strongly or discretely on any of the factors
and shares variances with other tasks that better discriminate PD and

RBD from controls. (Full task selection process in Supplementary
Table 4).

Benchmarking against the MoCA
The proposed online assessment battery (Fig. 4) was contrasted
against the MoCA scale, which is routinely used under supervised
conditions to assess cognition in PD and RBD patients. Multiple
linear regression was fitted to predict the standardised MoCA score,
corrected for effects of age-decade, sex, and level of education, from
the performance of the selected tasks when processed in the same
way (Supplementary Table 7). Online task performance showed a
moderate but significant correlation with MoCA score with moderate
accuracy (R2 ~ 0.25, p < 0.01). Furthermore, there was a medium-
scaled correlation between the reduced battery composite score
(determined as the first factor in a factor analysis of the reduced
battery data) and the global MoCA scores (r = 0.41, p < 0.001)
(Fig. 5b)). For comparison, comparing the MoCA scores at baseline
with those from the most recent MoCA assessment produced a
similar correlation (r = 0.43, p < 0.001). Applying a linear model with
MoCA subscales to predict composite score from the recommended
online battery produced a significant fit (R2 ~ 0.3, p = 0.03) (Fig. 5c)).
The basis of the moderate correlation was apparent when examined
at a finer grain; some online tasks exhibited only small correlations
with MoCA score despite having high discriminability for RBD and
PD vs. controls, indicating that they evaluate additional aspects of
cognitive performance that are affected in these clinical populations
(Fig. 5d)). While Word Definitions, a measure of crystallised intel-
ligence, was the task where performance was most highly correlated
with the total MoCA score, tasks such as Blocks and Emotional

Table 1 | Clinical and demographic characteristics of participants at baseline (at the point of recruitment into the Oxford
Discovery Cohort) and the clinical visit closest to the cognitive assessment

Control
Baseline

Control
Assessment

PD Baseline PD
Assessment

RBD
Baseline

RBD
Assessment

Significant base-
line differences

Significant differ-
ences at assessment

Age at cognitive assessment N/A 72.84 ± 8.37 N/A 66.01 ± 8.59 N/A 68.67 ± 8.78 N/A ***

Age at clinical assessment 64.97 ± 8.22 71.66 ± 8.6 58.2 ± 8.83 65.24 ± 8.79 64.39 ± 8.39 68.09 ± 8.66 *** ***

MOCA total 27.11 ± 1.86 N/A 27.21 ± 1.66 27.45 ± 2.19 26.35 ± 2 26.69 ± 1.7 ns ns

MMSE total 28.73 ± 1.48 N/A 28.79 ± 1.42 N/A 28.28 ± 1.17 28.5 ± 1.15 ns ns

Purdue total 38.55 ± 6.26 N/A 34.48 ± 6.81 29.56 ± 7.86 35.7 ± 6.05 32.32 ± 5.87 *** *

Purdue assembly 25.68 ± 6.52 N/A 23.1 ± 6.27 19.2 ± 5.9 22.26 ± 5.61 21.39 ± 5.34 * ***

Hoehn&Yahr N/A N/A 1.61 ± 0.56 2 ± 0.47 0 0.06 ± 0.31 *** ***

MDS-UPDRS I 3.80 ± 2.49 4.90 ± 4.74 8.13 ± 4.62 9.78 ± 5.13 6.53 ± 4.16 7.17 ± 4.61 * ***

MDS-UPDRS II 0 0.90 ± 1.49 6.9 ± 5.83 11.64 ± 7.34 1.73 ± 2.43 2.69 ± 4.15 *** ***

MDS-UPDRS III 1.43 ± 1.64 N/A 22.85 ± 11.49 30.67 ± 9.87 3.63 ± 2.91 6.83 ± 6.97 *** ***

MDS-UPDRS IV N/A N/A 0.7 ± 2.42 4.1 ± 3.64 N/A N/A N/A N/A

Probability of idiopathic PD N/A N/A 90.49 ± 3.62 95.36 ± 5.67 N/A N/A N/A N/A

ESS scale 5.63 ± 3.63 5.53 ± 3.2 6.93 ± 4.56 7.66 ± 4.24 5.95 ± 4.24 5.61 ± 3.89 ns *

RBDSQ scale 2.54 ± 1.81 2.15 ± 1.77 4.26 ± 2.82 5.04 ± 3.14 9.93 ± 2 9.45 ± 2.48 * ***

Age at PD/RBD diagnosis N/A N/A 56.95 ± 9.09 N/A 63.23 ± 8.63 N/A *** N/A

Age at motoric symptom N/A N/A 55.18 ± 9.4 N/A 58.83 ± 9.98 N/A N/A N/A

Disease duration since
motoric symptom onset in
years at the latest clinical
assessment

N/A N/A 3.02 ± 2.28 10.06 ± 2.59 N/A N/A N/A N/A

Disease duration since diag-
nosis in years at the latest
clinical assessment

N/A N/A 1.27 ± 1.52 8.329 ± 1.9 1.17 ± 1.71 4.86 ± 3.31 N/A N/A

Means ± SD are presented for all scores, for all participants who took part in the study: N = 50 Healthy Controls (42% female; 4.95 ± 2.34 years of further education), N = 59PD patients (48% female;
4.2 ± 2.77yearsof further education),N = 54RBDpatients (11%female; 4.35 ± 2.5 yearsof further education). Therewasnosignificantdifferencebetweenparticipants yearsof further education.Participant
ethnicity was 98% white background. ANOVA and t-tests results significance: ns for not significant, * for p < 0.05; ** for p < 0.01; *** for p < 0.001. N/A indicates where data were not collected or the
statistical test was not applicable.
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Discrimination had small correlations. Secondary measures also had
notable (inverse) correlations with the MoCA score, the highest being
for the Number Reaction Time when performing on the Trail Making
task, whereas the switching cost for the Trail Making task and the
median reaction time for Blocks had the lowest correlations. In
contrast to the computerised assessment battery as reported above,
discriminability of the MoCA to cognitive deficits in RBD and early-
mid stage PD was of small effect size (mean difference = 0.32 SD,

p = 0.1) and statistically non-significant. Paired t-tests showed that
patient scores did not significantly change in the time (mean 6.5
years ± 2.57 SD) from baseline until the most recent assessment for
PD patients (T =−7.67, p = 0.4) or RBD patients (T =−0.38, p = 0.7).

Sensitivity analyses
Running variants on the analysis with sociodemographic factors accounted
forwithin the samemodel as thegrouppredictor andwhere agewas treatedas

Fig. 1 | Assessing cognitionwith the reduced battery in patients at group levels, as
well as individually. a Deficits in primary task measures identified in PD and RBD
groups relative to the controls from the Discovery Cohort. bDeficits in primary task
measures characteristic to older age decades relative to those in their 50 s in the large
independent population sample. c Deficits in secondary task measures identified in
PD and RBD groups relative to the controls from the Discovery Cohort. dDeficits in
secondary task measures characteristic to older age decades relative to those in their

50 s in the large independent population sample. eDifferences in composite scores in
the patients who completed all tasks of the optimised battery relative to controls.
f Speed accuracy trade-off relationship between composite scores. ANOVA results
significance: * for p < 0.05; ** for p < 0.01; *** for p < 0.001. N/A indicates where
data was not collected. Task outcome measures are further characterised in Sup-
plementary Materials–Supplementary Task Descriptions and Supplementary
Table 1.
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a continuous not categorical variable, did not materially change the results
(Supplementary Table 8, Supplementary Fig. 5, Supplementary Table 9,
Supplementary Table 10, Supplementary Table 13, Supplementary
Table 14, Supplementary Figure 6, Supplementary Table 11, Supplementary
Table 12, Supplementary Table 13, Supplementary Table 14). Assessing the
generalisability of these results using leave-one-out and cross-validation

methods showed modest but statistically significant correlations between
predicted and observed accuracy and reaction time composites. Mean
squarederror calculations indicated that thepredictedvalueswere close to the
observed values (Supplementary Fig. 13, Supplementary Fig. 14).

Contrasting PD with (N = 15) vs. without probable RBD (N = 44)
showed the RBD sub-group to have overall worse response times,

Fig. 2 | Task discriminability analysis. Effect size
ranges in SD units of differences in performance for
clinical groups in the Discovery Cohort (y-axis) and
mobile vs. computer devices for preexisting parti-
cipants from the Cognitron platform (x-axis)
(Supplementary Table 2). The tasks in the top left
quadrant are optimal, with medium to high dis-
crimination of patient groups and small to negligible
discrimination of devices. The lower left quadrant
represented tasks with minimal discriminability to
both group differences and devices. Right-hand
quadrants have suboptimal device discriminability.

Fig. 3 | Factor analysis. a The correlation between all primary task performance
scores after standardisation. Note that Trail Making, Motor Control and Simple
Reaction Time are reaction time measures. b Scree plot of Eigenvalues. c Task
loadings from factor analysis with orthogonal varimax rotation of the task summary

scores from controls and the PD and RBD patients. We labelled F1 as executive
functions, F2 as visuospatial/attention functions, F3 as short-term memory, F4 as
word knowledge and F5 as motor reaction time.
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with the accuracy composite also showing a non-significant trend
towards poorer performance (Supplementary Fig. 7, Supplementary
Table 15, and Supplementary Table 16). Contrasting participants
with PD and probable RBD vs. those with idiopathic RBD also showed
overall worse response times for the PD group (Supplementary Fig. 8,
Supplementary Table 16, and Supplementary Table 17). Contrasting
these three groups individually to controls showed that participants
with PD and probable RBD had the worst deficits, particularly in the
reaction time measures (Supplementary Fig. 9, Supplementary Table
19, Supplementary Table 20).

To explore how bradykinesia in the PD group might affect PD
participants task responses, we ran correlations between UPDRS-III
score (general motor deficits), and amore focused composite of finger
tapping and the hand movement sub-scales, with task performance.
This showed significant correlations in the medium range with the
final battery composite score but not general accuracy or reaction
time composites taken across the entire task performance (Supple-
mentary Materials Fig. 10).

When the proposed battery composite score was correlated with the
MMSE as measured at enrolment (i.e., with a mean 10-year offset from the

Fig. 4 | A short comprehensive cognitive assessment battery. aWord recognition
memory immediate and delayed (1 min for immediate presentation, 30 s for delayed
presentation)—participants are presented with a list of words at the start and then
asked whether they recognise them as being from the list immediately after com-
pletion of all other tasks. b Switching Stroop (1 min 30 s)—participants indicate the
colour of either the ink or the colour of the text, which can be congruent or
incongruent, with the relevant dimension periodically switching. c Target Detection
(2 min)—participants identify the target in a pool of similar-looking targets that are
periodically updated on the screen. d Blocks (1 min)—participants delete shapes on
the left panel to match the structure on the right panel, with blocks falling under

gravity when unsupported from below. e Emotional discrimination (1 min 30 s)—
participants indicate whether facial emotions displayed by the models are identical
or different from one another. f Trail Making (2 min)—participants click on
numbered circles in ascending order as quickly as possible. A further condition
requires clicking on numbers and letters alternatively in ascending order. gWord
definitions (4 min)—participants indicate which definition is correct for a sequence
of rare words. h Verbal analogies (3 min)—participants indicate whether the rela-
tionships between two pairs of words are analogous, solving as many problems as
possible within the time limit. The whole battery takes ~20 min and does not require
supervision.
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online assessment) it showed broadly similar results to those reported above
for the MoCA (Supplementary Figure 6 and Supplementary Table 21).

Discussion
The results of this study confirmed the suitability of online technology for
assessing cognitive functions in PDandRBD.We identified a subset of tasks
that produced performance scoreswith the intendedoptimal properties, i.e.,

(a) discriminating patients from controls, (b) having minimal performance
variability attributable to the device used during the assessment, (c) being
brief (20-min) and (d) producing measures across multiple relevant cog-
nitive domains.

The strength of the correlation between the online battery global
composite score and the MoCA was comparable to the MoCA retest
reliability across time points, but the online composite also detected subtle

Fig. 5 | Relationship between MoCA and performance on the computerised
cognitive tasks. a Differences in MoCA scores across groups at baseline and at the
timepoint closest to the online cognitive assessment, and for online cognitive
assessment global composite score. Note the online assessment detects group dif-
ferences through a range that theMoCA is insensitive to. bThe relationship between
the MoCA scores and the global performance score on the selected battery of tasks.
The moderate correlation indicates a convergence between these assessments that is

equivalent to the re-test correlation across MoCA time points. c Predicting the
reduced battery composite score from MoCA subscales. d Pearson’s correlations
between the MoCA scores after adjusting for age decade, sex and years of further
education and performance on individual computerised tasks part of the final
selection. Note some tasks have a low correlation withMoCA but detect cross-group
differences, indicating divergence from constructs measured by the MoCA.
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cognitive deficits in both PD and RBD groups, whereas the MoCA did not.
These global cognitive differences relative to controls had medium-large
effect sizes for PD and were of an equivalent scale to approximately 20–30
years of age beyond 50 for the RBD group. This indicates that the online
tasks were substantially more sensitive to subtle cognitive changes. Relat-
edly, theMoCA did not detect significant changes between the baseline and
the closest time to the online cognitive assessment.

At the individual task level, online assessment scores with high dis-
criminability to PD and RBD displayed varied correlations with MoCA
scores and subscales. This reflects that the online battery measured addi-
tional constructs to theMoCA or, in some instances, the same constructs at
higher precision. The latter was exemplified by immediate memory for
words; despite both assessments featuring word memory tasks, only the
online task discriminated PD and RBD from controls. This disparity was
likely due to theMoCA version’s short word list (five) making it susceptible
to ceiling effects.

More broadly, the observation of superior patient-group discrimina-
tion aligned with studies applying online assessment tasks in other clinical
populations, e.g.,Multiple Sclerosis11, dementia29, traumatic brain injury10,12,
COVID-1930 and autoimmune limbic encephalitis33. Taken together, the
achieved accessibility, heightened discriminability, and superior assessment
detail indicate potential value for evaluating early-stage and prodromal
patients, enabling the detection of subtle cognitive changes and measuring
early-stage intervention effects.

Past studies have presented alternative perspectives on whether
RBD and early-stage PD share similar cognitive impairments24,34–37,
with the concept of a distinct cognitive profile for individuals tran-
sitioning from RBD to PD being debated35. While intuitively, RBD as
a prodrome might be expected to exhibit less severe cognitive deficits
than those observed after PD phenoconversion, studies have indi-
cated that individuals who transition from RBD to PD tend to
experience more significant cognitive deficits35.

Regarding accuracy, we observed that both PD and RBD patients had
significant deficits in global cognitive scores and a similar pattern of more
pronounced impairments in memory, reasoning, and crystallised intelli-
gence tasks. While PD patients demonstrated statistically significant
impairments on a greater number of tasks, sub-threshold trends were dis-
cernible in RBD, and the differences between the two patient groups were
generally non-significant. This pattern was also consistent with prior
research, where cognitive deficits have been reported in both PD and RBD,
often preceding the onset of other symptoms that characterise more
advanced disease stages1,6 and spanning domains, including memory,
executive function, attention, and language36.

The response timemeasures showed substantial global impairments in
reaction times for PD, aligning with the population’s characteristic motor
deficits38. Some sub-threshold slowing was also evident in the RBD group,
but this did not approach statistical significance. However, when sub-
dividing the PD group into those with and without RBD, the PD-RBD
subgroup had more pronounced cognitive deficits, including significantly
greater slowing of response and numerically lower performance accuracy.
This finding accordswith prior research reporting amore aggressive disease
trajectory for theRBD sub-type characterised by rapid cognitive decline and
risk of progression to dementia39–42.

Overall, the profile of cognitive differences associated with PD
and RBD differed from that seen for normal ageing. An intriguing
example was the significant impairment in the performance of both
patient groups on Word Definitions, a measure of crystallised
intelligence reflecting the acquisition of words throughout the life-
span. This contrasts with healthy ageing, where individuals, on
average, continue to enhance their word knowledge well beyond the
age of 50. These findings gain significance, considering the early
onset of RBD, which can occur between 38 and 64 years43. Given the
high probability of phenoconversion to PD or related neurodegen-
erative diseases5, these results align with the perspective that RBD
and PD undergo an accelerated decline in both fluid and crystallised

cognitive abilities, diverging from the impact of normal ageing
processes.

In the largest study to date, involving 754 longitudinally assessed RBD
patients, reduced attention and executive function, particularly in the Trail
Making Test Part B, were identified as the strongest indicators of future
conversion to Dementia with Lewy Bodies (DLB)44. Our proposed short
comprehensive cognitive testing battery retains attention and executive
tasks, including TrailMaking, Switching Stroop, and Target Detection. Past
findings also highlight the heterogeneity of cognitive deficits, including
across PD subtypes22. Given the high discriminability of the assessment
battery to RBD, early-stage PD, and age-related changes, combinedwith the
detailed multi-domain output, it may be particularly useful for application
in future research tracking heterogeneity of cognitive decline spanning the
continuum from prodromal to mid-stage PD, and to PD dementia.

Assessing cognition in PD poses a challenge due to the confounding
effects of primary motor deficits—slower and less accurate responses may
reflect impaired cognitive information processing speeds or motor
processes45. Indeed, historically, most online digital tools developed for PD
have focused on motor tracking rather than cognitive assessment46–48.
Additionally, cognitive testing tools available for neurodegenerative dis-
orders have often been generalised scales used across various conditions
rather than specifically tailored for PD19. Here, although there was a rela-
tionship between the global cognitive composite and clinically assessed
motor deficits, it was possible to achieve an accuracy composite where that
correlation was statistically non-significant. To further address motor
confounding, future studiesmay explore the application of newly developed
methods specifically designed to disentangle visuomotor and cognitive
difficulty-relatedcomponents of taskperformancebymodelling thedetailed
trial-by-trial performance timecourses that are recorded by computerised
tasks13.

The recommended 20-min online battery has several further advan-
tages over popular assessment scales. It is designed to be deployed online
without supervision, offering benefits in convenience, scalability and
affordability. The tasks feature bespoke and adaptive functions, generating
stimuli dynamically on the fly to prevent participants from becoming
familiar with specific solutions or response sequences, thereby minimising
repeat assessment learning effects9. Coupled with the low resource
requirement for unsupervised deployment, this technology can enablemore
precise temporal monitoring of patients. It holds potential for applications
in monitoring cognitive decline and conducting better-powered studies of
intervention effects and daily variability, especially regarding the relation-
ship between sleep disturbance and cognitive decline in conditions like RBD
and PD. Longitudinal monitoring using similar online technology has
demonstrated increased sensitivity in tracking cognitive decline in older
adults with mild cognitive impairment and early-stage dementia49. Further
mitigation of learning effects, including general familiarity with online
testing, is possible through protocols involving training sessions before
longitudinal data collection49. Future efforts could develop analogous
longitudinal protocols for application in PD and RBD.

The task accuracy scores showed low to negligible scaled sensitivity to
the type of device that the assessment was deployed on. This is important
due to the diverse array of personal computers, tablets, and smartphones
with varying interfaces and software configurations that people commonly
own; device sensitivitywould necessitate periodic updates of normative data
and models to accommodate the changing landscape of available devices.
The ability to assess patients on a variety of home devices they own without
supervision facilitates cost-effective evaluation on a very large scale and is
critical to reducing confounding changes in their abilities with changes in
their device when monitoring patients longitudinally.

This study has limitations. Patients without access to compatible
devices for the assessment will have been excluded from participation.
Notably, though, the software functions on various personal devices, such as
computers, smartphones, or tablets with internet access, which are
increasingly prevalent in older adult populations48. Nonetheless, caution is
warranted in extrapolating response rates to the broader PD population as
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the participants were part of a well-established longitudinal cohort who are
more accustomed to cognitive assessments. More broadly, our recent work
using the same online assessment technology in healthcare has relevance to
the related issues of digital poverty and technology familiarity. There, we
implemented a practical solution whereby the same assessment software
was deployed in the clinic before routine appointments for those who had
not yet participated online; comparable results were achieved remotely and
in clinic12, thereby maximising efficiency while ensuring inclusivity. The
cohort predominantly comprises a white British sample from theDiscovery
Cohort, necessitating further investigation into the generalisability of find-
ings across culturally diverse PD populations. Despite this, the assessment
platform’s previous testing on diverse populations29 positions it well for
facilitating large-scale studies on cultural variability in cognitive outcomes
across different patient groups. This study was cross-sectional; as noted
above, longitudinal validation is required for PD and RBD. Although the
MoCAhas beenwidely adopted for its brevity, it was originally developed as
a quick and effective instrument for detecting mild cognitive impairment.
As a benchmark, it likely lacks the discriminability of more detailed
supervised assessment scales, especially to subtle changes that occur in early
and prodromal stages of cognitive decline. Future research should under-
take comparative analyses of online technologies with more complete
neuropsychological assessments in PD and RBD. Finally, although the
outputs of the online assessment were detailed, the size of the patient
populations examined here was too small to leverage that detail with more
sophisticated multivariate analysis methods. Future work at a larger
population scale could apply machine learning techniques to better char-
acterise cognitive deficits across patient subtypes and predict trajectories.

In summary, our results indicate that automated online assessment
technology is a viable method for objectively assessing cognitive deficits in
PD and RBD populations remotely without supervision. It demonstrates
superior discriminability and captures a broader range of domains com-
pared to the commonly used MoCA and MMSE scales. Considering the
aspectsof accessibility, discriminability to clinical conditions, insensitivity to
device, and factor structure, we propose a subset of tasks suitable for
inclusion in a brief and versatile battery for these populations. With further
longitudinal validation, this battery could be suitable for tracking disease
progressionandphenoconversion, studyingpatient cognitive heterogeneity,

and measuring responsiveness to interventions, including at early and
prodromal stages.

Methodology
Participants
We recruited participants from the Oxford Discovery Cohort28, which
comprises controls and patients within 3.5 years of diagnosis between 2010
and 2016. The cohort had been assessed every 18 months on clinical scales
including the Montreal Cognitive Assessment (MoCA), and on the MMSE
at baseline. Between 2020 and 2022, we emailed invitations to participants
fromthis cohortwhohadaMoCAscore above 24 (indicating a lackof global
cognitive impairment) at their most recent clinical assessment to complete
two batteries of computerised cognitive tasks hosted on the Cognitron
platform29. Fifty-nine participants with clinically confirmed PD, 54 with
isolated RBD and 50 healthy controls completed at least one task, with 56
PD, 50 RBD and 46 healthy controls completing all 19 tasks. Additional
normative cognitive data were available via the Cognitron platform and had
been collected between December 2019–May 2020 via a custom website
https://www.cognitron.co.uk29. Ethical approval was given by the South
Central- Oxford A Research Ethics Committee in accordance with the
Declaration of Helsinki 1964, Ethics Ref: 16/SC/0108 and the Imperial
College Research Ethics Committee (17IC4009). All participants provided
written informed consent for remote cognitive testing as part of their par-
ticipation in the Oxford Discovery Cohort. Additionally, they gave elec-
tronic consent via email prior to completing the Cognition tasks.

Experimental design
The cognitive tasks were split into two batteries to mitigate fatigue due to
long assessment times. Both batteries were available via links hosted on the
Cognitron website, which were emailed to participants. Participants were
encouraged to complete the batteries on consecutive days. A single battery
took approximately 40min to complete (including reading the instructions
for the tasks and inputting their subject ID). The tasks were presented to
participants in a fixed order based approximately on increasing complexity,
with simple motor and reaction tasks early and more operationally com-
plicated executive tasks later.

Both batteries (Table 2) included a brief questionnaire with five items
collecting information about the group, subject ID, and in the case of PD,
information about dopaminergic medication, followed by the cognitive
tasks. The tasks were designed to measure attention (one task - Target
Detection), simple reaction time (one task—SRT), immediate and delayed
word recognition memory (two tasks), working memory capacity (four
tasks - Digit Span, Spatial Span, Paired Associate Learning and Card Pairs),
visuospatial processing (three tasks—2D Manipulations, Four Towers/3D
Scene Rotation, Picture Completion), emotion discrimination (one task),
spatial planning (two tasks—Blocks and Tower of London), cognitive
control (two tasks—Switching Stroop, Trail Making), semantic reasoning
(one task—Verbal Analogies) and crystalised intelligence (one task—Word
Definitions). Both batteries included the Motor Control task to measure
visuomotor processing times at the time of assessment, which was expected
to be affected by theprimarymotor deficits of PD.Details of taskdesigns can
be found in the Supplementary Materials–Supplementary Task Descrip-
tions and Supplementary Table 1.

Statistical analysis
Preprocessing was performed in Python with statistical analysis using50.

Statistical analysis focused on the summary scores for each task, these
being measures of response accuracy or response latency (Supplementary
Table S1). For inferring groupdifferences, a linear regressionmodelwasfirst
fitted to factor out confounding effects of sociodemographic variables
(predictors: age in decade categories to allow for non-linear age effects; sex,
male or female; education, none, less than 5 years, 5–10 years or more than
10 years). The residuals were rank transformed to normality. Two-way
analysis of variance (ANOVA) examinedwhether the adjusted scores varied
with the factors of clinical group and task and their two-way interaction. All

Table 2 | Batteries administered to participants

Battery 1 (Day 1) Operational
complexity

Battery 2
(Day 2)

Operational
complexity

Motor control 1 Motor control 1

Recognition mem-
ory immediate

1 SRT 1

Target detection 1 Trail making 1

Emotional
discrimination

1 Paired associate
learning

2

2D manipulations 1 Switching
Stroop

3

Digit Span 2 Picture
completion

3

Spatial Span 2 Card Pairs 3

Blocks 3 3D Scene rota-
tion (four towers)

3

Tower of London 3

Verbal Analogies 3

Word definitions 3

Recognition mem-
ory delayed

2

Operational complexity: 1. Individual responses to trials based on simple rules. 2. Multiple
responses to trials based on information in working memory. 3. Responses require more complex
reasoning/problem-solving.
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scores were input to the ANOVA with high = good and low = poor per-
formance. Tukey post-hoc tests confirmed which group differences drove
any significant effects. Global performancewas estimated by applying factor
analysis (FA) with one unrotated factor for participants who completed all
tasks. To interpret effect sizes, we conformed with Sawilowsky’s extended
versionofCohen’s notionof effect sizes (0.1 SD = very small, 0.2 SD = small,
0.5 SD =medium, 0.8 SD = large, 1.2 SD = very large and 2.0 SD = huge)51 .

To compare group effect sizes relative to normal age-related decline,
the same summary scores were examined within the large previously col-
lected online cohort. Specifically, performances of people in their 80 s, 70 s
and 60 s were contrasted with those in their 50 s using a linear regression
model with age as a categorical factor to allow for non-linear associations.

Exploratory factor analysis conformed to the Kaiser convention of
defining the number of factors as the number of eigenvalues greater than 152.
Varimax rotation reoriented the resultant factors to produce parsimonious
loadings.

To select the tasks for the final battery, we considered (a) which
tasks had scores that were discriminative when contrasting PD and
RBD to controls, (b) which tasks had scores that were sensitive to the
device the assessment was run on and (c) the dispersion of the tasks
in terms of their loadings on different factors from the FA. To ensure
tasks were not excluded if only sensitive to impairments in one or
other clinical group, effect size ranges were defined as the greatest
difference between the means of the patient groups relative to the
Discovery Cohort controls. As Discovery Cohort participants pri-
marily used personal computers for the assessment, sensitivity to the
device was defined as the mean difference between scores of phone
and computer users in the large preexisting normative dataset.

Both task scores and the MoCA scores were adjusted to socio-
demographic variables (age, decade, sex, education) using a linear model. A
linear regression was then fitted to predict the MoCA score from the per-
formance on the subset of tasks recommended for the brief assessment
battery. Pearson correlation coefficients were also calculated between the
MoCA score and each individual task metric. The reduced battery com-
posite was also predicted using linear regression from theMoCA subscales,
where categorical scores of each section in the MoCA scale were used as
predictors.

Sensitivity analyses
To evaluate the robustness of the results, the following sensitivity analyses
were conducted.

To assess the generalisability of the findings, the linear models con-
trasting global cognitive performance between the three groups were rerun
using leave-one-out and 25-fold cross-validation, and the correlation
between the observed and predicted scores was measured.

To assess the impact of using a two-step modelling approach with
categorical age, models contrasting between groups were re-estimated (a)
including sociodemographic variables in the model contrasting patient
groups to account for residual confounding, (b) using one model with all
variables included instead of first factoring out demographic variables and
(c)with age fitted as a continuous variable taken to the third order instead of
as a categorical factor.

To assess the impact on the results of modelling PD as a single group,
supplementary analyseswere conductedwithPDsub-categorised according
to probable RBD, as defined with a cutoff of >6 points on the RBD scale.
Models were run (a) contrasting global cognitive composites between PD
with vs. without RBD, (b) for RBD with vs. without PD and (c) for all three
patient groups vs. Controls.

To explore how bradykinesia in the PD group might affect PD parti-
cipants task responses, correlations were run between global cognitive
composites and the final battery composite and (a) theUPDRS-III and (b) a
composite calculated across the finger tapping and hand movement diffi-
culty sub-scales.

To examine the generalisability of the associations between the online
computerised battery and pen-and-paper supervised assessment, the

regression and correlation analyses were rerun compared to the MMSE,
which was collected at enrolment only.

Data availability
Requests for data or for setting up the cognitive assessment battery to be
used in other studies should be directed to Professor Adam Hampshire
(a.hampshire@imperial.ac.uk). Data is available upon reasonable request.
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