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Correction to: npj Digital Medicine https://doi.org/10.1038/s41746-
019-0172-3, published online 20 September 2019

In the original version of the published Article, there was a
methodological issue which affected the modeling procedure and
how the results change once the procedure is properly amended
and the corresponding computations re-run. The methodological
errors are described in detail below. For transparency, the original
figures and table have not been updated in the original version.
Additionally, the contact details for Marco Prunotto have changed
since publication and have been updated accordingly.

METHODOLOGICAL ISSUE
In the first modeling step, deep learning (DL) convolutional neural
network (CNNs), also called in this context “pillars”, are trained for
each field of view (FOV) of the color fundus photographs (CFPs).
During the training of each individual CNN, a grid search approach
with a 5-fold cross-validation (CV) scheme is used to find the
optimal tuple of learning rate for the transfer learning and for the
fine tuning phase. Given a tuple of learning rates and a split of 4
folds for training and 1 fold for testing, training is stopped at the
epoch when the area under the curve (AUC) peaks with respect to
the fold left for testing. The weights of each CNN are therefore
decided on the basis of the “testing” folds, which, in reality, is
playing the role of a parameter tuning fold.

As a consequence, the performance of the pillars, reported in
terms of mean AUC and its standard deviation over the 5 folds, is
over optimistic due to the CNNs overfitting the “test folds” at each
round of the CV scheme. The overfitting cascades into the second
modeling step involving random forest that leverage as input the
probabilities produced by the trained CNNs.

METHODOLOGICAL AMENDMENT
In this amended re-run of the modeling work, we maintain the
grid search approach of looking for the optimal tuple of learning
rates (one for transfer learning, the other for fine tuning) and the
strategy of saving the weights of a CNN at the epoch where the
AUC computed on the tuning set reaches the maximum value.

Supplementary Fig. 1 shows the nested 5-fold CV scheme adopted
for this amended re-run of the modeling work. Given a tuple of
learning rates, a fold is selected to be the test or hold-out set, i.e.,

kept unseen during training, at each of the 5 CV iterations. This
leaves 4 folds to be used for training and hyper-parameter tuning.
At this point, 4 CNNs are created by rotating each time the fold
used for hyper-parameter tuning and the triplet used for training.
This results in a total of 20 CNNs trained for each tuple of
learning rates.

Once the grid search is completed, the 5 CNNs with highest tuning
AUC are selected for a given FOV, fold and split of the training/
tuning set. Selecting more than 1 CNN allows the creation of a
more populated ensemble scheme, where there are multiple DL
models expressing an “opinion” on the DR progression of the
given CFP. The procedure is applied to each of the 7 CFP FOVs. At
this point, the first modeling step is concluded.

In the second modeling step, the trained CNNs are executed on
the respective training and tuning sets to generate the input
probabilities to train the random forest (RF) model. The training,
tuning, and testing folds used to perform the RF model are the
same used throughout the entire modeling work. A grid search
approach is used to find the optimal RF hyper-parameters. In
particular, the grid search looks for the optimal combination of the
minimum number of samples required to split an internal node,
the number of trees, whether the best splitting criterion is
provided by the Gini or the entropy index, the maximum number
of features to consider when looking for the best split, and the
minimum number of samples required to be at a leaf node.
Among all these RF instances, for a given fold and split of the
training/tuning sets, the RF model with the highest tuning AUC is
selected. Therefore, the final RF aggregation entails 20 distinct RF
instances. These RF instances are applied to the corresponding
hold-out set and the probability vectors generated for the same
hold-out by the 4 different RF instances are averaged together.
With this final probability vector, the testing AUC, sensitivity
(SENS), and specificity (SPEC) can be computed for the selected
fold. The process is then repeated over the 5 folds leading to the
mean values and the corresponding standard deviations of the
aforementioned metrics that are reported in Supplementary Table
1. Sensitivity and specificity are evaluated at Youden’s point, as
specified in the manuscript. The probabilities of the RF models
sharing the same hold-out fold are averaged together before
computing the corresponding testing metrics.

Supplementary Table 1 summarizes the modeling results and
allows to quantify the difference with the results produced by the
faulty methodology and reported by the published manuscript.
Once the described source of overfitting is removed from the
modeling procedure, the AUC drops substantially, by a value of 0.1
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approximately. The main consequence is that the overall
predictive power that can be harvested for DR progression from
baseline CFPs is considerably inferior than what was claimed on
the basis of the previous faulty results.

SECONDARY ANALYSIS
Comparison between single-FOV and 7-FOV aggregation
Table 1 reports the performance of the individual FOV-specific
CNNs (100 CNNs for each FOV, 5 repetitions × 5 folds × 4 splits
training/tuning) when applied to the hold-out folds. The final row
of Table 1 shows the pooled mean AUC and standard deviation
across the 7 FOVs for the months. The performance of the RF
aggregation reported by Supplementary Table 1 is not statistically
significant when compared to the pooled mean AUC of Table 1
(p value= 0.300 for month 6, p value= 0.227 for month 12,
p value= 0.610 for month 24).

The correct version of Table 1 appears below.

Table 1. Mean AUC and standard deviation of the individual FOV-
specific CNNs computed over the 5 hold-out sets (first 7 rows) and
corresponding pooled mean and standard deviation (last row).

Month 6 Month 12 Month 24

F1 0.512 ± 0.097 0.573 ± 0.110 0.601 ± 0.068

F2 0.486 ± 0.083 0.605 ± 0.118 0.541 ± 0.034

F3 0.473 ± 0.040 0.535 ± 0.084 0.600 ± 0.096

F4 0.514 ± 0.119 0.666 ± 0.095 0.631 ± 0.068

F5 0.621 ± 0.092 0.638 ± 0.082 0.689 ± 0.062

F6 0.562 ± 0.049 0.634 ± 0.078 0.598 ± 0.090

F7 0.500 ± 0.039 0.634 ± 0.070 0.650 ± 0.081

Mean 7-FOV 0.524 ± 0.047 0.612 ± 0.041 0.616 ± 0.043

The incorrect version of Table 1 appears below.

Month F1 F2 F3 F4 F5 F6 F7

6 0.65 ±
0.12

0.65 ±
0.11

0.63 ±
0.09

0.59 ±
0.08

0.72 ±
0.11

0.66 ±
0.14

0.69 ±
0.12

12 0.68 ±
0.04

0.62 ±
0.07

0.67 ±
0.05

0.75 ±
0.06

0.70 ±
0.04

0.72 ±
0.05

0.74 ±
0.03

24 0.69 ±
0.07

0.61 ±
0.06

0.67 ±
0.04

0.68 ±
0.05

0.70 ±
0.03

0.65 ±
0.05

0.74 ±
0.04

Comparison between central and peripheral fields
Supplementary Table 2 reports the performance of the RF
aggregation using as input only the central fields F1 and F2.
From these results, we can see that the 7-FOV RF aggregation
(Supplementary Table 1) improves the model performance
compared to leveraging only the central fields, but not in a
statistically significantly way (p value for month 6 not needed as
the AUC < 0.5, p value= 0.098 for month 12, p value= 0.194 for
month 24).

Figure 3 displays the recomputed pointwise SHAP plots for the
7-FOV RF aggregation, further confirming the fact that the
peripheral fields play an important role in the overall prediction.
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Fig. 3 Pointwise SHAP analysis for the 7-FOV RF aggregation of month 12 computed over the hold-out sets.

The correct version of Fig. 3 appears above.
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The incorrect version of Fig. 3 appears below.
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ATTRIBUTION MAPS
The recomputed attribution maps of samples drawn from the
hold-out sets do not present any qualitative difference with

respect to those computed with the faulty methodology. Some
examples for each month and FOV type are displayed in Fig. 4, as
it was done in the original manuscript.
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Fig. 4 Examples of attribution maps for each month and various
types of FOV computed on the hold-out sets.

The correct version of Fig. 4 appears above.

The incorrect version of Fig. 4 appears below.

Month 06, Field F1
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Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2020

F. Arcadu et al.

6

npj Digital Medicine (2020)   160 Seoul National University Bundang Hospital

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Author Correction: Deep learning algorithm predicts diabetic retinopathy progression in individual patients
	Methodological issue
	Methodological amendment
	Secondary analysis
	Comparison between single-FOV and 7-FOV aggregation
	Comparison between central and peripheral fields

	Attribution maps




