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A scoping review of artificial intelligence-based methods for
diabetes risk prediction
Farida Mohsen1, Hamada R. H. Al-Absi 1, Noha A. Yousri 2,3,4, Nady El Hajj 1,3 and Zubair Shah1✉

The increasing prevalence of type 2 diabetes mellitus (T2DM) and its associated health complications highlight the need to develop
predictive models for early diagnosis and intervention. While many artificial intelligence (AI) models for T2DM risk prediction have
emerged, a comprehensive review of their advancements and challenges is currently lacking. This scoping review maps out the
existing literature on AI-based models for T2DM prediction, adhering to the PRISMA extension for Scoping Reviews guidelines. A
systematic search of longitudinal studies was conducted across four databases, including PubMed, Scopus, IEEE-Xplore, and Google
Scholar. Forty studies that met our inclusion criteria were reviewed. Classical machine learning (ML) models dominated these
studies, with electronic health records (EHR) being the predominant data modality, followed by multi-omics, while medical imaging
was the least utilized. Most studies employed unimodal AI models, with only ten adopting multimodal approaches. Both unimodal
and multimodal models showed promising results, with the latter being superior. Almost all studies performed internal validation,
but only five conducted external validation. Most studies utilized the area under the curve (AUC) for discrimination measures.
Notably, only five studies provided insights into the calibration of their models. Half of the studies used interpretability methods to
identify key risk predictors revealed by their models. Although a minority highlighted novel risk predictors, the majority reported
commonly known ones. Our review provides valuable insights into the current state and limitations of AI-based models for T2DM
prediction and highlights the challenges associated with their development and clinical integration.
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INTRODUCTION
Precision diabetes medicine represents a cutting-edge approach
to diagnosing, predicting, and treating diabetes. This approach
accounts for individual variations and integrates diverse data
sources to comprehensively understand an individual’s health
status, predisposition, and treatment response1,2. Type 2 diabetes
mellitus (T2DM) is the most prevalent form of diabetes, and its
global incidence and prevalence are growing, putting a significant
burden on healthcare systems. Given the economic and personal
impact of T2DM, including decreased productivity, higher
healthcare costs, severe complications, and shortened lifespan,
there is a pressing need for preventive efforts.
Precision prognostics, a critical aspect of precision diabetes

medicine, aims to develop predictive models to estimate an
individual’s risk of developing T2DM and its complications based
on their risk profiles1. This enables the identification of high-risk
individuals, allowing for personalized prevention strategies and
targeted treatments to delay or prevent the onset of the disease
and its complications1,3. The American Diabetes Association (ADA)
and the European Association for the Study of Diabetes (EASD)
Consensus Report support this approach and recommend
targeting high-risk individuals with lifestyle interventions and
glucose-lowering medications to prevent or delay the onset of
T2DM1.
For prognostic models to be implemented into routine care,

they must go through different stages, including model develop-
ment, evaluation, and translation to clinical decision support4–6.
The development of these models entails utilizing longitudinal
data that reflect individuals’ biological characteristics, lifestyle, and
environmental interactions7. The next crucial phase involves

evaluating the model’s performance. An effective predictive
model is characterized by its ability to accurately estimate an
individual’s risk—where predictions align closely with observed
outcomes (calibration), its ability to reliably distinguish between
individuals at high and low risk of developing the condition
(discrimination), and its effectiveness across diverse populations
(generalizability)8. Both calibration and discrimination can be
assessed either through internal validation (using the same
dataset on which the model was developed) or external validation
(employing a different dataset), with external validation often
preferred as it provides a more comprehensive assessment of the
model’s generalizability7,9.
Many researchers have proposed T2DM risk prediction models,

often in the form of risk scores8,10. These models, however, have
limitations. They often use a limited number of risk factors as input
features, which does not consider the complex interplay among
different biological systems involved in the development of
T2DM10,11. Additionally, such models often rely heavily on
previous literature for predictor selection. This reliance may limit
the model’s scope, potentially overlooking novel or less-explored
predictors and thus not fully capturing the complexity of T2DM
pathogenesis12.
Recently, artificial intelligence (AI), particularly machine learning

(ML), and deep learning (DL), has attracted increasing attention in
medical research due to its capability to analyze large biomedical
datasets, including electronic health records (EHRs), medical
imaging, multi-omics data, behavioral/wellness, and environmen-
tal data13,14. AI-driven models have emerged as a promising tool
for developing predictive models for T2DM by analyzing complex
and multidimensional datasets to identify high-risk individuals,
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uncover risk factors and biomarkers associated with T2DM
development, and guide personalized interventions for disease
prevention. While most existing AI-based T2DM predictive models
focus on a single modality of data (i.e., EHR), there has been a
recent shift toward multimodal models integrating different data
modalities.
As the landscape of AI-based T2DM predictive models is rapidly

evolving, there is a clear need for a comprehensive overview of
the relevant literature. To our knowledge, a limited number of
reviews have explored the application of AI techniques in
diabetes. Notably, these existing reviews differ from our current
study in terms of their scope. For instance, one study conducted a
meta-analysis of the predictive ability of ML models for T2DM risk
prediction but was restricted by a limited sample size of 12
studies10. Other reviews focused on evaluating AI models for
diabetes detection15,16 or predicting diabetes-related complica-
tions17. Our scoping review, however, focuses on studies that
utilize AI-based methods for T2DM risk prediction, particularly
those harnessing longitudinal data to construct their predictive
models. Our review spans a wide range of AI models, from
unimodal to multimodal approaches, and includes 40 studies.
These studies encompass various data modalities, including EHRs,
multi-omics, and imaging data. Table 1 highlights the main
differences between our scoping review and previous reviews in
the field, emphasizing the need for a new and updated review.
The primary aim of our review is to explore and provide a

comprehensive analysis of the use of AI-based models for T2DM
risk prediction. This involves examining the various AI models
utilized, the types of data and predictors employed, the datasets
and evaluation metrics used, as well as the risk predictors reported
that can guide preventive and early intervention strategies.
Additionally, we critically evaluate the limitations of AI models in
this context and highlight the challenges associated with their
clinical implementation. Our review also aims to identify knowl-
edge gaps in the field, highlighting areas where further research is
needed to advance the application of AI in T2DM risk prediction.

RESULTS
This section provides a comprehensive overview of the findings
from our scoping review, organized around several key themes
(subsections) that emerged during our analysis. We begin with the

study selection process and a detailed discussion of the
characteristics of the included studies. Next, we describe the data
used in these studies, including data modalities, resources, study
populations, sample size, participants’ demographics, data imbal-
ance, and missing data handling. In the subsequent subsection,
we discuss the AI-based models and methodologies applied,
differentiating between unimodal and multimodal models. This is
followed by a section detailing validation procedures, perfor-
mance metrics, and performance comparison between unimodal
and multimodal models. The penultimate subsection is dedicated
to the studies’ interpretation and reported risk predictors. Finally,
we examine the reporting standards and reproducibility of the
included studies.

Study selection and characteristics
After an initial screening based on titles and abstracts, 64 studies
were considered eligible for full-text screening. For various
reasons, 31 studies were excluded after a thorough full-text
review against established inclusion criteria. Additionally, seven
studies were identified through forward and backward reference
screening, resulting in a total of 40 studies that underwent data
extraction and synthesis. The overall study screening and selection
process is depicted in Fig. 1a. In addition, the characteristics of the
included studies are presented in Supplementary Tables 4 and 5.
Among the included studies, 37 were peer-reviewed journal

articles, and 3 were conference publications. The studies were
published between 2012 and 2022, with the majority being
published in the past 4 years (n= 29). This suggests a growing
interest in using AI models for T2DM prognosis, which can be
attributed to advancements in AI models and the increasing focus
on precision medicine. The studies were conducted in a diverse
range of countries, with the majority being from the United States
(n= 6), followed by China (n= 5) and Korea (n= 4). The diversity
in the country of publication highlights the global interest in using
AI models for T2DM prognosis. The distribution of studies by
publication type, year, and country of publication is presented in
Fig. 2.
All of the AI prediction models included in this scoping review

were developed using data from longitudinal cohort studies in
accordance with the inclusion criteria outlined in this study. The
study designs varied among the included studies, with the
majority being retrospective cohort studies (n= 18)11,18–34 that

Table 1. Literature review comparison.

Previous reviews Year Scope Comparative contribution of our review

Predictive ability of current machine learning
algorithms for type 2 diabetes mellitus: a
meta-analysis10

2022 They conducted a review with meta-analysis to
evaluate the current ability of ML algorithms
for T2DM prognosis retrieving 12 studies till
2020. All the retrieved studies used EHR data.

Our review focuses on the use of AI models
for T2DM risk prediction, with a particular
emphasis on studies that used longitudinal
data. Moreover, our review covered more
studies (n= 40) with a wider range of data
modalities, including EHR, multi-omics, and
imaging.

Machine learning and artificial intelligence-
based Diabetes Mellitus detection and self-
management: a systematic review15

2022 Their review focused on the use of AI models
for diabetes detection.

Our review focuses on the use of AI models
for T2DM risk prediction, with a particular
emphasis on studies that used longitudinal
data.

Use and performance of machine learning
models for type 2 diabetes prediction in
community settings: a systematic review and
meta-analysis16

2020 They assessed ML’s discrimination ability to
predict and diagnose T2DM, covering only
eight studies on T2DM risk prediction.

Our review focuses on the use of AI models
for T2DM risk prediction, with a particular
emphasis on studies that used longitudinal
data. Moreover, our review covered more
studies with a wider range of AI models for
T2DM prognosis, including unimodal and
multimodal models.

Microvascular complications in type-2
diabetes: a review of statistical techniques
and machine learning models17

2020 They conducted a review on microvascular
complications in diabetes (retinopathy,
neuropathy, nephropathy).

Our review focuses on AI models for T2DM
risk prediction rather than its complications.
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utilized data from large clinical databases and registries. Other
study designs included prospective cohort studies (n= 10)35–44,
case–control studies (n= 11)45–55, and one case–cohort study56. In
terms of prediction horizon, the studies reported a wide range of
horizons, with most of the studies focusing on medium-term
predictions (n= 18)18,18,20–22,24,29,31,37–39,42–45,49,50,56, such as pre-
dicting diabetes onset within 5–10 years. Additionally, 13
studies22,26–28,32,34–36,48,52–55 focused on short-term predictions
(<5 years), and eight studies predicted T2DM onset within 5
years20,22,23,25,30,33,36,45. A smaller number of studies
(n= 5)19,40,41,46,47 reported long-term predictions 10 years prior
to T2DM onset. It is worth noting that some studies reported
multiple prediction horizons; therefore, the sum of the studies in
all categories may not equal the total number of studies included
in this review.
Regarding AI applications for T2DM risk prediction, the studies

in this review mostly focused on four key areas. The first and most
prevalent area of focus was the development of custom predictive
models (n= 25). These studies primarily addressed the need for
accurate, timely, and potentially personalized risk predictions for
T2DM11,20,22,23,25,26,28,30–35,37–40,43–45,47,51,52,54,55. The target popu-
lations, prediction horizons, and data types used varied among
these studies. The second key area focused on risk stratification,
aiming to identify individuals at high risk of T2DM, an essential

component for effective public health intervention27,29,41,42,49,50,53.
Thirdly, several studies focused on advancing the understanding
of disease pathophysiology by identifying new risk predictors or
evaluating the prognostic value of certain markers, which could
reveal new pathways for prevention and treatment18,19,24,36,46,48,56.
Finally, two studies focused on the evaluation and comparison of
different predictive models21,37. Such studies aimed to validate
existing models or compare traditional statistical methods with ML
approaches. See Supplementary Table 4 for a detailed breakdown
of the studies’ aims.
The included studies in our review followed diverse procedures

for labeling outcome variables and ascertaining T2DM diagnosis,
as shown in Supplementary Table 4. Fasting plasma glucose (FPG)
levels of ≥7.0 mmol/L or ≥126 mg/dL and Hemoglobin A1c
(HbA1c) of ≥6.5% were the most commonly used criteria. These
were used, either independently or in combination, in several
studies11,18,19,23,26,32,33,37,39–42,44,46,49,52,54–56. The use of medication
history or current medication usage for T2DM was also common
across numerous studies11,18,20,23,27,35,37,39–41,44,45,56. Three studies
considered a 2-h blood glucose (2h-BG) level after a 75g Oral
Glucose Tolerance Test (OGTT) of ≥200mg/dL (11.1 mmol) as part
of their diagnostic approach18,24,42. Self-reported T2DM was
another diagnostic criterion used in eight stu-
dies11,20,26,32,35,43,44,47. International Classification of Diseases

Fig. 1 Overview of the study selection process and research questions. a Flow diagram illustrating the PRISMA approach for the
identification, screening, and selection of studies. b Research questions posed.
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codes, specifically ICD-9 and ICD-10, were also utilized in some
studies27,34,45,52. One study utilized clinical procedures and
validated them using recorded blood glucose levels22. However,
diagnostic methods were not available for some
studies21,25,28–30,36,38,50,51,53.

Data
In the development of AI models for predicting T2DM risk, data
modalities, and resources are critical aspects to consider. This
review revealed a broad range of data modalities in the included
studies, highlighting the diversity of information predicting T2DM.
EHRs were used by all 40 studies, including sociodemographic
characteristics, family history of diabetes (FHD) and other diseases,
lifestyle risk factors, anthropometric measures, glycemic traits,
blood lipids, blood pressure factors, etc. Other sources incorpo-
rated multi-omics data, such as single nucleotide polymorphisms
(SNPs), metabolomic data in the form of metabolite levels in the
blood, and microbiome data. Additionally, medical imaging data
from modalities such as computed tomography (CT) and fundus
images were utilized. Notably, several studies fused different
modalities to create multimodal predictive models, predominantly
combining EHR with multi-omics or medical imaging data. Table 2
summarizes the data modalities and their combinations used in
these studies.
Regarding data resources, the included studies used datasets

from both private and public sources. Private datasets originate
from hospitals and clinics, typically inaccessible to the public. On
the other hand, public datasets are made available to the general

public and are often collected by government agencies or research
institutions to be used for research purposes. Of the 40 studies, 22
used publicly accessible datasets20,21,24,28,29,31,32,36,38–43,45,47–53,
while 18 studies relied on private data
sources11,18,19,22,23,25–27,30,33–35,37,44,46,54–56. It is worth noting that
almost all of the public datasets are not freely accessible due to
containing sensitive personal health information. Access to the
datasets is granted on a case-by-case basis and requires approval
from the study’s committee. Therefore, researchers might need
special permissions to access them, and some datasets may require
payment of access fees. The most frequently mentioned public
datasets in the studies were the Tehran Lipid and Glucose Study
(TLGS), Canadian Primary Care Sentinel Surveillance Network
(CPCSSN), and San Antonio Heart Study (SAHS), each used in

Fig. 2 Publication trends in AI-based T2DM prediction. This figure illustrates the distribution of studies based on the publication type, year,
and country of publication.

Table 2. Data types used by the included studies.

Data type Number of studies Study reference

EHR n= 40 11,18–55,84

EHR+ genetics n= 2 35,47

EHR+ metabolomics n= 2 24,48

EHR+ metabolomics+ genetics n= 2 44,46

EHR+ Microbiome n= 1 36

EHR+ Fundus images n= 2 33,43

EHR+ CT n= 2 34,56

F. Mohsen et al.
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three studies. Other datasets were mentioned in only one study.
Supplementary Table 4 elaborates on these datasets, while Table 3
summarizes the predominant datasets from the included studies.
Beyond data types and sources, the study populations

showcased a wide geographical and demographic diversity.
Participants originated from various regions, including the Han
ethnicity in China46, the Finnish population36, non-Hispanic
Caucasians in California48, and native Arabs in Kuwait22. The
gender distribution in these studies also varied, with some
populations being male-dominated32,36, others having a female
majority38,48, and some exhibiting balanced gender representa-
tion24,33. However, several studies did not provide gender
details34,43,49–51,54,55. Supplementary Table 5 offers a detailed
overview of the country, gender, and ethnicity representation
across studies.
In this scoping review, the studies showcased a wide variation

in sample sizes used to develop T2DM risk prediction models, with
sizes ranging from as few as 244 patients48 to an extensive dataset
of up to 1,893,901 patients30. Approximately half of these studies
provided rationales or calculations for their chosen sample sizes.
Most of them derived their sample size based on available data
and specific eligibility criteria21,22,24,25,27,31,35,36,39,42–44,48,52,53,55, an
approach commonly found in studies that used existing datasets.
Two studies highlighted constraints on size due to data
availability19,46, while the availability of fasting serum samples
constrained another one24. Additionally, one study56 adopted a
case–cohort design, in which the sample size was calculated using
a 1:4 case-to-control ratio. This ratio was considered favorable for
maintaining relative efficiency and helped ensure an adequate
representation of cases and controls. However, the remaining
studies did not specify a rationale or methodology for determin-
ing their sample sizes.
In our review, the class distribution in the datasets used in the

majority of the included studies was imbalanced
(n= 34)11,18,20–23,25–27,29,31–33,35–42,44,45,47,49–51,53–56. Such imbal-
ance can introduce model bias. To mitigate this issue, 14 of the
studies adopted various techniques. Six utilized the Synthetic
Minority Oversampling Technique (SMOTE) to generate synthetic
samples for the less-represented (positive) class21,25,28,37,39,40,
while three opted for downsampling25,49,55. Two studies parti-
tioned their datasets ≥ 100 times into training and testing
balanced datasets to address the class imbalance11,43, and two
applied class weighting during training19,27. For three studies,
methods to address class imbalance were unclear and only
described addressing class imbalance using 10-fold cross-valida-
tion24, jackknife or “leave one out” procedure21, and stratified
random sampling41.
Missing data is a common challenge in research studies and can

significantly impact the results and conclusions of the study.
Despite its importance, only 20 studies in this scoping review
reported how they handled missing data. The most common
method was the removal of rows containing missing data before

training the AI model, an approach utilized by 12 of these
studies19–23,26,36,38,51,53,56. While straightforward, this method can
restrict the data used for model development and potentially
introduce bias if the remaining sample is not representative4,5.
Eight studies used imputation techniques to fill in the missing
data. These included K-nearest neighbor (KNN) imputation29,
Gaussian imputation52, classification, and regression tree (CART)
imputation for continuous variables39, a nonparametric imputa-
tion method based on random forest37, and imputation using the
arithmetical mean of the corresponding variable50. Only one
study55 compared various methods, such as data removal and
mean, median, and mode imputation. Another study30 did not
detail its approach to missing data.

Modeling approaches
The type and number of data modalities used to train a prediction
model can significantly affect the model’s performance and
impact the model’s reliability and prediction outcomes. With this
in mind, we categorized the AI models developed in the reviewed
studies into unimodal and multimodal categories. Unimodal
models used a single type of data as input, whereas multimodal
models incorporated multiple data sources as input.

Unimodal predictive models. In this scoping review, 30 studies
used unimodal models for T2DM risk prediction, which accounted
for the majority of the included studies11,18–23,25–32,37–42,45,49–56. A
summary of their characteristics can be found in Supplementary
Table 6. Various AI algorithms were utilized to develop these
predictive models, with classical ML being the most frequently
employed compared to DL models. The classical ML models
employed were very diverse. Among them, decision trees (DT) and
their variants, such as CART, quick, unbiased efficient statistical
tree (QUEST), commercial version (C5.0), and DT using the CHAID
method, were the most widely used, with ten studies implement-
ing them. Moreover, linear regression (LR) was used in ten studies.
Random forest (RF) was used in nine studies, while support vector
machines (SVM) were implemented in eight studies. Naïve Bays
(NB) classifiers were implemented in five studies, while KNN and
extreme gradient boosting (XGBoost) were utilized in four studies
each. Ensemble learning, which involves combining the predic-
tions of multiple models to improve the overall accuracy of the
prediction, was used in four studies employing different forms of
voting, such as soft voting and weighted voting. Hidden Markov
models (HMM) were used in three studies, while gradient boosting
machine (GBM) and linear and quadratic discriminant analysis
(LDA and QDA) classifiers were used in two studies each. The least
used algorithms were K-means, AdaBoost, Cox regression, and
multiple instances learning boosting (MIL-Boost) with one study
each. Regarding DL algorithms, feed-forward neural networks
(FFNN) were used in three studies, followed by long short-term
memory (LSTM) and probabilistic neural network (PNN) in one

Table 3. The most commonly used public datasets.

Dataset name Description Population Data link Study reference

SAHS It is a longitudinal epidemiological investigation that seeks to explore the incidence
of T2DM and cardiovascular disease in the population of San Antonio, involving both
Mexican Americans and non-Hispanic whites.

USA SAHS Website 21,31,38

CPCSSN It is a primary care electronic medical record surveillance system that collects data
from participating primary care clinics in Canada for various health research
purposes, including the development and evaluation of chronic disease management
programs, monitoring disease trends, and improving primary care services

Canada CPCSSN
Website

49–51

TLGS It is a large-scale, longitudinal, population-based study conducted in Tehran, Iran. The
study was initiated in 1999 to assess the prevalence and incidence of non-
communicable diseases and their risk factors among Iranian adults.

Iran TLGS Website 39–41
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study each. Table 4 presents the distribution of unimodal AI
models across different studies.
Around half of the unimodal studies compared several ML

algorithms and then selected the best-performing one for
prediction. In studies that compared two or more algorithms, DT
was found to have the best performance in five studies19,39,41,42,54.
Meanwhile, ensemble models performed best in four stu-
dies25,50,53,55. RF11,20,52, XGBoost26,30,32, and HMM21,31,38 each had
the best performance in the three studies. The performance of the
algorithms was measured using the area under the curve (AUC)
metric in most of the studies (n= 23). The best-selected models in
the unimodal studies had AUC values ranging from 0.74 to 0.92,
with three studies having values below 0.74 and only one
exceeding 0.92. However, it is crucial to note that these results are
based on individual studies and are not directly comparable due
to the use of different datasets and risk predictors, evaluation
metrics, and follow-up periods across studies.
All unimodal predictive models used EHR data as input except

one study that used imaging56. The EHR risk factors and
biomarkers used as inputs by the included studies can be broadly
categorized as (1) sociodemographic and FHD; (2) lifestyle; (3)
anthropometric measures of body size and composition; (4)
glycemic traits that include measures of glucose control; (5) blood
lipid and blood pressure factors that include measures of
cholesterol, triglycerides, and blood pressure; (6) inflammatory
biomarkers including measures of inflammation, such as
C-reactive protein-to-albumin ratio (CAR); (7) other biomarkers
including measures of liver function, such as liver enzyme levels,
or measures of adiposity, such as circulating adiponectin levels; (8)
medications and disease history. Supplementary Table 6 includes
the different EHR features among studies. Only one study56 in this
category used imaging data represented in CT scans to investigate
the relationship between different fat distribution patterns and
the risk of developing T2DM.
Overall, the results showed that unimodal predictive models

had moderate to high performance in predicting T2DM risk, with
an average AUC of 0.81. However, it is essential to note that it is
difficult to determine exactly which AI model is the best, as the
type and combination of input risk predictors can significantly

influence the model’s performance. For example, the XGBoost
algorithm was used in three studies26,30,32, and the reported AUC
was 0.91, 0.83, and 0.67 for each study, respectively. Each of these
studies used different risk predictors, causing the algorithm to
excel with certain combinations and underperform with others.
Additionally, the results show that the prediction horizon also
impacts the performance of the same model. In studies that
carried out predictions over varying follow-up periods, we
observed that the model’s discriminatory ability tends to decrease
as the prediction horizon increases20,22,45,52.

Multimodal predictive models. Surprisingly, multimodal predictive
models were less common in the studies included in this review. A
total of ten studies used multimodal predictive mod-
els24,33–36,43,44,46–48, as shown in Supplementary Table 7. These
models employed various fusion strategies, including early fusion
and joint fusion, as highlighted in the studies by Huang et al.57

and Mohsen et al.58.

Early fusion. In early fusion, the various data modalities are
combined at the data level before feeding them into the AI model.
This approach allows the model to take advantage of the
complementary information provided by the different data
sources. In this review, seven studies adopted an early fusion
strategy, integrating various data types, including EHR and multi-
omics24,35,36,44,46–48. Specifically, two studies combined genetics
and EHR features35,47, while another two fused metabolomics with
EHR24,48. Additionally, two studies integrated genomics, metabo-
lomics, and clinical data44,46, and one more study integrated
microbiome data with EHR36.
Five of these studies applied feature selection techniques to

eliminate extraneous and redundant features to address the issue
of high dimensionality before combining the different modal-
ities35,44,46–48. These techniques included Cox proportional
hazards (CPH)35, J48 DT48, random forest feature selection46,
Boruta algorithm44, and L1 penalized logistic regression47. The
selected features from the various modalities were then con-
catenated and fed as inputs into a range of AI algorithms for T2DM
risk prediction. Classical ML algorithms were the most often used,
with RF being the most popular (employed in four stu-
dies)35,36,44,46. Other algorithms, including GBM35, NB48, regular-
ized least squares24, and J48 DT48, were each utilized in one study.
Deep neural networks (DNN) were also featured in two
studies35,47.
Two studies investigated the value of multiple genetic variants

in T2DM prediction35,47. Both of these studies used these genetic
variants in combination with classical risk factors to improve the
performance of their AI prediction models. In one study35, the
findings indicated that prediction by clinical risk factors was
significantly enhanced when genetic information was added.
Another study by Kim et al.47 compared the performance of LR
and DNN models by using varying numbers of SNPs. Specifically,
when only 96 or 214 SNPs were utilized, both the LR and DNN
models demonstrated limited discriminative ability, and they did
not surpass the performance of a clinical model built on classical
risk factors. However, when more SNPs were included (399 and
678), both models achieved a higher AUC than the clinical-only
model. Combining both clinical factors with SNPs significantly
enhanced the AUC of the DNN models. Overall, the results of this
study suggest that combining genetic data with classical risk
factors may improve the performance of AI prediction models for
T2DM prognosis, especially when a more extensive set of genetic
variants is incorporated. These findings highlight the potential
value of incorporating genetic information into T2DM prediction
models.
Two studies24,48 explored the use of metabolomic data as

potential risk predictors for T2DM. The first study24 evaluated the
entire metabolome’s predictive ability for T2DM and found an

Table 4. Distribution of unimodal AI models in studies.

Unimodal AI models Study references

Classical ML models

DT 19,25,26,39–42,52–54

LR 11,20,22,23,25–27,37,52,53,55

RF 11,18,20,25,26,37,52,53,55

SVM 19,22,37,49–52,55

NB 25,40,50,52,53

KNN 19,22,23,37

Ensemble models 25,50,53,55

XGBoost 26,30,32,55

HMM 21,31,61

GBM 20,37

LDA and QDA 19,23

K-means 56

MIL-Boost 29

AdaBoost 50

DL models

FFNN 20,28,37

LSTM 45

PNN 40
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AUC of 0.77, compared to a model using only clinical risk factors
with an AUC of 0.68. Interestingly, even when limited to a subset
of metabolite signatures, the AUC was 0.75, still surpassing the
clinical-only model. Combining the panel of selected metabolite
signatures with clinical variables achieved the highest predictive
performance, resulting in an improved AUC of 0.78. This
combination outperformed both the clinical and metabolite-only
models, demonstrating the significance of integrating both data
types to enhance prediction accuracy. Another study48 identified
21 metabolites that significantly differed between non-T2DM and
T2DM patients, achieving an AUC of 0.77. However, when this
metabolite data was combined with glucose risk factors, the
resulting AUC was 0.75. These findings suggest that, in this
particular study, metabolomic markers on their own were more
effective in predicting T2DM. In conclusion, the included studies
underscore the efficacy of metabolomic biomarkers in
predicting T2DM.
In two studies44,46, the fusion of genomic and metabolomic

data with classical risk factors improved the performance of AI
prediction models for T2DM. One study44 indicated that integrat-
ing genomic, metabolomic, and clinical data significantly
improved the model performance, achieving an AUC of 0.884.
This surpassed both the model integrating genetic data with
classical risk factors (AUC of 0.876) and the one relying solely on
classical risk factors (AUC of 0.84). Similarly, another study46

revealed that a model combining genomic, metabolomic, and
clinical risk factors was superior in predicting T2DM, yielding an
AUC of 0.96 in comparison to a genomics-only model (AUC of
0.586) and a clinical-only model (AUC of 0.798). These findings
suggest that integrating genomic, metabolomic, and clinical
predictors has consistently improved the prediction models.
Oliver et al.36 conducted the first longitudinal study to assess

the gut microbiome’s role as a predictive factor for various
parameters associated with T2DM. Their findings revealed that the
microbiome, in combination with conventional risk factors, could
effectively predict various metabolic outcomes. The authors
concluded that using the microbiome in personalized medicine
is promising. However, the true potential of the gut microbiome
for predicting T2DM remains unknown.
Six of the ten studies employing early fusion compared the

performance of fusion models with single-modality models to
assess the efficacy of multimodal models24,35,36,44,46,47. Five studies
found that fusion models performed better than their unimodal
counterparts24,35,44,46,47. The average AUC value of early fusion
models was 0.89, indicating the potential of early fusion
multimodal models in improving T2DM prediction.

Joint fusion. In this scoping review, three studies employed a
joint fusion approach for combining multiple data modalities to
develop T2DM predictive models33,34,43. These studies fused EHR
metadata with different types of medical imaging, such as CT and
retina scans, as shown in Supplementary Table 7. They used DL
models to extract imaging features and jointly learn multimodal
feature representation for T2DM prediction.
One study by Zhang et al.33 explored the capability of an AI

model to predict the future risk of T2DM in individuals using
fundus images and clinical data. The authors proposed a deep
multimodal framework to effectively capture complementary
features from image and non-image modalities to predict T2DM
five years before disease onset. They used deep convolutional
neural networks (CNNs), specifically a residual network (ResNet50)
architecture, to convert the fundus image data into a feature
vector fusible with other metadata. Then, the image feature vector
derived from the CNN model was concatenated with the clinical
features of the same patient and fed into a multilayer perceptron
for joint learning and prediction. Their results revealed that the
fusion of fundus images and clinical data considerably enhanced
the model’s performance, achieving an AUC of 0.85, compared to

AUCs of 0.82 and 0.76 for the fundus-only and clinical-only
models, respectively. Drawing from these results, the authors
concluded that fusion models of fundus images and clinical data
could be used to automate the prediction of T2DM risk in healthy
individuals.
Similarly, a study by Yun et al.43 also investigated retinal scans

with additional traditional risk factors for T2DM screening and
prediction using the ResNet18 model. They found a similar trend,
where the multimodal approach outperformed the unimodal
counterparts. Specifically, the fusion model achieved an AUC of
0.84, considerably exceeding the clinical-only and fundus-only
models, with AUCs of 0.81 and 0.73, respectively. Another study34

explored the feasibility of integrating CT images with clinical data
to develop a 1-year risk prediction model for T2DM. Pancreatic CT
images were processed to extract body composition features,
such as abdominal visceral fat volume, subcutaneous fat volume,
and pancreas volume, using CNNs. To develop a clinical-image
multimodal risk prediction model, the authors combined these
imaging features with clinical data and input them into fully
connected layers. Their results demonstrated notable improve-
ments in the model performance upon the fusion of the two data
sources (AUC = 0.89) compared to the clinical-only model
(AUC= 0.82) and the imaging-only model (AUC= 0.85).
The three studies33,34,43 compared the performance of their

joint fusion multimodal models with single modality models,
whether clinical-only or imaging-only. All of them showed superior
performance with fusion compared to single-modality models.
The average AUC value for the joint fusion models was 0.86,
ranging from 0.84 to 0.89. These findings highlight the potential of
joint fusion models to enhance T2DM risk prediction.

Evaluation and performance metrics
The next crucial step following model development is perfor-
mance evaluation. This can be done in two ways: (1) internal
validation, which involves evaluating the model’s performance on
the same dataset used for training, such as split sampling or cross-
validation techniques, and (2) external validation, which involves
using an entirely different dataset. In this review, almost all studies
(n= 39) employed internal validation.
When validating a prediction model’s performance internally,

the holdout method is not deemed optimal because it reduces the
available sample size59,60. However, it emerged as the most
commonly employed method in the reviewed studies
(n= 18)11,18,26,27,31–33,35–41,45,47,53,54. Although cross-validation
techniques are preferred as they utilize the entire data for both
model development and validation59,60, K-fold cross-validation
was adopted in 17 studies19,23–25,28,29,42,44,46,48–51,55. This approach
partitions data into k equally sized folds, training and evaluating
the model k times, each using a different fold as the test set. Three
other studies20,30,43 employed the train-valid-test method, divid-
ing the dataset into training, validation, and testing subsets. Only
one study utilized the leave-one-out cross-validation method21,
while another study56 did not mention its validation approach.
A smaller proportion of the included studies (n= 5) conducted

external validation to assess their predictive model’s general-
izability24,32,33,43,56. These studies utilized diverse cohorts spanning
several countries: France24, Germany56, China33, Australia43, and
Japan32. These cohorts’ geographical locations differed from their
respective development datasets, reflecting efforts to validate the
predictive models across various contexts. Supplementary Table 8
details the specifics of each cohort, including sample size, country,
gender distribution (where available), and other pertinent
information.
The evaluation metrics used in the reviewed studies were highly

diverse. The majority of studies utilized discrimination metrics,
particularly the AUC (n= 32). Standard classification measures
were also reported in almost half of the studies, including
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accuracy, specificity, precision, sensitivity, and F1 score. Other
metrics, such as the Youden index, net reclassification improve-
ment (NRI), integrated discrimination improvement (IDI), root
mean squared error (RMSE), Jaccard similarity, positive predictive
value (PPV), negative predictive value (NPV), Cohen’s Kappa,
geometric mean (G-Mean), and Matthews Correlation Coefficient
(MCC) were also utilized. While calibrating AI models is crucial for
predictive performance assessment, only a few studies (five in
total) evaluated their models’ calibration using measures such as
the Brier score, calibration plot, and Hosmer-Lemeshow test. The
distribution of the most common reported performance measures
used across the included studies is presented in Table 5.

Performance comparison of unimodal and multimodal T2DM
predictive models. The included studies showed promising
performance for AI models for T2DM risk prediction. Unimodal
models showed widely varied performance with an average AUC
of 0.81. In comparison, multimodal models displayed a notably
superior performance compared to their unimodal counterparts,
achieving an average AUC of 0.88. However, it is crucial to note
that direct comparisons across these studies should be taken with
caution due to variations in their datasets, evaluation metrics, and
prediction horizons.
The improved performance of multimodal models can be

attributed to the augmented information available through
integrating multiple data modalities, providing a comprehensive
view of an individual’s health status. However, they also have
some limitations and challenges. They often face scalability
issues, and the data concatenation process can be time-
consuming61. The inherent differences in data types, distribu-
tions, and scales across modalities can pose difficulties in
effectively integrating the data and building prediction models.
Additionally, they often require significant computational
resources, which can be challenging when working with large
datasets. Understanding the relationships between various
modalities within the multimodal frameworks and discerning
how each modality contributes to the overall prediction remains
challenging. Overall, multimodal models, despite their advan-
tages, have complexities that must be addressed for effective
clinical integration.

Interpretation and risk predictors
Feature ranking and explainability are essential aspects of any
predictive model, as they can provide insights into which factors
are most important in driving the prediction. In the context of
T2DM, this can clarify which risk factors and biomarkers are most
influential in determining disease progression. This can help
healthcare professionals identify areas to target for intervention
and prevention. Moreover, interpretable models can enhance the
trust and acceptance of AI-based predictive tools among
healthcare professionals and patients.
In this scoping review, nearly half of the included studies

reported on feature ranking and explainability techniques. Some
studies utilized permutation feature importance19,29,51,55, while
others relied on the built-in feature importance functions of
algorithms, such as decision trees39,41,42, XGBoost26,32, RF11,46, and
HMM21. Three studies employed LR for feature importance27,37,38,
and two studies ranked the relative importance of risk predictors
based on their contribution to variance20,45. Four studies
elucidated risk predictors using Shapley plots26,29,30,32. In a study
that used DL33, the model was interpreted using the integrated
gradient algorithm to pinpoint the most critical areas in the image.

Risk factors and biomarkers. Nearly half of the studies (n= 21)
reported the final risk predictors identified by their AI models.
Table 6 summarizes these predictors across the studies included in
this scoping review.
The reported risk factors and biomarkers for T2DM progression

showed variation across studies. EHR-based predictors emerged
frequently, encompassing anthropometric measures, glycemic
traits, blood lipids, sociodemographic data, and liver enzymes.
The risk predictors derived from EHRs align well with established
literature and are recognized for their biological relevance to the
disease. Among these, BMI, FPG, TG, and age stood out as the
most frequently reported predictors. Additionally, liver enzyme
biomarkers, specifically ALT and AST, were highlighted in five and
three studies, respectively. Yet, certain biochemical markers
associated with T2DM risk, such as inflammatory biomarkers (hs-
CRP and fibrinogen), plasma adiponectin, leptin, albumin, and
aldosterone, were infrequently explored in the context of disease
prediction.
Three studies reported metabolomic biomarkers, whereas one

study reported retina scan-based biomarkers. In terms of
metabolomic biomarkers, one study24 identified novel markers
associated with T2DM progression, such as α-tocopherol, [Hyp3]-
BK, X-12063, and X-13435, as well as known markers like glucose
and mannose. Another study46 identified five newly discovered
metabolic markers, including iboflavin, cnidioside A, 2-methoxy-5-
(1H-1, 2, 4-triazol-5-yl)-4-(trifluoromethyl) pyridine, 7-methyl-
xanthine, and mestranol. A study48 provided insights into the
etiology of the transition to T2DM in women who previously had
gestational diabetes mellitus, revealing two predictive metabolites
for incident T2DM: Phosphatidylcholine acyl-alkyl C40:5 (PC ae
C40:5) and Hydroxysphingomyeline C14:1 (SM (OH) C14:1). In the
realm of imaging-based biomarkers, a study33 pinpointed retinal
markers associated with T2DM development. These markers, such
as vascular tortuosity, venous dilatation, retinal hemorrhage, and
cotton wool spots, are frequently employed by ophthalmologists
for diagnosing retinal diseases.
Some multimodal models have combined polygenic risk scores

with metabolomic markers24,48. However, they often do not detail
the predictors or interaction and contribution of the various
modalities in the final prediction, making it challenging to
understand how these multimodal models make predictions and
decisions, which can be a barrier to their adoption in clinical
practice62. There’s a need to investigate shifts in feature
importance across both unimodal and multimodal contexts, as it
can provide insights into the impact of the multimodal setting.

Table 5. The distribution of evaluation metrics in the included studies.

Performance measures Number of
studies

References

AUC n= 32 11,18–35,37–39,43–48,50,52–54

Accuracy n= 15 11,19,25,26,28,29,34,40–42,48–51,55

Specificity n= 15 11,19,25,26,28,39–41,45,46,49–53

Sensitivity n= 20 11,19,25,26,28,29,33,34,39–41,45,46,

48–53,55

Precision n= 7 25,29,34,40,41,48,55

F1 score n= 8 26,29,39,44,48,50,53,55

Positive predictive value n= 5 19,39,45,53,55

Negative predictive value n= 5 19,39,45,53,55

Net reclassification
improvement (NRI)

n= 4 35,43,44,47

Integrated discrimination
improvement (IDI)

n= 3 24,44,47

Brier score n= 2 35,44

calibration plot n= 2 30,32

Hosmer–Lemeshow test n= 1 45
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In interpreting AI-based disease risk prediction studies, it is
important to distinguish between causation and correlation.
Although AI models can identify features that are strongly
correlated with disease outcomes, these correlations do not
necessarily infer causation. To critically evaluate the interpretation
of the findings in our scoping review, we closely examined how
studies elucidated the relationship between features and T2DM.
We found that all studies emphasized the predictive nature of the
identified associations when interpreting their models and
refrained from making causal inferences based on their findings.

Reproducibility and reporting standards
Transparency and reproducibility are fundamental pillars of robust
scientific research. In the context of AI-based predictive modeling,
this involves adhering to established reporting guidelines and
making the implementation code publicly accessible. In this
review’s studies, adherence to established reporting guidelines
was not frequently mentioned. These guidelines aim to enhance
research transparency and offer a comprehensive understanding
of the methods employed and the results. Out of the 40 studies,
only three30,32,42 explicitly acknowledged their adherence to the
Transparent Reporting of a multivariable prediction model for
Individual Prognosis or Diagnosis (TRIPOD) reporting guidelines63.
This highlights the need for more transparent and rigorous

reporting, especially given the potential for such models to impact
healthcare outcomes significantly. Additionally, making imple-
mentation codes publicly accessible is crucial for reproducibility.
Of all the studies analyzed, only four29,36,38,44 made their code
publicly available, highlighting the need for improved reproduci-
bility in future research.

DISCUSSION
This scoping review has comprehensively analyzed the current
state of AI-based models for T2DM risk prediction in the published
literature. This section summarizes the key findings and outlines
potential future directions for research in this area.
A total of 40 studies were included, and the results showed

promising performance for AI models for T2DM risk prediction.
Different data modalities and modeling techniques were used to
develop these prediction models. EHR data was the most common
data type used in the included studies. This data is often used
alone or in combination with other modalities, such as multi-omics
and imaging data. Multi-omics data, including genomics and
metabolomics, were the second most used data modality, while
imaging data such as CT and retinal scans were the least
used data.

Table 6. List of reported biomarkers and risk factors.

Data type Biomarker/risk factor
category

Biomarker/risk factor Number of
studies

Study References

EHR Anthropometric measures BMI n= 13 11,20–22,26,31,32,37,38,41,42,45,55

Waist circumference (WC) n= 3 11,26,42

Biochemical markers fasting plasma glucose (FPG) n= 11 11,21,26,31,32,38,39,41,42,45,55

glycated hemoglobin (HbA1c) n= 5 11,27,31,38,55

triglycerides (TG) n= 11 11,21,26,27,29,31,38,41,42,45,55

high-density lipoprotein (HDL) n= 5 11,21,29,32,38

low-density lipoprotein (LDL) n= 2 32,38

alanine transaminase (ALT) n= 5 26,27,29,32,45

aspartate transaminase (AST) n= 2 29,45

Total cholesterol (TC) n= 3 26,27,38

Gamma-glutamyl transferase (GGT) n= 2 45,55

Sociodemographic data age n= 9 19–22,31,32,38,42,55

sex n= 4 22,42,45,55

Medical history family history of diabetes (FHD) n= 5 20,22,37,41,55

Lifestyle factors alcohol intake n= 3 20,45,55

Blood pressure Blood pressure n= 6 20–22,27,38,45

Other predictors Other risk predictorsa n= 1

Multi-omics Metabolomic biomarkers novel markers (α-tocopherol, [Hyp3]-BK, X-12063, and X-
13435) and known markers (glucose, mannose, and α-HB)

n= 1 24

PC ae C40:5 and SM (OH) C14:1 n= 1 48

ribofavin, cnidioside A, 2-methoxy-5-(1H-1, 2, 4-triazol5-yl)-
4-(trifuoromethyl) pyridine, 7-methylxanthine, and
mestranol

n= 1 46

Imaging Retinal biomarkers Retinal biomarkers such as vascular tortuosity, venous
dilatation, retinal hemorrhage, and cotton wool spots

n= 1 33

aOther risk predictors appearing only once in the final model: 2-hour postprandial plasma glucose (2h-PCPG)24, waist-to-height ratio (WHtR)24, family history of
hypertension22, smoking55, physical activity55, income20, health insurance20, occupation41, chronic liver disease27, dyslipidemia20, hypertension20–22,27,
cardiovascular disease20, obstructive sleep apnea27, hypersomnia with sleep apnea27, hyperlipidemia27, anemia27, impaired fasting glucose27, acute
bronchitis27, abnormal blood chemistry27, medications (Metformin27, antiarthritics27, nonsteroidal anti-inflammatory drugs27), serum albumin22, serum uric
acid55, serum aldosterone11, serum leptin11, hematocrit22, urea22, health insurance20, blood glucose level (BGL)37, left ventricular mass11, Mean Arterial Pressure
(MAP)41, sodium22, Inflammatory Markers (high Sensitivity C-Reactive Protein (hs-CRP)19, log(hs-CRP)19, fibrinogen19), Homeostatic Model Assessment of Insulin
Resistance (HOMA-IR)19, Change in Glucose Level From 120 to 60 Minutes After a Meal (ΔG120− 60)51, Change in Glucose Level From 30 to 0 Minutes After a
Meal (ΔG30− 0)51, Area Under the Glucose Curve From 0 to 120 Minutes After a Meal (AuG0-120)51.
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The majority of studies in our review used unimodal AI models
to predict the risk of T2DM. These studies used different AI
algorithms to develop predictive models, with classical ML models
being the most widely used, such as tree-type (DT and RF), SVM,
KNN, and ensemble learning models. Unimodal models have
shown moderate to high performance with an average AUC of
0.81. However, it’s crucial to note that determining the best-
performing model is challenging. This is because the type and
combination of input risk predictors can significantly influence the
performance. For example, the XGBoost algorithm was used in
three unimodal studies26,30,32, yielding AUC values of 0.91, 0.83,
and 0.67, respectively. Each of these studies utilized distinct
datasets with varying sample sizes and combinations of risk
predictors. This variability likely influenced the algorithm’s
performance, leading it to excel with certain combinations but
not with others. Moreover, the duration of the prediction horizon
also significantly impacts the prediction performance of the same
model. In studies that performed prediction over different time
periods20,22,45,52, we observed that the discriminatory power
decreased as the prediction horizon increased. Unimodal models,
while useful, may not capture the complexity of T2DM risk
prediction as the individual’s state is characterized by a spectrum
of data modalities, ranging from EHR and multi-omics to imaging.
Such single-modality models neglect the broader clinical context,
which inevitably diminishes their potential. On the other hand,
multimodal models have the advantage of incorporating multiple
data sources, providing a more holistic view of the individual and
potentially improving the prediction performance.
In this scoping review, a smaller proportion of the included

studies employed multimodal AI models. In these models, the
most frequently used data combinations were multi-omics
integrated with EHR, as well as imaging data paired with EHR
metadata. Notably, no study within our review integrated the
three data sources of multi-omics, imaging, and EHR into one
multimodal predictive model. These multimodal studies predomi-
nantly used two fusion strategies: early fusion and joint fusion.
Early fusion was the dominant approach for multimodal learning,
commonly combining multi-omics with EHR data. Conversely,
joint fusion was used less frequently, mainly integrating imaging
with EHR data. Regarding predictive performance, our scoping
review found that multimodal models generally outperformed
unimodal ones, with an average AUC value of 0.88. Most of the
multimodal studies compared their results with their unimodal
counterparts, demonstrating improved performance when lever-
aging multimodal data24,33–35,43,44,46,47. This finding aligns with
previous reviews on cancer research62 and cardiovascular disease
care64. A primary advantage of multimodal AI models is their
ability to identify complex interactions between various data
modalities, which may not be apparent when using a single data
modality. Therefore, they can result in more accurate risk
predictions, paving the way for personalized prevention and
management strategies to be developed for individuals at high
risk for T2DM.
However, developing multimodal models comes with chal-

lenges, such as the time-consuming nature of their development,
data concatenation, and lower scalability61. Their complex nature,
often merging multiple data sources, also complicates under-
standing the interactions among modalities and the rationale
behind predictions. Such interpretability issues could impede their
clinical adoption and represent a challenge for clinicians and
researchers who need to understand the underlying mechanisms
and reasoning behind the models’ predictions to use them in
clinical practice. Given the scarcity of multimodal AI models for
T2DM, further research is needed to investigate their use and to
identify the best data fusion strategies. Additionally, it is crucial to
focus on interpretability and explainability during their develop-
ment to facilitate their integration into clinical workflows.

Despite the promising results of AI models for T2DM risk
prediction, it is worth noting that the studies in this scoping
review showed considerable variation in the quality and
comprehensiveness of performance reporting. Adequate informa-
tion on the various dimensions of predictive performance, such as
discrimination and calibration, is crucial in determining the
effectiveness of a prediction model. However, only a limited
number of studies reported calibration measures, and many
reported only a single dimension of performance, such as the AUC
or classification measures. Uncalibrated models may have limited
applicability in practical, real-world situations65. The lack of
detailed performance reporting in the included studies presents
a challenge when determining the generalizability and practicality
of these AI models in real-world settings. Consequently, we
recommend that future studies emphasize the comprehensive
reporting of their models’ performance, including discrimination,
calibration, and classification metrics. Moreover, we recommend
standardizing evaluation metrics across studies to enable more
consistent and comprehensive comparative assessments. This can
be achieved by adopting uniform evaluation metrics across
studies to streamline comparisons. We suggest incorporating
metrics such as AUC, sensitivity, specificity, precision, F1-score, and
calibration metrics to holistically evaluate model performance.
Furthermore, algorithmic fairness should not be overlooked.
Evaluating the model’s performance across diverse demographic
groups using fairness metrics, such as demographic parity66 and
equal opportunity67, is essential. Such measures will enhance our
understanding of the validity and applicability of AI predictive
models.
Despite the advancements in the development of AI-based

prediction models for T2DM prognosis, this scoping review
identifies some barriers that hinder the progress of knowledge
and the clinical utility of these models. A predominant barrier is
the reliance of most of the included studies on the hold-out
internal validation approach. The performance estimate using this
approach can highly depend on which data points end up in the
training set and which end up in the validation set. This can lead
to high variance in the performance estimate, which can make it
difficult to assess the true performance of the model. Moreover,
hold-out validation presents a concern as it reduces the sample
size available for model development and may not utilize the data
effectively59,60. Therefore, we recommend that future studies
place greater emphasis on the method of validation of the
developed predictive models. Techniques such as cross-validation
or bootstrapping can be used for internal validation.
Another barrier is the limited external validation conducted,

with only five studies performing it. This limitation raises concerns
about the generalizability of these models, which in turn restricts
their practical implementation. This finding aligns with previous
reviews that noted a lack of external validation for prediction
models68. There is growing evidence that many areas of scientific
research are experiencing a replicability crisis, including precision
psychiatry69, genetic behavior research70, and cancer research71.
Therefore, we recommend conducting external validation and
testing of AI models in different settings and populations to
establish a robust foundation for their clinical implementation and
enhance their potential to guide T2DM prevention strategies.
Machine learning is inherently iterative; thus, the optimal

predictive model could be generated by comparing a combina-
tion of algorithms16. However, the included studies did not
frequently adopt such extensive modeling. For instance, only half
of the studies compared multiple algorithms and selected the best
one, while the others developed and tested one algorithm.
Unsupervised ML, which can reveal the inherent structures and
patterns within multidimensional data72, was also rarely utilized.
Therefore, we recommend that future research consider testing
multiple AI models to identify the most precise one.
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Interpretability and explainability methods, such as permutation
importance or Shapley values, can provide insights into which
variables significantly influence the predictions. The capability of
AI techniques to learn abstract feature representations raises
concerns about the possibility of the models relying on fake
shortcuts for predictions rather than learning clinically relevant
information. This may result in models that cannot generalize
effectively when faced with new data or exhibit discriminatory
behavior toward specific populations25,26. On the other hand, AI
models could identify clinically relevant markers, enabling
precision medicine and allowing clinicians to personalize preven-
tion strategies and therapies based on patient risk profiles.
Unfortunately, many studies in this review did not interpret the
predictions made by their model. They relied solely on
performance metrics to indicate the high performance of their
models. Understanding the reasoning behind a model’s predic-
tions is of utmost importance, especially in a clinical context. The
objective of clinical machine learning studies is not only merely
prediction but also garnering meaningful insights. Hence, there
has been a shift from focusing solely on prediction performance to
placing greater emphasis on understanding algorithm dynamics, a
notable trend in recent research73,74.
Identifying risk predictors for T2DM is vital for disease

prevention and guiding targeted interventions for at-risk indivi-
duals. However, a mere half of the studies in this review reported
the risk predictors identified by their models. Importantly, these
studies emphasized the predictive nature of the identified
associations, avoiding implying causal relationships based on
their findings. Most of them reported traditional risk predictors,
such as BMI, blood cholesterol measurements, FPG, age, FHD, and
HbA1c, which were consistent with prior research findings. With
the advancement of molecular biology and medical imaging,
several molecular markers, such as gene expression, metabolomic,
and imaging markers, have become potential predictors for T2DM.
Few multimodal studies unveiled new metabolomic and imaging
biomarkers. However, these studies did not comprehensively
report the different biomarkers of the various modalities and did
not sufficiently demonstrate the interaction and contribution of
the diverse modalities to the final prediction. Therefore, we
recommend that future multimodal studies in this field offer a
comprehensive understanding of the biomarkers from combined
modalities and elucidate the interactions and contributions of

these predictors. This approach would enhance the models’
interpretability and facilitate their application in clinical settings.
Additionally, this review highlights several methodological flaws

raised in the studies that hinder the implementation of AI in
clinical settings and precision medicine. These limitations include
small sample sizes, retrospective data, imbalanced samples, and
inadequate handling of missing data. Small sample sizes often
result in poor model fitting and generalizability, with some studies
having as few as 244 participants and fewer than 1000 in six
studies. A sizeable proportion of the studies (nearly half) did not
justify their chosen sample sizes, a factor that introduces the risk
of overfitting, particularly when complex ML models are utilized.
Moreover, in instances where sample size justifications were
provided, they were primarily based on data availability and
specific inclusion criteria. Remarkably, no studies provided
justifications for their selected sample sizes in relation to the
number of candidate predictors employed during model devel-
opment. Findings from simulation studies recommend that most
ML approaches necessitate over 200 data points associated with
the outcome for each candidate predictor to attain stable
performance and avoid overly optimistic models75. Another
methodological flaw is the limited number of investigations based
on prospective data, with most models developed retrospectively
from research datasets assembled for other purposes. Neglecting
sample imbalances often leads to biased models and misleading
performance metrics76. Additionally, the inadequate handling of
missing data can skew the results; therefore, comparing different
imputation methods should be part of the reporting process76.
Figure 3 summarizes the limitations of the included studies in
terms of data, model development, evaluation, and clinical
translation.
Our review highlights several concerns related to bias and

algorithmic fairness within the scope of the studies included.
Primarily, the variability of demographic representation across
studies is a major point of concern. For instance, some studies
showed a pronounced lack of gender balance, focusing exclu-
sively on male36 or female participants46. Others, however,
completely omitted gender information34,43,54. The demographic
restrictions often centered around specific ethnicities, like the Han
ethnicity46, or specific age groups, such as middle-aged or older
participants20,22,37,53. In addition, age representation proved to be
challenging, with some studies restricting their scope to specific

Fig. 3 Limitations in AI-based T2DM risk prediction models. The limitations encountered at different stages of AI predictive model
construction for T2DM: those associated with the underlying data, the model building and evaluation, and clinical translation.
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age groups. For instance, one study centered on individuals 65
years and older26, potentially impacting the generalizability of the
results. Therefore, this limited diversity might introduce algorith-
mic bias and undermine the generalizability of the predictive
models. Furthermore, our analysis highlighted variations in class
balance within the datasets across the studies. Some stu-
dies24,30,46,47 managed a balance between progressor and non-
progressor groups, while others35,36,45,56 did not. Using imbal-
anced datasets can introduce bias into the performance of AI
models, as they might perform well on the overrepresented class
but poorly on the underrepresented one.
Moreover, most of the studies in our review did not evaluate

their algorithms’ performance across different demographic
groups, nor did they utilize fairness metrics to assess the
disparities in predictions across these groups. The majority of
studies reported common evaluation metrics such as AUC,
precision, recall, and F1-score, but there was a significant absence
of calibration metrics in the evaluation process. The absence of
calibration assessments may inadvertently introduce a bias in the
model’s predictions, affecting its fairness. Moreover, the identified
lack of external validation also raises questions about the fairness
of the algorithms. If the training data lack diversity and do not
adequately represent the broader population, the derived
algorithm might be biased towards the specific demographics
included in the training data. This would further limit its
applicability and fairness when applied to other demographic
groups. Therefore, future research should adopt a comprehensive
approach to ensure unbiased and fair algorithm development.
Firstly, it is vital to ensure demographic representation in their
datasets, which includes gender, ethnicity, and age distribution.
Secondly, integrating appropriate evaluation metrics, including
calibration metrics and explicit fairness evaluations, is essential for
creating models to ensure accurate predictions across various
groups. External validation is another crucial aspect. It ensures that
models are robust and can generalize beyond the specific datasets
used for training, further aiding in detecting and mitigating
potential biases. Such a comprehensive approach can drive the
development of fair and unbiased AI models, which can help
prevent the exacerbation of existing health disparities and
promote equitable health outcomes77,78.
Of particular concern was the lack of adherence to established

reporting standards like the TRIPOD guidelines among the
included studies. Such approaches are designed to foster
transparency and offer a comprehensive understanding of the
methodology and results. Therefore, future studies need to
prioritize adherence to such reporting standards in order to
enhance research quality and inspire trust in AI models among
healthcare practitioners and policymakers.
It is important to note that reproducibility is a key aspect of

scientific research, and the development of AI models for T2DM
prognosis is no exception. The availability of model code and data
is an essential aspect of reproducibility, allowing other researchers
to verify and build upon the work independently. In this scoping
review, we found that most of the included studies did not report
their model’s code or data availability. This lack of reporting of
model code and data availability can impede the replication and
validation of the models, hindering research progress in this field.
Due to privacy regulations, such as the “Health Insurance
Portability and Accountability Act” (HIPAA), sharing medical data
may not be feasible. However, other measures to promote
transparency can be taken, such as requiring authors to provide
a summary of their data sample and statistical information about
the complete dataset, including the number of data points, key
variables, distribution, and class information. A more ideal solution
would be to create a synthetic dataset derived from the original
data79–81. Future studies should emphasize the availability of
model codes and data to ensure other researchers can
independently verify and replicate their findings. This would

improve research reproducibility and facilitate the validation and
implementation of the models in real-world settings.
While this scoping review provides valuable insights into the

use of AI models for T2DM risk prediction, several inherent
limitations should be considered. The literature search was
restricted to English-language studies and excluded gray litera-
ture, which may result in some studies being omitted. Never-
theless, it is unlikely that the inclusion of additional articles in the
review would have significantly impacted the findings. Secondly,
the inclusion criteria for this review were narrow, only including
studies that specifically evaluated the use of AI models for T2DM
risk prediction. As a result, this review does not capture the full
spectrum of T2DM research in conjunction with AI. In addition, as
this study’s focus was to provide a detailed profile of AI models for
T2DM risk prediction, a thorough evaluation of the individual
methodological quality of the included studies was not con-
ducted. However, insights were offered on the potential limita-
tions in methodology that may have influenced the results.
Because positive results are typically reported disproportionately,
publication bias might be another limitation of this review. This
bias may result in overestimating the benefits of AI-based models
in risk prediction. There is a significant heterogeneity among the
studies included in this review in terms of the data sources, study
populations, and evaluation metrics, making it difficult to directly
compare the results of different studies. Finally, this scoping
review only covers the current state of the use of AI models for
T2DM prognosis and does not provide a comprehensive evalua-
tion of their potential benefits. Thus, future studies are needed to
further evaluate the feasibility, accuracy, and potential benefits of
using AI models for prediction.
In conclusion, our study provides a scoping review of AI

predictive models in T2DM risk prediction. We observed an
increasing trend in the literature toward using both unimodal and
multimodal AI models. Our findings suggest that AI models have
promising potential in predicting the future development of
T2DM. While unimodal models have shown varied performance,
multimodal models demonstrated improved performance com-
pared to their unimodal counterparts. However, some challenges
and considerations need to be addressed to realize this potential.
Additionally, as with any significant medical advancement, there is
a need for thorough validation and evaluation through clinical
trials and prospective studies to verify the potential benefits
claimed by AI models. The role of AI in medicine is not
autonomous but rather a partnership between AI models and
human expertise that will drive progress in the field. Despite
limitations and challenges, it is our responsibility to capitalize on
the benefits of AI methods to accelerate the discovery and
translation of advances into clinical practice for the benefit of
patients and healthcare providers82.

METHODS
In conducting this scoping review, we followed the guidelines
recommended by the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses Extension for Scoping Reviews
(PRISMA-ScR)83, as detailed in Supplementary Table 1.

Search strategy
A systematic search was conducted across four databases,
including Scopus, PubMed, IEEE Xplore, and Google Scholar, for
studies published from January 1, 2000, to September 19, 2022. A
systematic search of MEDLINE was not undertaken since these
citations were captured in PubMed. Only the first 100 relevant
studies from Google Scholar were considered for the review, as
search results beyond this number rapidly lost relevance and were
not pertinent to the topic of the scoping review. In addition to the
database search, reference lists of the included studies were
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screened to identify additional relevant literature. Search terms
were established through literature searches and domain
expertise.
In this scoping review, we focused on studies that used AI-

based models for T2DM risk prediction using longitudinal
datasets. Therefore, our search string was constructed as follows:
((“Artificial Intelligence” OR “machine learning” OR “deep learn-
ing”) AND (“prediction” OR “prognosis”) AND (“diabetes” OR
“T2DM”) AND (“longitudinal”)). We adapted the string for each
database, using various forms of the terms. The complete search
strategy can be found in Supplementary Table 2.

Inclusion and exclusion criteria
The authorship team jointly developed the selection criterion. To
be eligible for inclusion in the review, studies had to meet the
following criteria: (1) the study used longitudinal data; (2) the
primary aim of the study was to use AI/ML algorithms to predict
the future development of T2DM (for our context, AI models
meant to be classical ML models, DL models, ensemble learning,
etc. as mentioned in the search terms listed in Supplementary
Table 2); (3) the study was conducted using human subjects;
(4) the study used any medical data including imaging, EHR, multi-
omics (we did not limit our study to one or two medical data
modalities, and we considered studies that fused different data
sources of the same type as multimodal. For instance, a study
using genomics with metabolomics was considered multimodal
under our premise); (5) only original research, peer-reviewed
studies, and conference proceedings published in English were
included.
We excluded studies that used classical statistical models, such

as regression analysis, or those focused on T2DM classification or
diagnosis using cross-sectional data. Additionally, studies related
to type 1 diabetes, gestational diabetes, or T2DM-related
complications were excluded. We also ruled out research that
utilized non-human derived data, non-English publications, review
articles, conference abstracts, proposals, editorials, commentaries,
letters to the editor, preprints, and short letter articles. All papers
underwent a two-person verification for inclusion/exclusion from
the manuscript.

Study selection and data extraction
We utilized the Rayyan web-based review management tool84 for
the screening and study selection process. One reviewer (F.M.)
conducted the literature search. After removing duplicates,
citations were screened based on their title and abstract to
exclude irrelevant studies. Full-text screening was then under-
taken to identify the final set of studies that were included for data
extraction. The study selection and data extraction processes were
conducted by two reviewers (F.M. and H.R.A.). Discrepancies were
resolved through discussion, and if consensus could not be
reached, a third author (Z.S.) was consulted.
A comprehensive data extraction form was designed to capture

essential information from the included studies. This form was
tested on five studies to ensure consistent and accurate data
extraction. The extracted information included the titles, first
author’s name, publication year, publication type, country of the
first author’s institution, study’s aim, sample size, study design,
follow-up period, participant’s demographics, methods used to
ascertain diagnoses of T2DM, and data source (public or private).
Additionally, we recorded the number of different data modalities
and their categories, such as EHR, EHR/images, or EHR/multi-
omics/images. For instance, a study that used clinical measures
(structured EHR) and retina images as inputs for the AI was
categorized as the “Imaging/EHR” subtype. We also extracted the
type of data used in each modality, such as the type of imaging or
multi-omics data.

Regarding the modeling techniques utilized in the included
studies, we gathered information on the type of AI implemented
(such as ML, DL, or a combination of both), the specific algorithm
applied, the data fusion methods used for multimodal models, the
strategies employed to manage data imbalance and missing data,
and the availability of their model-related code. Additionally, we
recorded the validation approach (internal or external), the
specifics of the internal validation, and the evaluation metrics
used. We also extracted information on the interpretability
methods that studies used to determine feature importance, as
well as any reported risk predictors. See Supplementary Table 3 for
a detailed description of the extracted data.

Data synthesis
Following data extraction, we used a narrative synthesis, aggregat-
ing insights from the data extraction form to identify the main
themes surrounding AI’s application in T2DM risk prediction. Given
the diversity in data modalities, AI methodologies, implementation
details, data sources, and evaluation techniques, our analysis
spanned multiple dimensions. Initially, we navigated through the
study characteristics, focusing on their demographic details, aims,
and design methodologies. Next, we summarized the types and
sources of data employed across studies. Delving deeper into the
technical aspects, we explored AI modeling approaches, ranging
from unimodal to multimodal. This exploration aimed to under-
stand the specific AI algorithms used and the fusion strategies
adopted to integrate multimodal data. Concurrently, our synthesis
delved into model validation methods and the reported perfor-
mance metrics. We further looked into model interpretation
methods and summarized the reported risk predictors. Concluding
our synthesis, we assessed the studies regarding code availability
and their adherence to established reporting standards.
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