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The article by Rajkomar et al, “Scalable and accurate deep learning
with electronic health records” published on 8 May 2018 in npj
Digital Medicine,1 describes an effort to automate the process of
taking all the data in an EHR (Electronic Health Record) system,
including free-text notes, and transforming it into a format that
can then be fed into a deep learning algorithm for various
predictions. The authors claim that the deep learning algorithm
was able to predict 24-h mortality with an area under the receiver
operating characteristic curve (AUROC) of 95%.
An AUROC of 95% is generally viewed as good performance in

the literature, but it is unclear what it means from a clinical
perspective. The predictive algorithms in ref. 1 and others that
attempt to predict patient mortality are performing classification.
Given a population, they assign each member of the patient
population based on its characteristics; if the score is above a
threshold they classify the patient as going to die soon or at high
risk of short-term mortality. The patient population has two
subgroups, those that are actually going to die in the time window
of interest (subgroup A) and those that won’t (subgroup B). Each
subgroup has its own probability distribution for the score that a
patient in that subgroup will receive from the predictive
algorithm. If the distributions have a lot of overlap it will be
difficult to discriminate between the two with this scoring
algorithm. The interpretation of the AUROC is that it gives the
probability that a randomly selected patient from subgroup A will
have a higher score than a randomly selected patient from
subgroup B. Note that this comparison is not influenced by the
overall prevalence of subgroup A in the population. Yet, if A is a
rare event, such as the 2.3% 24-h mortality reported in ref. 1, it is
possible that the right tail of the distribution of scores for
subgroup B is of significance relative to the size of the entire
population of subgroup A.
Most non-statisticians do not understand the AUROC and thus

misinterpret it. This paper received wide coverage in the
mainstream media. For example, Tung2 described its performance
as follows: “On inpatient mortality, for example, it scored 0.95 out
of a perfect score of 1.0 compared with traditional methods, which
scored 0.86.”
This does not mean that a patient classified as going to die has

a 95% chance of dying, but that is how the public interprets the
results. We do not know what that probability is, because the
positive predictive value (PPV) has not been reported; it could in
fact be much lower because mortality is so rare in the data set.
PPV, however, takes into account the overall prevalence of the
subgroup A in the entire population.
It is becoming better accepted that AUROC is a poor standard

for evaluating discrimination power for a classifier when the data
are very imbalanced. As well described in ref. 3 and 4, the precision
recall curve (PRC), defined as a plot of sensitivity versus PPV, and
the corresponding area under the precision recall curve (AUPRC)

are much more informative of the relevant accuracy of prediction
methods than the AUROC. A recent example of applying this
approach for mortality prediction for advanced cancer patients
appears in ref. 5. The AUPRC does not have a natural interpreta-
tion, but it is clear that higher is better and each point on the PRC
provides the clinician important information about a classification
threshold: the fraction of the subgroup A patients that are
identified and the fraction of those classified as subgroup A that
are actually in subgroup A.
To illustrate the point we can conduct the following simulation

exercise. Model subgroup A’s scores are normally distributed with
mean 30 and standard deviation 10, and subgroup B's scores are
normally distributed with mean 20 and standard deviation 10. A
parameter (p) represents the fraction of the population that is
expected to be in subgroup A. For a given value of p, randomly
generate a population of patients by assigning each to subgroup
A with probability p and drawing the A and B scores from the
respective distributions. The ROC, PRC and respective areas under
each of these curves can be generated for this population. The
impact of prevalence on the performance can be shown by
varying p from 0.5 to 0.025.
The simulation model was coded and executed in Matlab. Each

simulation has a population of 1000 randomly generated samples,
and is replicated 100 times for each value of p. The resulting
average of AUROC and AUPRC is reported in Table 1. These data
show that AUROC is insensitive to prevalence, while AUPRC
declines sharply with prevalence, and the differences between
AUROC and AUPRC are small when the subgroup sizes are similar.
Therefore we cannot only rely on AUROC to evaluate the
performance of classification algorithms when trying to predict
relatively rare events. We also note that even if the algorithm in
ref. 1 delivers a PPV of, say, 40% using a particular threshold, that
could be quite informative because it is able to classify some
patients as having a 40% chance of short-term mortality in a
population with a base rate of only 2.3%. Indeed the value of this
depends on the corresponding sensitivity. The value also depends
upon something that is not discussed in ref.1 and is as yet very
poorly understood. How many of the patients classified as high
risk would not have been identified by the clinicians? Unfortu-
nately, neither AUROC nor AUPRC tells us anything about that.
Thus, I recommend that researchers report the AUPRC for their

studies involving classification to give a more realistic and less
hype-able evaluation of accuracy.

Table 1. Comparison of average AUROC and average AUPRC for
different prevalence levels

Prevalence p 0.5 0.425 0.325 0.225 0.125 0.025

Avg. AUROC 0.759 0.762 0.760 0.760 0.757 0.755

StdErr AUROC 0.001 0.002 0.002 0.002 0.002 0.005

Avg. AUPRC 0.753 0.701 0.609 0.502 0.349 0.118

StdErr AUPRC 0.002 0.002 0.003 0.003 0.004 0.005
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