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Landscape and future directions of machine learning
applications in closed-loop brain stimulation
Anirudha S. Chandrabhatla 1, I. Jonathan Pomeraniec2,3✉, Taylor M. Horgan1, Elizabeth K. Wat1 and Alexander Ksendzovsky4

Brain stimulation (BStim) encompasses multiple modalities (e.g., deep brain stimulation, responsive neurostimulation) that utilize
electrodes implanted in deep brain structures to treat neurological disorders. Currently, BStim is primarily used to treat movement
disorders such as Parkinson’s, though indications are expanding to include neuropsychiatric disorders like depression and
schizophrenia. Traditional BStim systems are “open-loop” and deliver constant electrical stimulation based on manually-determined
parameters. Advancements in BStim have enabled development of “closed-loop” systems that analyze neural biomarkers (e.g., local
field potentials in the sub-thalamic nucleus) and adjust electrical modulation in a dynamic, patient-specific, and energy efficient
manner. These closed-loop systems enable real-time, context-specific stimulation adjustment to reduce symptom burden. Machine
learning (ML) has emerged as a vital component in designing these closed-loop systems as ML models can predict / identify
presence of disease symptoms based on neural activity and adaptively learn to modulate stimulation. We queried the US National
Library of Medicine PubMed database to understand the role of ML in developing closed-loop BStim systems to treat epilepsy,
movement disorders, and neuropsychiatric disorders. Both neural and non-neural network ML algorithms have successfully been
leveraged to create closed-loop systems that perform comparably to open-loop systems. For disorders in which the underlying
neural pathophysiology is relatively well understood (e.g., Parkinson’s, essential tremor), most work has involved refining ML
models that can classify neural signals as aberrant or normal. The same is seen for epilepsy, where most current research has
focused on identifying optimal ML model design and integrating closed-loop systems into existing devices. For neuropsychiatric
disorders, where the underlying pathologic neural circuitry is still being investigated, research is focused on identifying biomarkers
(e.g., local field potentials from brain nuclei) that ML models can use to identify onset of symptoms and stratify severity of disease.
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INTRODUCTION
Brain Stimulation (BStim) is a surgical technique that uses
implantable electrodes in deep brain structures to modulate
aberrant neural circuits1. Leveraging electricity for brain lesioning
began close to a century ago, though neuromodulation to address
specific neurological diseases only started gaining traction in the
1970s. Almost 30 years later, in 1997, the Food and Drug
Administration (FDA) approved BStim for the “…suppression of
tremor due to essential tremor or Parkinson’s disease; unilateral or
bilateral”2.
The breadth of indications for BStim has increased over the past

15–20 years. While BStim is still predominately employed for
movement disorders such as Parkinson’s disease (PD) and
essential tremor (ET), novel techniques and brain targets are
enabling broader clinical indications. Increased understanding of
aberrant brain circuitry in neuropsychiatric diseases, such as
depression and compulsive disorders, also brings new or
improved targets, such as the anterior limb of the internal
capsule, sub-thalamic nucleus, globus pallidus internus, and
nucleus accumbens (Table 1)3.
Most BStim systems are “open-loop” and deliver constant

stimulation based on manual parameter adjustment4. This
technology is slowly starting to evolve into “closed-loop” systems
that analyze neural biomarkers (e.g., local field potentials) to then
automatically adjust modulation parameters in a dynamic and
patient-centric manner. Designing closed-loop systems present

unique challenges of understanding, in real-time or near real-time,
individual brain states and contexts to calculate and deliver
precise stimuli that return patients to a more functional baseline.
Due to increased reliance of closed-loop systems on larger

idiosyncratic datasets, significant research is being conducted to
apply machine learning (ML) methods to tailor BStim systems to
individual patients, thereby increasing safety and efficacy. The
current review aims to summarize the current state of ML
techniques applied for the development of closed-loop BStim
systems to treat epilepsy, movement disorders, and neuropsy-
chiatric disorders.

REVIEW OF LITERATURE
Epilepsy
Epilepsy is a relatively common neurological condition5,6 that
results in recurrent seizures. Unfortunately, initial treatment with
oral antiseizure medications is only effective for approximately
50% of patients7–9. Failure of first-line medications is managed
with second-line medication or combination therapy10. On top of
drug-related side effects (e.g., nausea, vomiting, dizziness, tremor,
confusion, and drowsiness), roughly 30–40% of patients with
epilepsy do not adequately respond to drug therapy. In those
patients, resective surgery is an option that can sometimes be
curative11, but recurrence rates can vary significantly based on the
severity of the disease and surgical technique12–17. For patients
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with drug-resistant epilepsy (DRE) who do not prefer, are not
candidates for, or have failed resective surgery, BStim can be
beneficial18.
Brain stimulation for epilepsy most commonly targets sub-

cortical structures, including the thalamic nuclei, subthalamic
nucleus, and caudate nucleus19. Reactive neurostimulation (RNS)
systems have been approved by the FDA to treat epilepsy, by
targeting foci with aberrant electrical activity. The 2010 “Stimula-
tion of the Anterior Nucleus of the Thalamus for Epilepsy” (SANTÉ)
multicenter trial demonstrated a 56% median reduction in seizure
frequency at two years after implantation of a constant / open-
loop device20. Long-term follow-up of patients from the SANTÉ
study found a median seizure frequency reduction of 75%21. In
2018, the device was approved by the FDA to treat adults with
epilepsy refractory to three or more antiseizure medications18. In
2013, the FDA approved the “RNS System” (NeuroPace RNS ®
System) as the first commercially available BStim device to treat
patients with specific types of drug-resistant, partial onset
seizures22. The device, which uses computational analysis of
intracranial electroencephalography (iEEG) to detect and treat
active seizures, reduces seizure frequencies by 44% at 1 year and
53% at 2 years post-implantation compared to baseline measure-
ments22, but with a high number of false positives (i.e., detecting a
seizure that was not occurring), resulting in unnecessary brain
stimulation and energy usage23.
Recently, researchers have leveraged ML to design closed-loop

treatments for epilepsy that can modulate stimulation based on
underlying neural activity. Support vector machines (SVM) have
been a popular algorithm used to accomplish this task (Supple-
mental Table 1), as they enable efficient high-dimensional
classification. In 2011, Kharbouch et al. trained an SVM to classify
various types of seizures based on iEEG data (Table 2). The
algorithm correctly identified seizure onset 97% of the time when
tested on roughly 900 h of iEEG recordings from 10 different
patients with focal epilepsy. This performance matches or exceeds
the seizure detection sensitivity of trained neurologists and
residents24–26. In addition, the algorithm’s detection delay was
five seconds with a false positive rate of 0.6 per 24 h27. Shoeb et al.
also leveraged SVM to detect seizures or epileptiform discharges

based on a combination of electrocardiogram (ECG) and EEG data
to direct the initiation of vagus nerve stimulation (VNS). This proof-
of-concept study reported 100% sensitivity, with one false VNS
every 2.5 h. Though VNS did not alter the electrographic duration
of seizures, stimulation did reduce epileptiform discharges once
detected28. The Shoeb study further validated SVM’s ability to
accurately detect seizures in patients, a necessary precursor for
responsive neurostimulation in a closed-loop system.
Sometimes, the optimal ML algorithm used in a closed-loop

BStim system depended on performance goals (e.g., low latency,
high accuracy) and data bandwidth (e.g., number of EEG
channels). Manzouri et al. used iEEG recordings from 10 patients
with epilepsy to compare the accuracy and energy efficiency of
SVM, Random Forest (RF), and the line-length algorithm used by
the RNS system. In single-channel classification, RF outperformed
both SVM and line length in both overall AUC (RF: 0.90; SVM: 0.88;
line length: 0.83) and AUC for early detection (detection using only
the first 10 seconds of iEEG data following seizure onset; RF: 0.83;
SVM: 0.71; line-length: 0.73). The 17 percentage point difference
between SVM’s AUC for early versus overall detection was due to
longer detection latency. In multichannel classification, SVM
outperformed RF and line length for overall AUC (RF: 0.95; SVM:
0.98; line length: 0.82), but still lagged behind RF for early
detection (RF: 0.89; SVM: 0.84; line-length: 0.71). RF appears to
outperform SVM in early seizure detection and performs
comparably in overall detection. Notably, RF-based classification
required a lower power microcontroller, thereby increasing energy
efficiency, which is an important consideration for BStim
systems29.
Other ML algorithms have been studied to automate the

detection of epileptiform discharges. Snyder et al. proposed using
the K-nearest neighbor (KNN) algorithm to classify iEEG data into
“pre-“ or “interictal” and reported 87.5–100% prediction accu-
racy30. This application of KNN was to develop a warning system
for upcoming seizures and would need to be paired with an
electrical stimulation component to function as a closed-loop
system. More recently, Constantino et al. reported using a
convolutional neural network (CNN) to analyze iEEG data recorded
from 22 patients implanted with the RNS system. Overall, the

Table 1. Potential targets for BStim by indication. Most indications have BStim targets across thalamic, sub-thalamic, and non-thalamic locations.
Most work to date has involved thalamic and sub-thalamic targets.

Indication Subset of potential targets for BStim

Thalamic Sub-thalamic Non-thalamic

Epilepsy1 Anterior nucleus
Centromedian nucleus

Subthalamic nucleus Amygdala
Hippocampus
Cerebellar hemisphere

Essential tremor2,3 Ventral intermediate nucleus
Subthalamic nucleus

Posterior subthalamic area
Zona incerta

–

Parkinson’s disease4 Ventralis intermedius nucleus Subthalamic nucleus Pedunculopontine nucleus
Globus pallidus internus

Tourette’s5,6 Centromedian-parafascicular complex – Ant. limb of internal capsule
Globus pallidus internus
Nucleus accumbens

Depression7,8 – Inferior thalamic peduncle Anterior cingulate cortex
Nucleus accumbens
Ventral capsule/ventral striatum

Schizophrenia9,10 – – Substantia nigra pars reticulata
Anterior cingulate cortex
Nucleus accumbens
Ventral capsule/ventral striatum

Obsessive-compulsive disorder11,12 – Subthalamic nucleus Ant. limb of internal capsule
Internal capsule
nucleus accumbens
Ventral capsule/ventral striatum
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model achieved an AUC of ~0.8 and a mean latency of 6.3 s, which
is comparable to expert epileptologists31. These results strongly
indicate that deep learning methods such as CNN can also be
effective in developing closed-loop systems to treat epilepsy.

Movement disorders
Parkinson’s Disease (PD). Classical motor symptoms of Parkin-
son’s disease (e.g., tremors, bradykinesia, dyskinesia, and gait
disturbance) result from aberrant dopamine signaling in the
thalamocortical network32. First-line management of PD involves
dopamine replacement therapy, including monoamine oxidase
inhibitors that reduce dopamine breakdown, dopamine agonists
that mimic endogenous dopamine, and levodopa (L-dopa), which
gets converted to dopamine systemically in the body33. BStim is
indicated for patients with medication-refractory symptoms and/
or disabling medication side effects34.
Similar to closed-loop applications for epilepsy, SVMs, and other

non-neural network ML algorithms have shown promise for use in
closed-loop systems to treat PD-associated tremors. Mohammed
et al. developed SVM and Gaussian mixture models (GMM) to: (1)
classify PD symptom severity in “on” and “off” L-dopa states using
LFPs of the STN and (2) choose appropriate stimulation for neural
modulation (Table 3). Ideal stimulation frequencies were derived
from the models’ classification probabilities. Algorithm perfor-
mance was compared using the Mathews correlation coefficient
(MCC), which measures the correlation between observed and
predicted binary classifications. MCC can be between −1 (100%
disagreement) and +1 (100% agreement), with 0 representing
random prediction. The MCC of prediction was >0.5 for SVM and
GMM for 7 out of the 9 datasets. Overall, SVM’s MCC (median of 1)
was higher than that of GMM (0.94). However, the time it took for
SVM-based modulation to control LFPs was slower, with a median
of 1.5 s (lower quartile: 1.25 s and upper quartile: 1.87 s), compared
to the GMM system, with a median of 1.25 seconds (0.25 s and
1.75 s)35. These results underscore how both system characteristics

(e.g., latency, settling time, power consumption, and biomarker
choice) and ML model characteristics (e.g., sensitivity and
specificity) must be assessed when developing closed-loop
systems, as both play roles in system performance. The
importance of careful biomarker selection was reported by Sand
et al., who trained a feed-forward neural network and SVM using
LFPs from the STNs of eight patients with PD. The models
classified LFPs as being from patients in an “on” or “off” L-dopa
state. The highest accuracy system was developed when using
SVMs trained with individualized features selected for each
patient. These individualized SVM models performed better than
models trained with a common set of features, with accuracies of
~80% and ~65%, respectively36. Interestingly, a non-deep learning
algorithm (i.e., SVM) was able to outperform a deep learning
neural network, implying that higher dimensional ML model
training is not always needed to achieve the best performance.
Another group of researchers leveraged SVM for regression

rather than classification. Ahn et al. used support vector regression
(SVR) to track a novel measure of PD symptom severity called the
“Motor Error Score” (MES), which measures the difference between
a defined motor activity and a PD patient’s execution of that
activity. SVR was trained using neural activity from the STN and
was able to predict MES with an accuracy range of 0.14–0.88,
depending on how much data was given to the model. Applying
SVR and similar techniques in this manner could help link neural
activity to PD symptom severity, thereby providing an avenue for
closed-loop BStim37. Similar regression techniques have also been
used for movement detection. Using LFPs of patients with PD who
were executing a button-pressing task, Niketeghad et al. devel-
oped a non-linear regression model that could asynchronously
detect finger movements with an AUC of 0.738. Methods similar to
this could be used to predict/detect tremors or other irregular
movements, thereby triggering neural modulation.
Non-regression methods have also shown promise for applica-

tion in movement detection for closed-loop systems. Khawaldeh
et al. trained a naïve Bayes (NB) classifier with LFP data from the

Table 2. Studies assessing the use of ML to develop closed-loop systems for epilepsy. Multiple ML algorithms have been leveraged and primarily
used intracranial EEG as the data source.

Authors, year Data source Supervised, unsupervised, or
computational

Key takeaways

Snyder et al.30 Intracranial EEG Supervised KNN classified data into “preictal” or “interictal” and achieved
87.5–100% prediction sensitivity.

Karbouch
et al. (2011)

Intracranial EEG Supervised SVM detected 97% of seizures with a detection delay of 5 seconds
and a false alarm rate of 0.6/24 h.

Shoeb et al.28 ECG and EEG Supervised SVM was trained to detect epilepsy and deliver vagal nerve
stimulation. ECG data was used to detect heart rate changes that
correspond to seizure activity.

Manzouri et al.29 Intracranial EEG Supervised SVM (AUC of 0.98) outperformed random forest (0.95) and
computational line-length analysis (0.82) method used by an FDA-
approved DBS device.

Zhu et al. (2020a) Seizures- intracranial EEG,
PD-LFPs

Supervised The ResOT-PE model was able to detect seizures in patients with
epilepsy using intracranial EEG, with a model size reduction of
3.4× and extraction cost reduction of 14.6×. The model detected a
tremor in PD patients using LFPs with similar accuracy, with a
model size reduction of 10.6× and extraction cost reduction of
6.8×.

Constantino et al.,31 Intracranial EEG Supervised CNN was used to predict seizures based on EEG data generated
from an FDA-approved DBS device. The model achieved an AUC
of 0.8–0.84, comparable to expert-level accuracy.

Liu et al., 2021 CHB-MIT scalp EEG
database

Supervised The three different machine learning algorithms were able to
predict seizures from a scalp EEG database with sensitivity and
FPR for the DNN, CNN, and LSTM models were 87.36%, 96.70%,
and 97.61%, respectively.

aStudy population included patients with epilepsy or PD.
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Table 3. Studies assessing use of ML to develop closed-loop systems for PD. Multiple ML algorithms have been leveraged and have primarily used
LFPs from STN as the data source. Some solutions combine BStim systems with wearables, but most leverage BStim data alone.

Authors, year Data source Supervised, unsupervised,
or computational

Key takeaways

Shukla et al.40 sEMG of forearm
Accelerometer on finger

Supervised A neural network can predict the re-appearance of tremors in
a DBS “off” state and trigger the system to turn on. Overall
tremor prediction accuracy was ~76%.

Niketeghad
et al. (2014)

LFPs Supervised SVM had an accuracy of 73.2% in classifying between speech,
motor, and "random" tasks. A similar algorithm could be used
in a closed-loop system to identify patient behaviors to
optimize DBS parameters.

Mohammed
et al. (2015)

LFPs from STN in ON and OFF
levodopa states

Supervised Adaptive SVM (determines whether the linear, quadratic, or
cubic kernel is better for a given data set) achieved
classification accuracy >70% on 9 patients (>98% in 6 pts) in
determining PD vs. non-PD state using a combination of
electrodes.

Mamun et al. (2015) LFPs from STN or GPi Supervised Developed a new method for feature extraction to maximize
classification using LFPs. SVM and Naïve Bayes performed
comparably when classifying rest vs. movement. SVM was
better in determining the laterality of movement.

Golshan et al. (2016) LFPs from STN Supervised Multiple kernels learning SVM outperformed single kernel
SVM in classifying between button press, speech, and random
movement (accuracy of 71% vs. 66%). Signals were acquired
with a low sampling rate (10 Hz), thereby lowering
computational cost.

Islam et al.41 LFPs from STN or GPi Supervised The ensemble model of three neural networks predicted
movement with an AUC of 0.87 and laterality with an AUC
of 0.86.

Mohammed
et al. (2017)

LFPs from STN Supervised A novel dimensionality reduction technique enabled a
classification accuracy of 99.3% in identifying periods of
rigidity and bradykinesia.

Niketeghad et al.38 LFPs from STN Supervised The non-linear regression model asynchronously detected
finger movements with an AUC of 0.7.

Shah et al. (2018) LFPs from STN Supervised The LR-based classifier achieved AUC ranging from 0.67 to
0.93 in predicting resting tremors in PD patients.

Golshan et al. (2018) LFPs from STN Supervised The SVM classifier achieved an accuracy of 85% in predicting
behaviors such as "reach" and "press button" in patients on
and off PD medications.

Camara et al. (2019) LFPs from STN Supervised Recurrence networks identified the onset of non-linearities in
the STN to predict the transition between movements and
anticipate the onset of tremor.

Yao et al. (2020) LFPs from STN Supervised Kalman filtering of LFPs from STN improves the specificity of
ML algorithms in detecting PD resting tremors by 17%.

Castaño-Candamil
et al.44

Neural markers from EEG readings Supervised Patient-specific band power neural markers from EEG data
were able to better decode hand movement in PD patients
with DBS than standardized markers alone.

Kuhner et al. (2020) 3D gait data from inertial
measurement units

Supervised AdaBoost could classify movements as abnormal across
patients with PD and normal subjects. Data from the foot and
lower leg segments were most useful in classifying abnormal
movements, and variability of smoothness (e.g., jerk of
movement) was the most useful feature in classification.

Golshan et al. (2020) LFPs from STN Supervised A deep CNN-based model was 88% accurate in classifying
actions (e.g., reach, press, and speech) in PD patients and used
fewer input parameters compared to other models in the
literature.

LeMoyne
et al. (2020)

Inertia sensor (BioStamp nPoint)
on dorsum of hand

Supervised A neural network used data from the BioStamp nPoint inertia
monitoring device and achieved 95% accuracy in
distinguishing between various DBS amplitude settings.

Mohammed et al.35 LFPs from STN Supervised SVM performed better than a Gaussian Mixture Model in
classifying patients in PD versus non-PD and quantifying
symptom severity in the PD group. Both models suppressed
PD symptoms in 7/9 cases in under 2 s.

Ahn et al.37 Neural activity from STN Supervised Support vector regression was able to track a PD symptom
severity metric even at a one-second timescale.
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STN of patients with PD as they executed upper and lower limb
movements39. When patients knew the action ahead of time, the
NB algorithm had an AUC of 0.8 in predicting movements before a
cue to move was given. Specifically, activity in the alpha and beta
frequency bands contributed significantly to the algorithm’s
prediction accuracy. Similar algorithms could be used to predict
abnormal movements and deliver prophylactic neural modulation.
The performance of the artificial neural network-based closed-

loop systems to treat PD somewhat lags that of non-neural network-
based systems. Shukla et al. developed a feedforward neural
network that used sEMG of the forearm and accelerometer data
from fingertips to predict the re-emergence of tremors following the
removal of stimulation, but before patients experienced discomfort.
Spectral characteristics of the sEMG and accelerometer data were
used as inputs to the model, resulting in an accuracy of ~76% and
sensitivity of ~92% in predicting tremor re-emergence40. Other
researchers have developed artificial neural networks that use LFPs
to make predictions. Islam et al. developed an ensemble model
comprised of (1) standard feedforward neural network, (2) a radial
basis function neural network, and (3) a probabilistic neural network
to first differentiate movement from resting state and then decode
laterality in patients with PD or dystonia. Spectral features of LFP
data from the STN or globus pallidus internus were used as inputs to
the networks. The model’s final classification was determined based
on majority voting among the 3 networks, resulting in an AUC of
0.87 for movement and 0.86 for laterality classification. Ensemble
model performance was superior to that of any individual neural
network41. Refining such models that differentiate PD tremors from
general movements will increase their utility in closed-loop BStim.
Efforts in this regard have used CNNs to directly analyze graphical
LFP data rather than extracting features from the data. Yao et al.
trained a CNN to detect a resting tremor in patients with PD and
reported an F1 score of ~77%. Though CNN was not the highest-
performing model tested, its performance shows promise for future
application in closed-loop systems42.

Essential tremor. Essential tremor (ET) is one of the most
common causes of action tremor, which appears with voluntary
muscle movement. While there are currently no disease-modifying
treatments available for ET, symptom management can be
achieved through the use of beta-blockers and anticonvulsants43.
Patients also self-medicate with alcohol. Closed-loop therapies are
particularly relevant for ET, since tremor almost exclusively occurs
in specific motor contexts.
Standard regression techniques have been successfully imple-

mented for the closed-loop treatment of ET. Castaño-Candamil et al.
developed a linear regression model that used iEEG data from the
primary motor cortex to estimate tremors and generate neural
stimulation (Table 4). Correlations between estimated and true
tremor intensities varied from 0.21 to 0.39. The system also reduced
power consumption by 24–80% and performed better than open-
loop in 2 out of 3 sessions as assessed by the Fahn-Tolosa-Marin
rating scale used to assess tremor intensity in patients with ET44.
Many groups have used logistic instead of linear regression for ET

classification. Houston et al. leveraged logistic regression to identify

“tremor-provoking movements” based on iEEG data from the hand/
arm area of the primary motor and somatosensory cortices. Outputs
of the model were then used to influence stimulation intensity. The
model was evaluated during both a prompted movement (PM) task
comprised of movements that evoke tremor and a natural
movement task (e.g., drawing and writing). The model was 75%
accurate in the PM task and 85% accurate in the natural movement
task. Overall, this closed-loop system did not significantly improve
tremor compared to continuous stimulation, though further
validation must be conducted with increased sample sizes and data
bandwidth45. Tan et al. (2019) also used logistic regression trained
on LFP data from the ventral intermediate (ViM) thalamus to predict
postural tremors. This model had an AUC of 0.88 and detection
latency between −0.4 and +0.3 s, indicating the classifier could
predict tremor onset46.
Linear discriminant analysis (LDA) has been another popular

algorithm in closed-loop BStim for ET. Opri et al. used LDA on
spectral features from low-frequency oscillations recorded from the
primary motor cortex during voluntary movements. The lowest-
performing LDA classifier had an accuracy of ~86%, with accuracies
reaching 93% when the model was trained using three months of
data. Overall, the LDA-based closed-loop system achieved tremor
suppression comparable to continuous stimulation while reducing
the amount of stimulation delivered47. In 2021, He et al. detected
“tremor-provoking states” using ML models trained using time and
frequency domain characteristics of LFPs from the ViM thalamus.
SVM performed the best, with an accuracy of ~84% during real-time
testing, though LDA was among the top-performing algorithms. This
system reduced tremor to the level of continuous stimulation
systems but delivered ~60% less energy via stimulation48.
SVM has performed well in other attempts to create non-neural

signal-based closed-loop systems for treating ET. LeMoyne et al.
developed an SVM classifier using data from a smartphone-based
accelerometer to identify patients receiving brain stimulation. The
SVM achieved 100% accuracy using spectral tremor features from
the smartphone placed on the dorsum of patients’ hands49. Similar
classifiers that leverage tremor information from smart devices (e.g.,
phones and watches) are an alternative to neural signal-based
classifiers in creating closed-loop systems.
Non-SVM algorithms have also utilized tremor information from

wearable devices. Shukla et al. used decision trees trained on sEMG
signals from the forearm and accelerometer data from the hand. The
model used 2 consecutive decision tree classifiers. First, the model
classified whether patients were in the movement or postural (e.g.,
hands outstretched) condition. Depending on the first classification,
the model used two separate decision trees to predict whether
tremor would re-appear in a stimulation “off” state and initiated
stimulation if needed. The model achieved an accuracy of ~93%
with a ~3% false alarm rate. The predicted time of tremor re-
appearance was only ~7% different from the actual time of re-
appearance, thereby enabling the model to promptly initiate
stimulation when needed50.

Tourette’s syndrome. Tourette’s syndrome (TS) is a neurological
disorder characterized by sudden and repetitive motor and vocal

Table 3 continued

Authors, year Data source Supervised, unsupervised,
or computational

Key takeaways

Khawaldeh et al.39 LFPs from STN Supervised Naïve Bayes enabled prediction of intended movements after
patients knew the movement, but before they were cued
to move.

Sand et al.36 LFPs from STN Supervised Highest accuracy (80%) in classifying patients into an “on” or
“off” levodopa state comes from an SVM trained on features
specific to each patient. Models trained using standard beta
and gamma wave activity had accuracies of 64–66%.
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tics that likely arise due to abnormal neural signaling in the
mesolimbic pathway. Management of TS is multifaceted, including
both behavioral therapy and pharmacologic intervention with
alpha-adrenergic agonists and anti-dopaminergic medication51.
BStim is still being investigated as a treatment for TS, though the
benefit of closed-loop systems is clear, as they would enable pre-
emptive neural modulation to prevent the appearance of tics.
Initial work studying BStim to treat TS has focused on

establishing accurate biomarkers that can be used to track the
progression/severity of the disease. Marceglia et al. used LFPs
from the thalamus of patients with TS to characterize neural
activity corresponding to tics (Table 5). They report that tics are
preceded by a ~20% decrease in alpha (8–13 Hz) band activity,
followed by a ~150% increase in both LF (2–7 Hz) and alpha band
activity. Interestingly, voluntary movements follow different
patterns of neural activity. These findings could be used to

differentiate between tics and voluntary movements when
developing closed-loop systems.
Other groups have applied regression techniques on similar LFP

data to predict TS severity. Neumann et al. applied multivariate
linear regression using LFPs from pallidal and thalamic electrodes
to predict Yale Global Tic Severity Scale scores in patients with
medication-refractory TS. The regression had an r2 coefficient of
0.96, suggesting that LFP data can inform disease severity in TS.
More research is required to understand how LFP data can be
decoded to provide real-time estimates of TS manifestation and
severity.

Neuropsychiatric diseases
There is increasing evidence that neuropsychiatric diseases are
network disorders of neuronal signaling52,53. Evidence for the

Table 5. Studies assessing the use of ML to develop closed-loop systems for Tourette’s.

Authors, year Data source Supervised, unsupervised, or
computational

Key takeaways

Marceglia et al., 2018 LFPs from thalamus Computational LFPs corresponding to tics follow specific patterns (e.g., preceded
by ~20% decrease in alpha band activity) that can be used to
differentiate them from voluntary movement.

Neumann
et al., 2018

Pallidal and thalamic
beta and theta

Supervised Multivariate linear regression could predict Yale Global Tic Severity
Scale (YGTSS) scores with an r2 of 0.96.

Table 4. Studies assessing the use of ML to develop closed-loop systems for ET. Logistic regression has commonly been used when analyzing ET.
Many closed-loop systems achieved tremor suppression equivalent to traditional BStim.

Authors, year Data source Supervised, unsupervised,
or computational

Key takeaways

Shukla et al., 2014 sEMG of forearm
Accelerometer on hand

Supervised A decision tree-based algorithm predicted the
reappearance of tremor during a DBS “off” state with an
accuracy of 93%. The algorithm then switched DBS to the
“on” state.

LeMoyne et al.49 iPhone on hand Supervised SVM achieved 100% accuracy in classifying DBS “on” versus
“off” states.

Khobragade et al.,
2018a

sEMG and accelerometry signals
from the arm

Supervised The proposed algorithm achieved a maximum of 100%
sensitivity in predicting the onset of tremors after cessation
of DBS stimulation

Houston et al.45 Intracranial EEG Supervised Tremor suppression of logistic regression (LR)-based closed-
loop DBS system was comparable to continuous DBS.

Tan et al.46 LFPs from ViM thalamus Supervised LR-based closed-loop DBS system was able to predict the
occurrence of postural tremors with an AUC of 0.88.

Tan et al.46 LFP from ViM thalamus, EMG Supervised The LR model identified postural tremors and voluntary
movements during DBS surgery and after surgery,
respectively. The average sensitivity was 0.8, with a false
detection rate of 0.2.

Castaño-Candamil
et al., 2021

Intracranial EEG
IMU on the wrist

Supervised Linear regression predicted tremor intensity from EEG data
with correlations from 0.21 to 0.39. The system performed
better than continuous DBS in reducing tremors in two of
three cases.

Opri et al.47 Subdural cortical electrodes Supervised Closed-loop system based on an LDA classifier identifying
tremor-producing states achieved tremor suppression on
par with continuous DBS systems.

He et al.48 LFPs from ViM thalamus Supervised SVM had an accuracy of ~80% in detecting tremor-
provoking movement states.

Fuchs et al., 2021 A smartphone on the wrist to
measure acceleration and rotation

Supervised The model was able to successfully assess tremor severity in
patients with ET with a mean absolute error of 78% lower
than linear models and 71% lower than decision tree
models.

aStudy population included patients with ET or PD.
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network basis of depression is well known, especially with respect
to the role of GABAergic and serotonergic systems54,55, and there
is longstanding evidence regarding the role of various neuro-
transmission networks throughout the brain in the development
and progression of schizophrenia56–58. Similar data have emerged
for the network basis of obsessive–compulsive disorder59–62. As
such, these neuropsychiatric disorders could be investigated for
potential treatment with BStim. Instead of monitoring changes in
motor symptoms, treatment effectiveness needs to be assessed
with reductions in mood or psychiatric manifestations.

Depression. Depression is a complex condition with a diverse
etiology, though the neural network model of depression has
gained support through postmortem studies. Specifically, data
supports aberrant serotonergic and GABAergic circuits in multiple
locations, including the anterior cingulate, amygdala, nucleus
accumbens, and prefrontal cortex63. Initial treatment for depres-
sion is variable and can include behavioral therapy and/or
medications such as selective serotonin reuptake inhibitors64.
Given the strong evidence underlying the network disease
hypothesis of depression, BStim is being investigated as a
treatment option and has shown varying degrees of success in
targeting different parts of the brain65,66.
Research into neural biomarkers that could be used to develop

closed-loop systems for depression is relatively new. However,
research efforts have focused on developing and testing different
machine learning models based on varied training data sets (i.e.,
EEG, vitals signs from smartwatches). In 2021, Hopman et al.
evaluated multiple ML algorithms, including decision trees, SVM,
logistic regression, and NB, on their ability to predict long-term
responses to repetitive transcranial magnetic stimulation (rTMS) in
patients with medication-refractory depression (Table 6). Biomar-
kers related to functional connectivity measurements derived
from fMRI data were used to train the models. Linear SVM
displayed the best overall performance in the study, achieving
AUC greater than 0.9 and accuracies as high as 95%67. These
models, though not specifically trained on data related to BStim,
highlight the role of ML in leveraging neural biomarkers.
Shah et al. compared the efficacy of random forest, gradient

boosting, Ada boost, SVM, and other algorithms in generating
predictions of depressed mood over a 1 month time period. The
models were trained on a variety of data, including in-lab EEG
recordings, heart rate information from smartwatches, mood
ratings, stress assessments, and diet reporting from a mobile app.
When evaluated on mean absolute percentage error, an ensemble
model performed the best in a predicting mood, with an error of
29.7%. However, the best model differed for each patient,
highlighting the highly individualized nature of these predictions.
In that regard, feature importance analysis revealed variation from
patient to patient, but certain features (e.g., anxiety level, physical
activity levels, and diet logs) were often in the top 5 most
important features across all patients68.
Other groups are leveraging more traditional biomarkers to

assess their potential for informing depression severity. Uyulan
et al. developed a feedforward neural network and CNN to
diagnose depression based on EEG data. Features derived from
frequency domain analysis of EEG signals were used to train the
feedforward network, achieving accuracies between ~84 and
~96%. The CNN was a combination of the popular ResNet50
convolutional network and a long-short-term memory (LSTM)
network added to capture information in the time-dependent
EEG. This CNN achieved an accuracy of ~90%69. Movahed et al.
also developed models to analyze EEG data but focused on non-
neural network-based algorithms. The group tested SVM, logistic
regression, decision trees, NB, and other ensemble classifiers
trained using features extracted from spectral analysis of EEG data.
Overall, SVM with a radial basis kernel performed the best in
classifying patients with depression, with an average accuracy of

99% and a false discovery rate of 0.4%. NB had the lowest
classification accuracy of 87%70. Recent work by Sendi et al. has
further advanced biomarker development for depression. The
group assessed intraoperative LFPs from the subcallosal cingulate
(SCC) in patients with treatment-resistant depression undergoing
bilateral BStim and found that declines in depressive symptoms
after treatment correlated with reductions in SCC LFP beta power
(13–30 Hz)71. Further exploration of stimulation targets across
cortical and subcortical structures has shown promising results in
preliminary studies72.

Schizophrenia. Schizophrenia (SCZ) is a complex psychiatric illness
that presents with a combination of positive (e.g., hallucinations)
and negative (e.g., flat affect) symptoms that lead to severe
functional impairment. SCZ is hypothesized to arise due to improper
signaling of several neurotransmitters, including dopamine, gluta-
mate, and acetylcholine73,74. Patients with SCZ have traditionally
been managed with psychosocial interventions and antipsychotic
medications. In the past few years, more research has been
conducted to identify specific areas within the brain that could be
targeted for BStim in treating SCZ75–77. Recently, a small-scale clinical
trial showed promise for BStim in improving SCZ severity78.
However, significant work is still needed to identify neural
biomarkers and thus improve the efficacy of BStim for SCZ.
Non-neural network ML algorithms have played a large role in the

classification of SCZ. In 2021, Zhao et al. used an SVM trained on EEG
spectral features and measures of connectivity to classify patients
with SCZ and healthy controls (Table 6). The model performed well,
achieving an accuracy of 95.2%, specificity of 94.4%, and sensitivity
of 96.2%. Of note, the SVM achieved this level of performance after
using a feature set that combined two different, but complementary,
methods of analyzing neural connectivity79. Masychev et al. also
looked to differentiate SCZ from healthy controls based on EEG data
and connectivity measurements. Interestingly, three algorithms are
tied for the best performance. SVM, random forest, and Gaussian NB
all achieved an accuracy of ~92.7%. An LDA classifier achieved an
accuracy of ~90.2%80.
SVM has also been applied to differentiate between disease

severity in SCZ. Trajkovic et al. used spectral features of resting state
EEG along with measures of intrahemispheric connectivity to train
both an SVM and logistic regression classifier to differentiate
between high and low schizotypal groups as defined by the
Schizotypal Personality Questionnaire. The models achieved a
combined AUC of 0.83, implying that EEG data could be used to
assess disease severity in patients with SCZ81. Kim et al. used similar
features to train an LDA classifier combined with feature selection.
The highest classification accuracy of ~88% occurred when
classifying between high and low-severity SCZ with predominantly
positive symptoms. Classifying between high and low severity with
predominantly: (1) negative symptoms had an accuracy of ~75%,
and (2) cognitive/disorientation symptoms had an accuracy of
~78%82.

Obsessive–compulsive disorder. Obsessive–compulsive disorder
(OCD) is characterized by intrusive thoughts (obsessions) that
drive repetitive actions/rituals (compulsions). Though the specific
etiology of OCD is still being investigated, current data implicate
multiple neuronal circuits, including the cortico-striato-thalamo-
cortico and fronto-limbic circuits83. Treatment for OCD typically
involves therapy and medications (e.g., selective serotonin
reuptake inhibitors)84. Similar to depression, research on using
BStim for OCD has focused on identifying potential targets in the
brain, with most literature on the striatal region and dorsal
STN85–87. Still, ideal anatomical targets and disease biomarkers
have yet to be found.
Some researchers have used non-LFP biomarkers to classify

patients with OCD. In 2017, Takagi et al. used connectivity features
extracted from resting state fMRI to train a logistic regression-

A.S. Chandrabhatla et al.

7

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2023)    79 



Ta
bl
e
6.

St
u
d
ie
s
as
se
ss
in
g
th
e
u
ti
lit
y
o
f
va
ri
o
u
s
b
io
m
ar
ke
rs

fo
r
m
o
n
it
o
ri
n
g
n
eu

ro
p
sy
ch

ia
tr
ic

d
is
o
rd
er

sy
m
p
to
m

se
ve
ri
ty
.M

o
st

w
o
rk

h
as

fo
cu

se
d
o
n
u
si
n
g
EE

G
d
at
a,

th
o
u
g
h
so
m
e
w
o
rk

h
as

st
ar
te
d

an
al
yz
in
g
LF
Ps

as
w
el
l.

In
d
ic
at
io
n

A
u
th
o
rs
,y

ea
r

D
at
a
so
u
rc
e

Su
p
er
vi
se
d
,u

n
su
p
er
vi
se
d
,o

r
co

m
p
u
ta
ti
o
n
al

K
ey

ta
ke
aw

ay
s

D
ep

re
ss
io
n

N
eu

m
an

n
et

al
.8
7

LF
Ps

fr
o
m

th
e
st
ri
a
te
rm

in
al
is
an

d
ci
n
g
u
la
te

co
rt
ex

C
o
m
p
u
ta
ti
o
n
al

A
lp
h
a
ac
ti
vi
ty

(8
–
14

H
z)

in
th
e
b
ed

n
u
cl
eu

s
o
f
st
ri
a
te
rm

in
al
is

co
rr
el
at
ed

w
it
h
th
e
se
ve
ri
ty

o
f
d
ep

re
ss
iv
e
sy
m
p
to
m
s.

W
ic
kr
am

as
u
ri
ya

et
al
.,
20

19
Sk
in

co
n
d
u
ct
io
n

C
o
m
p
u
ta
ti
o
n
al

Sk
in

co
n
d
u
ct
io
n
ca
n
b
e
u
se
d
to

as
se
ss

sy
m
p
at
h
et
ic

ac
ti
vi
ty
,w

h
ic
h

h
as

b
ee

n
sh
o
w
n
to

b
e
ab

n
o
rm

al
in

d
ep

re
ss
io
n

H
o
p
m
an

et
al
.6
7

Fu
n
ct
io
n
al

co
n
n
ec
ti
vi
ty

fr
o
m

fM
R
I
Su

p
er
vi
se
d

SV
M

w
as

u
se
d
to

p
re
d
ic
t
lo
n
g
-t
er
m

re
sp
o
n
se
s
to

re
p
et
it
iv
e

tr
an

sc
ra
n
ia
lm

ag
n
et
ic
st
im

u
la
ti
o
n
(r
TM

S)
an

d
ac
h
ie
ve
d
ac
cu

ra
ci
es

as
h
ig
h
as

95
%
.

Sh
ah

et
al
.6
8

Sm
ar
tw

at
ch

EE
G

M
o
b
ile

ap
p

Su
p
er
vi
se
d

Th
e
en

se
m
b
le
m
o
d
el
g
en

er
at
ed

p
re
d
ic
ti
o
n
s
o
fd

ep
re
ss
ed

m
o
o
d
an

d
h
ad

an
er
ro
r
o
f
29

.7
%
.T

h
e
b
es
t
m
o
d
el

(e
.g
.,
SV

M
,r
an

d
o
m

fo
re
st
)

d
iff
er
ed

fo
r
ea
ch

p
at
ie
n
t.

U
yu

la
n
et

al
.6
9

EE
G

Su
p
er
vi
se
d

A
n
eu

ra
l
n
et
w
o
rk

ac
h
ie
ve
d
ac
cu

ra
ci
es

b
et
w
ee

n
~
84

an
d
~
96

%
,

w
h
ile

a
C
N
N

ac
h
ie
ve

d
an

ac
cu

ra
cy

o
f
~
90

%
in

d
ia
g
n
o
si
n
g

d
ep

re
ss
io
n
.

M
o
va
h
ed

et
al
.7
0

EE
G

Su
p
er
vi
se
d

SV
M

cl
as
si
fi
ed

p
at
ie
n
ts

w
it
h
d
ep

re
ss
io
n
w
it
h
an

av
er
ag

e
ac
cu

ra
cy

o
f

99
%

an
d
a
fa
ls
e
d
is
co

ve
ry

ra
te

o
f
0.
4%

.

Se
n
d
i
et

al
.7
1

LF
Ps

fr
o
m

su
b
ca
llo

sa
l

ci
n
g
u
la
te

(S
C
C
)

Su
p
er
vi
se
d

Lo
g
is
ti
c
re
g
re
ss
io
n
h
ad

an
A
U
C
o
f
0.
73

in
d
is
ti
n
g
u
is
h
in
g
b
et
w
ee

n
p
re
-a
n
d
p
o
st
-D
B
S
LF
Ps

fr
o
m

th
e
SC

C
in

p
at
ie
n
ts

w
it
h
tr
ea
tm

en
t-

re
si
st
an

t
d
ep

re
ss
io
n
.T

h
e
SC

C
LF
P
b
et
a
b
an

d
w
as

m
o
st

co
rr
el
at
ed

w
it
h
im

p
ro
ve
m
en

ts
in

cl
in
ic
al

sy
m
p
to
m
s.

Sc
h
iz
o
p
h
re
n
ia

K
im

et
al
.8
2

EE
G

Su
p
er
vi
se
d

A
n
LD

A
cl
as
si
fi
er

h
ad

an
ac
cu

ra
cy

o
f
~
88

%
w
h
en

cl
as
si
fy
in
g

b
et
w
ee

n
h
ig
h
an

d
lo
w
-s
ev
er
it
y
SC

Z
w
it
h
p
re
d
o
m
in
an

tl
y
p
o
si
ti
ve

sy
m
p
to
m
s.

Tr
aj
ko

vi
c
et

al
.8
1

EE
G

Su
p
er
vi
se
d

SV
M

an
d
lo
g
is
ti
c
re
g
re
ss
io
n
cl
as
si
fi
er

d
iff
er
en

ti
at
ed

b
et
w
ee

n
h
ig
h

an
d
lo
w

sc
h
iz
o
ty
p
al

g
ro
u
p
s
w
it
h
a
co

m
b
in
ed

A
U
C
o
f
0.
83

.

M
as
yc
h
ev

et
al
.8
0

EE
G

Su
p
er
vi
se
d

SV
M
,r
an

d
o
m

fo
re
st
,a

n
d
G
au

ss
ia
n
N
B
al
l
ac
h
ie
ve

d
an

ac
cu

ra
cy

o
f

~
92

.7
%

in
d
iff
er
en

ti
at
in
g
SC

Z
fr
o
m

h
ea
lt
h
y
co

n
tr
o
ls
.

Z
h
ao

et
al
.7
9

EE
G

Su
p
er
vi
se
d

SV
M

ac
h
ie
ve

d
an

ac
cu

ra
cy

o
f
95

.2
%

w
h
en

cl
as
si
fy
in
g
p
at
ie
n
ts

w
it
h

SC
Z
an

d
h
ea
lt
h
y
co

n
tr
o
ls
.

O
b
se
ss
iv
e–

co
m
p
u
ls
iv
e
d
is
o
rd
er

A
yd

in
et

al
.9
0

EE
G

Su
p
er
vi
se
d

SV
M

d
iff
er
en

ti
at
ed

b
et
w
ee

n
p
at
ie
n
ts
w
it
h
O
C
D
an

d
h
ea
lt
h
y
co

n
tr
o
ls

w
it
h
an

ac
cu

ra
cy

o
f
85

%
.

Ta
ka
g
i
et

al
.8
8

C
o
n
n
ec
ti
vi
ty

fr
o
m

fM
R
I

Su
p
er
vi
se
d

A
lo
g
is
ti
c
re
g
re
ss
io
n
-b
as
ed

al
g
o
ri
th
m

cl
as
si
fi
ed

O
C
D
ve
rs
u
s
h
ea
lt
h
y

co
n
tr
o
ls
w
it
h
an

A
U
C
o
f
0.
7.

R
ap

p
el

et
al
.8
5

LF
Ps

fr
o
m

ST
N

C
o
m
p
u
ta
ti
o
n
al

O
C
D

sy
m
p
to
m
s
ar
e
in
ve

rs
el
y
co

rr
el
at
ed

w
it
h
th
et
a
ac
ti
vi
ty

(6
.5
–
8
H
z)

in
th
e
ve

n
tr
al

ST
N
.

D
in
g
et

al
.,8

9
Fa
ci
al

af
fe
ct

re
co

g
n
it
io
n

Su
p
er
vi
se
d

B
o
th

g
ra
d
ie
n
t
b
o
o
st
ed

d
ec
is
io
n
tr
ee

s
an

d
SV

M
d
iff
er
en

ti
at
ed

b
et
w
ee

n
p
re
-
an

d
p
o
st
-D
B
S
ad

ju
st
m
en

t
st
at
es

w
it
h
a
m
ax
im

u
m

F1
sc
o
re

o
f
0.
76

.

Sm
it
h
et

al
.,
20

20
LF
Ps

an
d
EE

G
C
o
m
p
u
ta
ti
o
n
al

Th
e
co

n
n
ec
ti
vi
ty

b
et
w
ee

n
m
id
fr
o
n
ta
ll
o
b
e
EE

G
an

d
ve
n
tr
al

ca
p
su
le
/

ve
n
tr
al

st
ri
at
u
m

LF
Ps

co
rr
el
at
ed

w
it
h
b
as
el
in
e
an

d
p
o
st
tr
ea
tm

en
t

O
C
D

sy
m
p
to
m
s.

M
et
in

et
al
.,
20

20
Po

w
er

fe
at
u
re
s
fr
o
m

q
u
an

ti
ta
ti
ve

EE
G

Su
p
er
vi
se
d

N
eu

ra
l
n
et
w
o
rk
s
th
at

u
se
d
th
et
a
b
an

d
(4
–
7
H
z)

fe
at
u
re
s
p
re
d
ic
te
d

p
at
ie
n
t
re
sp
o
n
se

to
rT
M
S
w
it
h
80

%
ac
cu

ra
cy
.

A.S. Chandrabhatla et al.

8

npj Digital Medicine (2023)    79 Published in partnership with Seoul National University Bundang Hospital



based algorithm to classify OCD versus healthy controls (Table 6).
When tested on an external data set, the algorithm achieved an
AUC of 0.788. Another group applied gradient-boosted decision
trees and SVM on facial recordings of patients with OCD to
differentiate between pre- and post-stimulation adjustment states.
By analyzing various facial landmarks, Ding et al. found that both
gradient boosted decision trees and SVM differentiated between
pre- and post-stimulation adjustment states with a maximum
F1 score of 0.76. However, gradient-boosted decision trees utilized
fewer features to achieve the same F1 score89.
Many research groups have applied ML algorithms for EEG

analysis in the context of OCD. Aydin et al. trained an SVM using
single-channel EEG data from patients with OCD and reached a
classification accuracy of 85% when differentiating between OCD
and healthy controls90. In 2020, Metin et al. used power features
from 19 nodes in quantitative EEG as inputs to a feedforward
neural network that predicted patient response to rTMS. Using
theta band (4–7 Hz) power features as inputs to the network led to
80% accuracy. Overall, these studies show the potential of
machine learning algorithms to analyze neural data and make
predictions about disease characteristics in patients with OCD.

MACHINE LEARNING INTEGRATIONS AND FUTURE
DIRECTIONS
The literature regarding ML in closed-loop systems is relatively
new, but the research assessed here represents a strong
beginning to realizing the potential of ML applications in the
field. Certain diseases (e.g., Parkinson’s) have been studied more
compared to others (e.g., SCZ), and, in general, movement
disorders have more data regarding ML model performance
compared to neuropsychiatric disorders. Regardless, aggregated
ML model performance across studies reveals significant inter-
study variation (Fig. 1). Though the median model performance
was generally greater than 80% across most metrics, some studies
report much lower performance. Interestingly, large performance
variation is most notably seen for Parkinson’s, which is the best-
studied disease with respect to ML and closed-loop systems.
Depression had the highest median performance across metrics,
and more data is needed for essential tremor and OCD (Fig. 1).
Notably, most publications assessed here that studied neuropsy-
chiatric disorders primarily focused on biomarker evaluation and
did not study fully developed closed-loop systems. Continued
research with larger sample sizes will play a role in reducing

variability and improving model performance. Of the studies
included here, ~82% had fewer than 30 participants (Supple-
mental Fig. 1). Combining data sets across institutions, improving
post-publication data-sharing protocols, and creating data repo-
sitories could help address this issue.
As more work is done to optimize the design of ML models in

closed-loop systems, ML algorithm choice will become increas-
ingly important. With significant implications for model accuracy,
speed, and energy usage, choosing a specific ML algorithm (e.g.,
neural network vs. random forest vs SVM) for a task and dataset
can be challenging and still generally requires trial and error.
There is significant research being conducted to determine how to
best predict optimal algorithms and model parameters (e.g.,
learning rates for gradient descent)91–94. In reality, many different
ML algorithms could be effective in performing a task on a specific
dataset95,96. High throughput applications of ML have favored
using neural networks as they are able to derive complex, non-
linear relationships in a relatively efficient manner, though they
can be “black box” and lack in ease of interpretability97–99.
Convolutional neural networks have also been leveraged in
closed-loop applications, as they enable deep learning without
requiring feature engineering since image data itself (e.g., graphs
of LFPs) are used as model inputs. In addition, the use of image
data enables synthetic data enhancement to augment small
datasets. Commonly used non-neural network algorithms in the
papers analyzed here include SVM and decision trees. While
decision trees tend to overfit training data, groups have leveraged
“boosting” or “bagging” techniques to reduce bias and variance. It
is unlikely that one ML algorithm will emerge as the “best” for
closed-loop BStim applications, and, as seen here, different model
designs will have varying success for different use cases.

DISCUSSION
Machine learning is emerging as a crucial tool in the design of
closed-loop BStim systems. Researchers are creating closed-loop
systems that integrate neural and non-neural network-based
machine learning algorithms to address both established (e.g., PD)
and newer (e.g., OCD) indications. In diseases, such as PD, for
which neural pathophysiology is better understood, most research
has focused on refining algorithms to improve the classification of
neural signals as aberrant or normal and then initiate proper
stimulation, though work related to biomarker identification has
continued. In other conditions, such as many neuropsychiatric

Fig. 1 Aggregated ML model performance. aML model performance metrics were reported across 39 unique papers assessing ML in closed-
loop systems for movement disorders. The models generally exceed 80% across performance metrics. Significant variation in model
performance exists even for historically well-studied diseases such as Parkinson’s. More data is needed for essential tremors. b ML model
performance metrics reported across 17 unique papers assessing ML in closed-loop systems for neuropsychiatric disorders. The median
performance for depression and schizophrenia generally exceeds 90%. There is a lack of data on OCD. All data is shown as median (center line)
and first and third quartiles, with bars representing minimum and maximum.
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disorders, the underlying abnormal neural circuitry is still being
understood, and research efforts are primarily focused on
discovering biomarkers (e.g., LFPs from brain nuclei) to identify
the onset of disease-specific symptoms and stratify the severity of
disease. Regardless of the specific application, closed-loop
systems have promise in managing symptom severity to an
extent that medications and traditional brain stimulation are
unable to achieve.
The NeuroPace responsive neurostimulation system (RNS) was

the first FDA-approved closed-loop technology and, as such,
serves as an important case study for future development in the
field. Approved for cases of uncontrolled seizures localized to one
or two epileptogenic foci, the RNS consists of a cranially-seated
neurostimulator with leads placed at seizure foci. There have been
multiple clinical trials showcasing the efficacy of the RNS in
reducing seizure intensity and frequency23,100–102. At the 9-year
follow-up of 230 patients with the RNS, 73% of patients were
responders with a median reduction in seizure frequency of
75%102. The RNS serves as a model of comparison as the first FDA-
approved device in this field and helped establish the utility of
closed-loop systems, but also helped identify opportunities for
improvement. Specifically, future technologies building off the
RNS could reduce false positives, improve detection latency, and
increase the personalization of detection and stimulation.
BStim is following the overall trend in healthcare towards

personalized medicine. The future of neural modulation will likely
involve closed-loop systems that can predict the onset of
symptoms (e.g., tremors and hallucinations) and provide stimula-
tion tailored to ensure that patients never experience symptoms.
These closed-loop systems will also further enable understanding
of diseases in context, by helping gather data about disease
manifestations outside of healthcare settings and in naturalistic
states. This increased breadth of data collection will also allow for
self-enabled ML model improvement within and between
patients, as data from novel environments the model has not
encountered during training can be used to improve performance.
Preliminary work in this regard has been conducted on focal
epilepsy103, but more is needed across other diseases. An added
layer of complexity arises when neural stimulation is used to
attenuate both motor and non-motor symptoms. As the majority
of current BStim applications are for motor symptoms, the role of
these systems in improving non-motor or cognitive symptoms is
yet to be elucidated104. Some have found that targets traditionally
modulated to control motor symptoms may also influence non-
motor functions such as expressing vocal emotion105 and
processing facial expression106. As novel and improved targets
for modulating psychiatric symptoms emerge, BStim may need to
increase coverage within the brain, change modulation based on
symptom type, and become more individualized. Complex
neuropsychiatric disorders that are more associated with non-
motor symptoms have multiple foci of aberrant activity within the
brain, which might all need to be modulated to control symptom
severity107. This increasing coverage also compounds the poten-
tially harmful effects of false positives that lead to unnecessary
neural stimulation. Modulating non-motor symptoms of neurop-
sychiatric disorders will also require understanding variations in
neural signals causing different types of symptoms (i.e., hallucina-
tions, cognitive impairment, and flat affect) and altering stimula-
tion accordingly. Finally, with person-to-person variation in the
structure and importance of targets in neuropsychiatric disor-
ders108,109, closed-loop stimulation will require increased perso-
nalization in the form of more up-front mapping of neural circuitry
and post-implantation fine tuning110. The complexity of target
choice has recently been highlighted through RNS-mediated
treatment of idiopathic generalized epilepsy, which generally does
not have specific epileptiform foci in the brain, yet has responded
to modulation of the centromedian nucleus111,112.

Realizing a future in which closed-loop systems can be used to
treat multiple motor and non-motor indications faces three main
barriers. First is the identification of reliable biomarkers that can be
used to predict/assess when a patient is experiencing symptoms.
The majority of biomarkers identified to date have been related to
neural activity. For example, LFPs from thalamic nuclei have been
suggested to determine when a patient with PD is experiencing
tremors. These biomarkers are complementary to BStim systems,
as the electrodes implanted for stimulation can also be used to
read neural activity. In an ideal scenario, the biomarkers used to
train closed-loop systems are consistent across patients and can
be used to predict the onset of symptoms or have short enough
latency such that patients only experience symptoms for a brief
period of time before BStim has attenuated them. Before closed-
loop BStim can be a viable option for conditions like depression,
SCZ, and OCD, more research must be conducted to identify
disease-specific and sensitive biomarkers75. Even in established
use cases for BStim, continued investigation into improving the
safety of targets is needed to prevent adverse events such as
stimulation-induced cognitive impairment113. Recently, there has
been increasing attention paid to using data from fMRI/neural
connectivity studies in designing closed-loop systems. Boutet
et al. studied fMRI’s role in assessing responses to BStim in
patients with PD and reported that fMRI could be used in the
future to fine-tune stimulation settings114. Similar findings have
been reported across focal epilepsy115 and OCD116,117. The future
role of fMRI/neural connectivity in closed-loop systems will likely
be focused on operative planning and stimulation refinement.
Finally, more work is needed to understand the potential role of
biomarkers derived from wearable devices in BStim for movement
disorders. For example, accelerometer data from smartwatches
could be used in conjunction with neural signals from deep brain
structures to better inform modulation.
Closed-loop systems that use neural biomarkers to make

stimulation decisions also face the issue of stimulation response
latency. Since standard electrodes cannot sense LFPs and provide
electrical stimulation at the same time, the use of these electrodes
requires sequential steps of aberrant biomarker detection →
stimulation → response detection. This can be problematic as the
symptoms of many neurological disorders have short latency
between neural and physical manifestations. Therefore, using
traditional electrodes in closed-loop systems renders the closed-
loop system blind to variations in neural activity during
stimulation118, risking the potential for over- or under-treatment.
Bi-directional electrodes have emerged as a solution for this
problem, as they enable concurrent, real-time sensing and
stimulation. Early research in the development of such electrodes
involved determining optimal designs for filtering stimulation-
mediated electrical noise119. While this work continues, bi-
directional electrodes are becoming commercially available (e.g.,
SenSight from Medtronic), and initial testing in human120–122 and
ovine123,124 models has been promising. The ML models already
developed for closed-loop systems discussed here can eventually
be applied to these bi-directional electrodes, and the software-
hardware combination will further enable more dynamic neural
modulation. Future work in this space can focus on improving the
speed of signal-stimulation synchronization and reducing the
impact of stimulation-induced noise on signal sensing.
The third main barrier to developing clinically viable closed-

loop BStim systems is the performance of machine learning
algorithms. Machine learning-based closed-loop systems must
achieve levels of performance equivalent to or exceeding open-
loop BStim while maintaining similar or better safety profiles.
Achieving this performance goal will require developing algo-
rithms that can identify and stratify disease with a similar
proficiency to trained clinicians. While some algorithms have
reached or are approaching this level of performance, there needs
to be more consistency. Getting to this point will require further
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translational and clinical research that can aggregate and analyze
large volumes of patient data. Fortunately, multiple efforts are
being made in this regard125–128. Apart from ML-based detection
of abnormal neurological activity, closed-loop systems of the
future could also leverage ML for personalized treatment
modulation129. In this scenario, ML models would assess post-
stimulation biomarker activity (e.g., LFPs, tremor recorded from
smartwatch) and learn optimal stimulation characteristics (e.g.,
frequency, duration) for specific patients. Continued work to
address barriers involving ML model design is vital to realizing the
full therapeutic potential of what closed-loop BStim could deliver.

METHODS
A literature review was performed in three steps. First, a manual
search was conducted using PubMed with the search terms:
“machine learning AND deep brain stimulation” and “machine
learning AND (adaptive deep brain stimulation OR closed-loop deep
brain stimulation)”. Another review was conducted in PubMed and
Embase using unique Medical Subject Headings (MeSH) terms
associated with the articles from the manual search. Finally, a third
search was conducted in PubMed with the search terms “closed-
loop deep brain stimulation AND *disease name*” (e.g., “closed-loop
deep brain stimulation AND schizophrenia”). The abstracts of all
articles were reviewed to determine inclusion. Inclusion criteria
included the use of machine learning (i.e., an algorithm designed
to make predictions on new data given a set of training data),
human participants, and the study of a biomarker that could be
used for closed-loop feedback. Studies that were not original
research articles (e.g., reviews, editorials) or those that did not
specifically evaluate closed-loop systems were excluded. A total of
783 articles were evaluated, yielding 56 unique articles after
applying inclusion and exclusion criteria (Supplemental Fig. 2).
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