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Single-cell and spatial analyses revealed
the co-location of cancer stem cells and
SPP1+macrophage in hypoxic region that
determines the poor prognosis in
hepatocellular carcinoma

Check for updates

Guangyu Fan1, Tongji Xie 1, Lin Li2, Le Tang1, Xiaohong Han3 & Yuankai Shi 1

In hepatocellular carcinoma (HCC), classical cancer stemcells (CSC)markersweresharedbynormal stem
cells, targeting which may hinder hepatic regeneration and cause liver failure. Additionally, the spatial
structureofCSCstill remainedelusive. Toaddress these limitations,weundertookacomprehensivestudy
combining single-cell data (56,022 cells from 20 samples) and spatial data (38,191 spots from eight
samples) to obtainCSCsignature anduncover its spatial structure.Utilizing theCytoTRACEalgorithm,we
discretely identifiedCSC,which displayed upregulated proliferation pathways regulated byHIF1A. ACSC
signature of 107 genes was then developed using Weighted Gene Co-expression Network Analysis
(WGCNA). Notably, HCC patients with high CSC levels exhibited an accumulation of SPP1+
macrophages (Macro_SPP1) expressing metalloproteinases (MMP9, MMP12, and MMP7) regulated by
HIF1A, suggesting a hypoxic tumor region connecting Macro_SPP1 and CSC. Both CSC and
Macro_SPP1correlatedwithworseprognosis andundesirable immunotherapy response.Spatial analysis
revealed the co-location of CSC andMacro_SPP1, with CD8 T cells excluded from the tumor region. The
co-location area and non-tumor area of boundary exhibited a high level of hypoxia, with the HAVRC2
checkpoint highly expressed.Within the co-location area, the SPP1 signaling pathwaywasmost active in
cell-cell communication, with SPP1-CD44 and SPP1-ITGA/ITGB identified as the main ligand-receptor
pairs. This study successfully constructedaCSCsignature anddemonstrated the co-locationofCSCand
Macro_SPP1 in a hypoxic region that exacerbates the tumor microenvironment in HCC.

Hepatocellular carcinoma (HCC) is the predominant subtype of primary
liver cancer and ranks as the fourth leading cause of cancer-related
mortality1. Immunotherapy has revolutionized cancer treatment, bringing
significant therapeutic advancements for HCC patients2,3. Nevertheless,
only a small proportion of patients respond to this treatment, underscoring

the necessity to identify factors hindering immune infiltration and develop
combination strategies to overcome immune resistance4.

Cancer stem cells (CSC) play a pivotal role in tumor initiation, pro-
gression, and metastasis5,6. Emerging evidence indicates that CSC can
enhance mechanisms of immune evasion and promote the expansion of
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protumorigenic immune phenotypes, revealing the elimination of CSC
clones of critical importance7,8. However, the current understanding of liver
CSChas largely beenbasedon the biology of normal stemcells9.Manyof the
identified CSC markers (CD13, CD24, EPCAM, CD44, and CD133) were
shared by normal stem cells, and thus eradication of liver CSC through
targeting thesemarkersmight result in the reductionof normal hepatic stem
cells, which might inhibit hepatic regeneration and lead to liver failure9–11.
Therefore, it is imperative to identifymarkers that are uniquely expressed in
liver CSC.

Moreover, early research on liver CSC primarily relied on identifying
markers through cell sorting and xenotransplantation in immunodeficient
mice, resulting in limited resolution and overlooking heterogeneity5. Recent
two studies have leveraged single-cell RNA sequencing (scRNA-Seq) to
characterize CSC in HCC cell lines, tumors tissues, and xenografts12,13. The
first study analyzed three established CSC markers (CD24, CD133, and
EPCAM) and found that gene signatures linked to CD133 and EPCAM are
independent predictors of HCC survival13. Another study identified one
EPCAM+ population displaying a specific oncogenic gene expression
signature12. Although valuable, these investigations primarily exploredwell-
known CSC markers, highlighting the need for a new approach to derive a
comprehensive CSC signature.

The tumormicroenvironment (TME) plays a crucial role in regulating
cancer stemness in HCC14,15. Liver CSC reside in dedicated niches where
they interact reciprocally with cells and factors in the TME to regulate
stemness. These interactions occur through diverse mechanisms, including
cell-to-cell crosstalk, secreted factors, cell-matrix interactions, and unique
biophysical properties of the niche, such as hypoxia, nutrient deprivation
(especially glucose), and extracellular matrix (ECM) remodeling14,16,17.
Furthermore, accumulating evidence suggests that specific immune cell
types are instrumental in driving CSC expansion, mediating CSC-specific
evasion of immune detection and destruction and promoting protumori-
genic immune cell activities18. Unraveling the intricate web of CSC-TME
interactions holds immense promise in deciphering the underlying
mechanisms governing cancer stemness in HCC. To address this, spatial
transcriptomics (ST) has emerged as a groundbreaking technology,
enabling researchers to examine spatial information and gene expression
profiles within tissues19,20. Leveraging ST, we can delve into the complexities
of intratumor architecture and identify microenvironmental niches intri-
cately associated with CSC. This empowers us to investigate specific loca-
tions enriched with CSC, explore the co-location of distinct TME cell
subtypes alongside CSC, and dissect intricate interactions among various
cellular components.

In this study, we developed and validated a CSC signature through de-
novo large-scale analysis of scRNA-Seq datasets, encompassing 20 samples
and 56,022 cells. We explored enriched pathways and transcription factors
(TFs) associated with CSC, investigating its adverse role in prognosis and
immunotherapy. Additionally, we observed the accumulation of SPP1+
macrophages in HCC samples with high CSC levels, revealing a hypoxic
region stimulating the interaction between CSC and SPP1+macrophages.
Furthermore, we utilized ST data from eight HCC patients to explore the
spatial structures of their co-location and the specific cell-cell commu-
nication between the two groups. Overall, our findings unveil a robust CSC
signature andprovide insights into the specific spatial structures ofCSC that
promote immune resistance.

Results
The landscape of CSC in HCC
The workflow of this study is illustrated in Fig. 1a. First, the landscape of
CSC inHCCwas investigated. A total of 45HCC samples fromGSE151530
andGSE149614 were analyzed, resulting in the identification of 81,508 cells
for single-cell analysis. The cells were categorized into six main clusters
based on curated classicalmarkers: epithelial cells, myeloid cells, fibroblasts,
endothelial cells, T cells, and B cells (Fig. 1b). The inferCNV analysis was
performed to discrete malignant cells. From the heatmap, no epithelial
subclusters showed similar copy number variation (CNV) patterns as the

spiked-in control cells, so all epithelial cells were labeled as malignant cells
(Fig. 1c). 25 samples were excluded from further analysis due to a low
number of malignant cells (n < 100), resulting a total of 56,022 cells from
20 samples for further analysis,.

To quantify the stemness level of malignant cells, the CytoTRACE
score developed by Gulati et al. was computed, which was an robust com-
putational framework for predicting differentiation states from scRNA-seq
data, based on estimating the number of expressed genes per cell and
constructing the differentiation hierarchies21. TheCytoTRACE scores range
from 0 to 1, with higher scores indicating higher stemness (lower differ-
entiation) and vice versa. The CytoTRACE score presented great hetero-
geneity in tumor cells (Fig. 1d). Malignant cells with the highest and lowest
25% CytoTRACE score were classified as CSC and non-CSC, respectively.
The presentation of CSC, non-CSC, and intermediate tumor cell popula-
tions on theUMAP plot was depicted in Fig. 1d.We calculated both the cell
number and proportion of CSC in each sample from the scRNA-seq
datasets, and the results are depicted inFigure S1A.Notably, theproportions
of CSCs exhibited variations between samples. It is crucial to note that each
sample corresponds to a specific portion of the tumor area rather than
representing the entire patient. CSC showed distinct upregulation of
proliferation-related pathways, such as the G2M checkpoint, MYC check-
point, and E2F targets (Fig. 1e). Notable changes in CSCmetabolic patterns
were also observed, with downregulation of lipid metabolism-related
pathways (fatty acid, bile acid, and steroid) and upregulation of glycolysis.
Additionally, immune-related pathways (TNFA signaling, chemokine sig-
naling, and complement) were found to be suppressed in CSC. Leveraging
the slingshot algorithm from the R package slingshot, we inferred cell
lineages and pseudotimes from single-cell gene expression data22. As
anticipated, the pseudotime trajectory corroborated the characteristics of
CSC, with CSC positioned at the beginning of the lineage and non-CSC
located at the end of the trajectory (Figure S1b).

We also examined the activity of TFs in promoting uncontrolled self-
renewal and tumor-initiating potential in CSC. Dorothea was used to
explore potential variations in regulon activity between CSC and non-CSC,
revealing distinct regulon activities23. The expression patterns of the 20most
varied TFs in cellular populations were illustrated (Fig. 1f). Upregulation of
MYC family (MYC) and E2F family (E2F4, E2F1, and E2F7) was observed
in CSC, which are key factors in cell proliferation, and differentiation24.
HIF1A, a well-known hypoxia TF, exhibited enhanced regulon activities in
CSC25. NRF1 also exhibited increased activities, which is an indispensable
redox-determining factor for mitochondrial homeostasis26.

The signature of CSC was identified using weighted gene co-
expression network analysis
We then aimed to identify the signature of CSC in HCC.We observed that
malignant cells formed distinct clusters corresponding to their sample
origin, while non-malignant cells showed no discernible variations across
patients (Fig. 2a). Interestingly, malignant cells from the same patient often
belonged to different clusters. These findings indicated the considerable
intra-patient and inter-patient heterogeneity of malignant cells. To address
the bias caused by this heterogeneity in cell selection for further weighted
gene co-expression network analysis (WGCNA) analysis, we employed the
non-parametricK-nearest neighbor (KNN) graph algorithm in theMetacell
package to divide cells into homogeneous groups27. Following quality
control, we retained 25,839 malignant cells and divided them into 320
metacells (Fig. 2b). Metacell clusters with the same color had relatively
similar expression patterns. We summarized the relationship between the
320metacells and the original sample in Figure S1c. These metacells, which
grouped cells with similar transcriptional states, can serve as building blocks
for approximating gene expression distributions in single-cell data.

Phenotype plasticity model suggests that CSCs are a dynamic sub-
population of cancer cells rather than a stable cell population.Accumulating
reports also reveal that certain cancer cells can exhibit plasticity via a
reversible transitioning between the CSC and non-CSC state, which repo-
pulates the CSC pool and enables the cells to survive therapy. Using

https://doi.org/10.1038/s41698-024-00564-3 Article

npj Precision Oncology |            (2024) 8:75 2



HNF4A
HNF1A

THAP11
MXI1

HBP1
FOXA1
KLF13
TGIF2

BHLHE40
PAX6
E2F7

AR
TFDP1
HIF1A
NFYB
NRF1

NR2C2
E2F1
MYC
E2F4

0 10

Log2FC(CSC vs nonCSC)

−3.0
0.0
3.0
6.0
9.0

Transcription Factor

a

b

c

e

f

PI3K_AKT_MTOR_SIGNALING

GLUTATHIONE METABOLISM

G2M_CHECKPOINT

DNA_REPAIR

GLYCOLYSIS

E2F_TARGETS

OXIDATIVE_PHOSPHORYLATION

SPLICEOSOME

MYC_TARGETS_V1

TNFA_SIGNALING_VIA_NFKB

COAGULATION

STEROID_HORMONE_BIOSYNTHESIS

FATTY_ACID_METABOLISM

COMPLEMENT

BILE_ACID_METABOLISM

LINOLEIC_ACID_METABOLISM

INTERFERON_GAMMA_RESPONSE

CHEMOKINE_SIGNALING_PATHWAY

down up

−5.0 −2.5 0.0 2.5 5.0
Nomalized Enrichment Score

Cancer Stem Cells 
 FDR < 0.0001

UMAP1

U
M

A
P

2

0.005

0.010

0.015

0.020

Density

CytoTRACE score

ch
r1

4
ch

r1
5

ch
r1

6

ch
r1

7

ch
r1

8
ch

r1
9

ch
r2

ch
r2

0
ch

r2
1

ch
r2

2
ch

r3

ch
r4

ch
r5

ch
r6

ch
r7

ch
r8

ch
r9

Genomic Region

ch
r1

ch
r1

0
ch

r1
1

ch
r1

2
ch

r1
3

all observation cells:

d

Fig. 1 | The landscape of cancer stem cells (CSC) in hepatocellular carcinoma
(HCC) at the single-cell level. aWorkflow depicting the study design.
b Identification of six distinct clusters inHCC samples: epithelial cells, myeloid cells,
fibroblasts, endothelial cells, T cells, and B cells. cHierarchical heatmap illustrating
large-scale copy number variations in cancer cells and spiked-in controls (fibroblasts
and endothelial cells). The green bar to the far left represents all cells used as the
observation cells, encompassing epithelial cells, spiked-in fibroblasts, and

endothelial cells within the dataset.The different colors in the top row correspond to
the 22 pairs of chromosomes on the x-axis. dUMAP plot displaying the distribution
of CytoTRACE score in malignant cells and the three cell states (CSC, non-CSC and
intermediate) (e) Bar chart showing the up-regulated and down-regulated pathways
in CSC. f Expression patterns of the 20 most varied transcription factors
(TFs) in CSC.
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WGCNA, we investigated a nuanced examination of gene expression pat-
terns along the continuum between CSC and non-CSC states. Initially, the
expression profiles of the top 5000 variable genes from the 320 metacells
were included. To construct a scale-free topology model, we set the soft
thresholding power to 9 (Fig. 2c). Afterweight-basedfiltering, we obtained a
total of 27 modules and their hierarchical cluster tree was depicted in

Fig. 2D. The epigengene adjacent heatmap depicted the intermodule cor-
relations among all modules (Fig. 2e). We then investigated the correlation
between each module and CytoTRACE score, which represented the
stemness level. Among these modules, MEturquoise (correlation = 0.9,
p = 7e−115) showed the most significant association with the CytoTRACE
score (Fig. 2f). The genes encompassed within the METurquoise module
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were found to be associated with numerous proliferation-related pathways.
These pathways include the G2M checkpoint, MYC checkpoint, and E2F
targets, all ofwhich are consistently associatedwith the features ofCSCs.We
intended to construct the tumor specific stemness features, sowe recognized
differentially expressed genes (DEGs) of tumor cells compared to other
types of stroma and immune cells (avg_logFC > 0.5, P < 0.05). By inter-
secting the marker genes of malignant cells with the genes in the MEtur-
quoise module, we identified 107 CSC-related genes, which constituted the
CSC signature (Fig. 2g, Table S1).

CSC correlated with worse prognosis and undesirable immu-
notherapy response
Subsequently, to test the reliability of our our identified CSC signature, we
calculated it as the CSC score for each malignant cell using the AUCell
algorithm28. In our discovery dataset (combined of GSE151530 and
GSE149614), the correlation between the CSC score and CytoTRACE score
reached 0.80, with a p-value < 0.0001 (Fig. 3a). To validate this correlation,
we recruited two additional single-cell datasets of HCC (GSE166635,
GSE146115), and the correlation between the two scores across two datasets
was 0.88 and 0.81, respectively (Fig. 3a). These investigations provided
evidence for the validity of the 107 WGCNA-identified genes and their
functional relevance. In addition, we incorporated two stemness-related
signatures from prominent databases (KEGG and REACTOME), which
could be found in Table S2. These gene sets were then utilized to assess and
cross-validate the identified CSC signature across three datasets. We cal-
culated the scores for these curated signatures and observed a significantly
positive correlation between each signature and our identified CSC score
across all analyzed datasets (Figure S1d).

To explore the role of CSC in bulk level, we analyzeddata from theThe
Cancer Genome Atlas (TCGA) cohort and observed significantly upregu-
lated infiltration of CSC in tumor samples compared to adjacent normal
tissues (Fig. 3b). Furthermore, the infiltration of CSC increased with
advancing stages of HCC (Fig. 3c). We also performed immunohis-
tochemistry (IHC) of five proteins (ENO1, TKT, CD63, G6PD and KRT8)
highly expressed by CSC on our in-house cohort of 32 HCC patients. We
have provided a comprehensive summary of the clinical information for
single-cell discovery cohort and our in-house cohorts in Table S3. The
clinical information incorporated age, sex, viral hepatitis status, and
pathological stage (AJCC staging system) for both cohorts. Following sta-
tistical analysis using Pearson’s Chi-squared test, no significant differences
were observed in the clinical characteristics between the two cohorts.
Consistent with these results, IHC staining confirmed their associationwith
advanced stages in this cohort (Fig. 3d and e). Moreover, HCC patients in
the TCGA cohort with higher infiltration of CSC exhibited shorter overall
survival (OS) (Fig. 3f).

Furthermore, we observed significant TME component changes rela-
ted to CSC remodeling. MacrophageM2, a subtype of immunosuppressive
myeloid cells had positive correlation with CSC (r = 0.41, p < 0.0001), while
CD8+ T cells negatively associated with CSC (r =−0.27, p < 0.0001),
indicating the potential interaction between CSC and Macrophage M2 to
impede anti-tumor cells infiltration (Fig. 3g).We incorporated STdata from
a recent study GSE238264 focused on HCC patients treated with immu-
notherapy. The dataset included samples froma clinical trial of neoadjuvant

cabozantinib (amulti-tyrosine kinase inhibitor that primarily blocksVEGF)
and nivolumab (a PD-1 inhibitor), with responders and non-responders
distinguished based on treatment outcomes. Notably, the non-responders
exhibited higher CSC scores compared to responders, strengthening our
analysis and underscoring the potential relevance of CSC in immunother-
apeutic responses (Fig. 3h). As for immunotherapy, gene set enrichment
analysis (GSEA) revealed that CSC was enriched in non-responders across
seven immunotherapy cohorts, including non-small cell lung cancer
(NSCLC), skin cutaneous melanoma (SKCM), renal cell carcinoma (RCC)
(Fig. 3i). The detailed information of immunotherapy cohorts used in our
study could be obtained from Table S4. This result provided additional
evidence supporting the adverse role of CSC in the context of
immunotherapy.

Macro_SPP1 accumulated in CSC-high group
Weproceeded to investigate the impact of CSC on the TME. TheCSC score
for each sample was defined as the mean CSC score of all malignant cells
within the sample. We have included a visualization depicting the CSC
scores per sample in Figure S2a. This plot provides a comprehensive
representation of CSC scores across various samples, enabling an overview
of the distribution and variation in cancer stemness among different sam-
ples. Based on the median CSC score of all samples, we divided the
20 samples into CSC-high and CSC-low groups. Notably, these two groups
exhibited distinct landscapes of TME components (Fig. 4a). The proportion
ofmalignant cells was significantly higher in the CSC-high group (n = 0.53)
compared to the CSC-low group (n = 0.36). Importantly, we observed a
higher infiltration of myeloid cells in the CSC-high group (n = 0.23) com-
pared to the CSC-low group (n = 0.12), while T cells exhibited greater
infiltration in the CSC-low group (n = 0.43) compared to the CSC-high
group (n = 0.15). However, there were no significant differences in the
proportions of B cells, endothelial cells, and fibroblasts between the two
groups.

The enhanced infiltration of myeloid cells in HCC patients suggests
their functional roles in promoting CSC initiation. We subsequently
focused on the alterations in the subtypes of myeloid cells between the
two groups. Initially, we divided the myeloid cells (n = 10,603) into six
subclusters, including DC, monocyte, SPP1+ macrophage (Mac-
ro_SPP1), MRC1+macrophage (Macro_MRC1), adipogenic macro-
phage (Macro_adipo), and proliferating macrophage (Macro_prolif).
The result revealed a predominant presentation of Macro_SPP1 popu-
lations in CSC-high tissues (Fig. 4b). Macro_SPP1 was reported to be
one subtype of Macrophage M229. Macro_SPP1 represents CSC-specific
macrophages and accounted for 23% of myeloid cells in CSC-high
samples, while only constituting 1.8% of myeloid cells in CSC-low tis-
sues. On the other hand, Macro_adipo, an adipogenic myeloid cell
subtype expressing lipid metabolism-related genes (ALB, APOA2,
FABP1, and APOH), showed greater infiltration in the CSC-low group,
accounting for 52.5% of myeloid cells in CSC-low samples compared to
18.8% in CSC-high tissues. We calculated the cell proportion of both
CSC and SPP1+ macrophages in each sample from the scRNA-seq
datasets. Our analysis revealed a positive correlation in cell proportion
between these two populations, further supporting the association
observed in the spatial transcriptomics data (Figure S2b).

Fig. 2 | Identification of the cancer stem cells (CSC) signature using weighted
gene co-expression network analysis (WGCNA). a UMAP plots showing the
grouping of malignant cells (left) and non-tumor cells (right) based on sample
origins, respectively. b Partitioning of 25,839 malignant cells into 320 metacells.
Metacell clusters with the same color had relatively similar expression patterns.
cConstruction of a scale-free topologymodel with a soft thresholding power set to 9.
d Hierarchical cluster tree revealing a total of 27 modules identified by WGCNA.
e The upper dendrogram plot exhibits the hierarchical clustering of modules
obtained from the clustering analysis depicted in Fig. 2d. The branches in the
dendrogram represent the grouping of modules that display positive correlation.

Meanwhile, the lower heatmap plot illustrates the adjacencies among all modules.
Each row and column in the heatmap corresponds to a specific module, denoted by
color. In the heatmap representation, the color scheme denotes the degree of adja-
cency betweenmodules. The blue color signifies low adjacency, indicating a negative
correlation, while red denotes high adjacency, indicating a positive correlation.
f Heatmap displaying the correlation of each module with the CytoTRACE score,
with the first number in each grid denoting the correlation coefficient and the second
reflecting the p-value. g Identification of 107 CSC-related genes as the signature of
CSC by intersecting the marker genes of malignant cells with the genes in the
MEturquoise module.
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Fig. 3 | Correlation of cancer stem cells (CSC) with worse prognosis and unde-
sirable immunotherapy response. a Scatter plots showing the correlation between
the identified CSC signature and CytoTRACE score in the discovery dataset and two
validation datasets (GSE166635, GSE146115). bDistribution of CSC in normal and
HCC tissues. c Distribution of CSC in early and advanced stage HCC tissues.
d Immunohistochemistry images of five proteins identified in the CSC signature
(ENO1, TKT, CD63, G6PD, andKRT8) in our cohort consisting of 32HCCpatients.
(e) Boxplots displaying the distribution of the five proteins in early and advanced

stage samples. Statistical significance (p value): ‘*’ for ‘between 0.05 and 0.01’, ‘**’ for
‘between 0.01 and 0.001’ and ‘***’ for ‘lower than 0.001’. f HCC patients in the
TCGA cohort with higher CSC infiltration exhibited shorter overall survival (OS).
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Fig. 4 | SPP1+ macrophage (Macro_SPP1) expressed metalloproteinases, and
regulated by HIF1A. a The proportion of six clusters (epithelial cells, myeloid cells,
fibroblasts, endothelial cells, T cells, and B cells) in the CSC-high and CSC-low
groups. bUMAP plots showingmyeloid cell subtypes in the CSC-high and CSC-low
groups, including DC, monocyte, Macro_SPP1, MRC1+ macrophage (Mac-
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(Macro_prolif). The red circle encompassed Macro_SPP1. c Top 5 upregulated and

downregulated genes of six subclusters. d Bar chart displaying the up-regulated and
down-regulated pathways in Macro_SPP1. e Expression patterns of the most varied
transcription factors (TFs) in Macro_SPP1. (f) Distribution of Macro_SPP1 in
normal andHCC tissues. gDistribution ofMacro_SPP1 in early and advanced stage
HCC tissues. h HCC patients with higher infiltration of Macro_SPP1 exhibited
shorter overall survival (OS). (i) The non-responders exhibited higher Macro_SPP1
compared to responders in HCC patients treated with immunotherapy.
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Macro_SPP1 expressed metalloproteinases and regulated
by HIF1A
Macro_SPP1 exhibits distinct functions compared to other myeloid sub-
types. The marker genes of Macro_SPP1 could be found in Table S5.
Notably, Macro_SPP1 demonstrates higher expression levels of metallo-
proteinases such as MMP9, MMP12, and MMP7, which are involved in
extracellularmatrix remodeling and immune response regulation30 (Fig. 4c).
In addition,Macro_SPP1 expresses chemokines like CXCL3, CCL20, CCL7
and CXCL8. The DEGs highly expressed in Macro_SPP1 are enriched in
hypoxia, ECM-receptor interactions, epithelial-mesenchymal transition
(EMT), metallopeptidase activity, KRAS signaling up, and glycolysis
(Fig. 4d).However, immune-relatedpathways, including antigenprocessing
and presentation, lymphocyte-mediated immunity, and complement acti-
vation, are significantly suppressed inMacro_SPP1. These findings suggest
that Macro_SPP1 may play a role in promoting EMT and suppressing
immune responses in HCC.

Furthermore, the activity ofMacro_SPP1 is potentially regulatedby the
transcription factor HIF1A, a key factor in the hypoxia-induced pathway25

(Fig. 4e). Another transcription factor, FOSL1, is also expressed by Mac-
ro_SPP1 and is known to regulate invasion and metastasis, linking with
EMT and cancer cell stemness31. HSF1 was able to protect cells from stress,
averting proteomic instability and repressing tumor-suppressive
amyloidogenesis32,33. These findings suggest the activation of these tran-
scription factors involved in the commitment of Macro_SPP1. Given that
bothCSCandMacro_SPP1are implicated in thehypoxia-inducedpathway,
we hypothesize the presence of a localized network within the hypoxic
region of the tumor that connects Macro_SPP1 and CSC, collaborating to
exacerbate the HCC microenvironment.

To validate the significance of Macro_SPP1 infiltration, we analyzed
data from the TCGA cohort and observed significantly upregulated infil-
tration of Macro_SPP1 in tumor samples compared to adjacent normal
tissues (Fig. 4f). The infiltration of Macro_SPP1 increased with advancing
stages of HCC (Fig. 4g). Moreover, HCC patients in the TCGA cohort with
higher infiltration of Macro_SPP1 exhibited shorter OS (Fig. 4h). Notably,
the non-responders in the immunotherapy cogort exhibited higher Mac-
ro_SPP1 compared to responders, strengthening our analysis and under-
scoring the potential relevance of Macro_SPP1 in immunotherapeutic
responses (Fig. 4i). As for immunotherapy, gene set enrichment analysis
(GSEA) revealed that Macro_SPP1 was enriched in non-responders across
six immunotherapy cohorts, including NSCLC, urothelial carcinoma (UC),
RCC and gastric cancer (GC) (Figure S2c).

Co-location of CSC and Macro_SPP1 revealed by spatial
transcriptomics
To investigate the spatial organization of CSC and Macro_SPP1, we con-
ducted spatial transcriptomics sequencing using tumor tissue sections from
eight HCC patients. We obtained transcriptomics data with a median of
4900 spots for all samples. Themedian genes per spot across all sampleswas
around 6000, and the percentage of mitochondrial genes across all samples
were below 5% (Figure S3). The detailed quality information of eight ST
samples could be found in Table S6.

Similar to the complexity encountered in single-cell data analysis,
identifying malignant cells solely based on gene expression patterns in ST
data proves challenging, especially in discerning between malignant and
normal epithelial cells. To address this complexity, we performed the
inferCNV analysis to specifically delineate malignant cells from other cell
types based on their CNV patterns.

This procedure of inferCNV analysis included two clustering phase.
Firstly, in thefirst clusteringphase,weutilized theSeurat package toperform
the pipeline of dimensionality reduction and clustering on ST data. After
running PCA dimensional reduction, KNN algorithm in the FindClusters
function of Seurat package was applied to cluster spatial spots, with .reso-
lution = 0.8.We then took the sample 1 for example. 4825 spots in sample 1
were divided into 14 distinct clusters (Fig. 5a). The “Normal score” was
calculated for each spot based on a series of immune-related signatures

encompassing pan-immune markers (PTPRC), pan-T cell markers (CD2,
CD3D, CD3E, CD3G), B cell markers (CD79A, MS4A1, CD79B), and
myeloid cell markers (CD68, CD14), representing an average value for
immune features within each spot. Cluster 8 in the first clustering analysis,
which had the highest normal score, was designated as the reference cluster
for inferCNV analysis (Fig. 5b).

Then, in the second clustering phase, hierarchical clustering based on
tree partitioning then assigned all spots excepting the reference cluster into
eight clusters based onCNVpatterns (Fig. 5c). Clusters 1, 2, and 3with high
CNV score (all above 2000), were identified as malignant clusters, while the
remaining clusters exhibited significantly lower CNV scores, all below 500
(Fig. 5d). We verified these annotations by consulting two independent
pathologists who analyzed the HE histology information. Consistent with
theCNVanalysis, clusters 1, 2, and3 corresponded to scattered tumor areas,
whereas the other clusters primarily consisted of normal hepatocytes,
fibroblasts, and mixed immune cells (Fig. 5e). This exploration confirmed
the accurate identification of tumor areas.

To assess the presence of CSC andMacro_SPP1, we scored the spots in
this sample using the signatures derived from the single-cell analysis. We
observed substantial CSC heterogeneity within the sample, which was
heavily influenced by their spatial patterns. Importantly, the CSC signature
scores were mainly detected in tumor clusters (Fig. 5f). The three tumor
clusters exhibited distinct CSC features, with cluster 3 having the highest
CSC score (Fig. 5f). CD24 and CD44, the well-known CSC markers were
highly expressed in cluster 3 (Fig. 5g). Todistinguish betweenCSCandnon-
CSC cells within cluster 3, we utilized the cell type deconvolution method
CARD from the R package CARD34. Given the variability in cell numbers
within a single spot on the 10XGenomics Visium platform (ranging from 1
to 10 cells), it became evident that each spot could comprise a mixture of
CSC, non-CSC, and the intermediate cell state. We observed the each spot
contained varying proportion of three cell types. CSC cells were scattered
throughout the tumor area rather than forming distinct clusters andmainly
co-located with non-CSC and the intermediate cell state (Figure S4a). This
pattern of scatter, coupled with the co-location feature of CSCs, likely
contributed to the observed relatively close and relatively highCSC scores in
many spots within cluster 3. The density plot of CSC score in all spots
indicates themajority of spots in cluster 3 had higher CSC scores than other
clusters and had relatively close CSC scores (Figure S4b).

We observed that Macro_SPP1 were closely situated near CSC in
cluster 3 (Fig. 5h). Additionally, Macro_SPP1 also accumulated near the
tumor boundary of cluster 3, constituting the immunosuppressive front for
CSC maintenance. Cluster 3 displayed the highest level of CSC and Mac-
ro_SPP1 (Fig. 5i). This pattern of co-localization betweenMacro_SPP1 and
CSC was consistently observed in the other seven samples as well
(Figure S4c), suggesting a physical interaction between CSC and Mac-
ro_SPP1 within the niche.

HIF1A and HAVCR2 highly expressed in the boundary of
co-location area
We then explored the phenotype of CNV clusters in sample 1. The
marker genes of six cell types (epithelial cells, myeloid cells, fibroblasts,
endothelial cells, T cells, and B cells) in the CNV clusters were displayed
in Fig. 6a. EPCAM, KRT8 and KRT19 as marker genes of epithelial cells
were highly expressed in clusters 1, 2, 3. Cluster 3 also showed high
expression of CD68 (myeloid cells marker) and PLVAP (endothelial cell
marker). Cluster 4 exhibited elevated expression of PLVAP.
Cluster 5 showed infiltration by endothelial cells marked by VWF,
myeloid cells marked by CD14, CD163 and FCGR3A, and fibroblasts
marked by DCN. Cluster 6 was characterized by T cell accumulation
(CD3D, CD3E, and TRAC) and myeloid cells (CD68), while clusters 7
and 8 were dominantly infiltrated by myeloid cells marked by CD163.
The reference cluster displaying the highest normal score, contained
immune and stromal cells such as fibroblasts (COL1A1 and COL1A2),
endothelial cells (PLVAP and PECAM1), T cells (CD3D, CD3E, and
TRAC), and B cells (MS4A1 and CD79A).
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The tumor boundary is a niche composed of malignant cells in the
outermost circle of solid tumor and non-malignant cells that are closely
adjacent in spatial architecture, bridging these distinct spatial regions. To
further elucidate the spatial architecture of CSC, we then investigated the
boundary area of cluster 3. Thenearest 3-spotwidth areanear the outermost
circle of cluster 3 was defined as its tumor boundary area, encompassing all
clusters (Figs. 6b, c). CD8A, a marker of CD8 T cells, was only expressed in
cluster 6, indicating the exclusion of anti-tumor immune cells from the
tumor region (Fig. 6d). HIF1A, a well-known hypoxia factor, was observed
in cluster 3 and its boundary clusters, highlighting the crucial role of hypoxia
in remodeling the TME of CSC25 (Fig. 6e). Notably, PDCD1, CTLA4, and
CD274, the important immunotherapy targets, showed almost no expres-
sion in all areas, while HAVCR2 exhibited significant expression in the
boundary area of cluster 3, suggesting a potential immunotherapy target35

(Fig. 6f).
Furthermore, we identified enriched pathways in tumor and non-

tumor area of the tumor boundary, which contributed to the niche. Path-
ways enriched in tumor area were mainly associated with ECM organiza-
tion, angiogenesis, cell cycle and cellmatrix adhesion (Fig. 6g). Furthermore,
we observed that hypoxia was the most enriched pathway within the co-
location area of CSC and SPP1+macrophages (Fig. 6g), signifying the sig-
nificant interplay between these elements within the hypoxic micro-
environment. This finding suggests that the co-localization ofMacro_SPP1
andCSCmayplay a role in cellmigration, adhesion, andECMorganization.
Pathways enriched in non-tumor area were mainly associated with T cell-
mediated cytotoxicity and lymphocyte-mediated immunity, chemokine
signaling, and complement. Consequently, the desmoplastic micro-
environment could potentially be regulated by the interaction betweenCSC
and Macro_SPP1, leading to the limitation of immune cell infiltration into
the tumor core.

SPP1 signaling in cell-cell communication
We further proceeded to investigate the interactions betweenMacro_SPP1
andCSCand the impact of their co-location on the boundary area. CellChat
was utilized to analyze communication interactions and identify commu-
nicating molecules at the single-cell level between CSC and other principal
cell types. Since the 10X Genomics Visium platform could accommodate
1–10 cells in one spot, it was challenging to precisely recognize the inter-
actions between Macro_SPP1 and CSC. Therefore, we first evaluated their
putative crosstalk at the single-cell level (Fig. 7a). The SPP1 signaling
pathway was observed in the communication between CSC and Mac-
ro_SPP1, where SPP1 interacted with CD44, ITGAV, ITGA5, ITGB1, and
ITGB5 on CSC. CD44 was a well-known marker of CSC, revealing its new
role in regulatingTME remodeling. LGALS9-HAVCR2was observed in the
self-communication of Macro_SPP1, which was reported to illicit immu-
nosuppression in TME35. Furthermore, MIF exhibited significantly high
activity between the two groups, being signaled by CSC to activate CD74,
CD44, andCXCR4 inMacro_SPP1.Moreover, chemokines (CCL3,CCL16,
and CCL15) released from CSC targeted CCR1 expressed in Macro_SPP1.
Taken together, these targets play important roles in immunosuppressive
reactions.

Moving forward, our focus shifted to communication in the boundary
area, with cluster 3 standing out as the most active cluster, engaged in
numerous incoming and outgoing interactions (Fig. 7b). Thus, we centered
our attention on intercellular communication between cluster 3 and all
clusters. Cluster 3 activated various signaling pathways, including SPP1,
MIF, COMPLEMENT, MK, and AGT (Fig. 7c). The SPP1 signaling path-
way exhibited the highest relative strength in all communication activities.
Cluster 3 emerged as the primary sender of the SPP1 signaling pathway,
while cluster 3, 4, 5, 6, 7, and the reference cluster within the boundary area
served as receivers and influencers of the SPP1 signaling (Fig. 7d). These
findings consistently supported our single-cell level results, demonstrating
SPP1’s interactionwithCD44, ITGAV, ITGA5, ITGB1, and ITGB5 onCSC
(Fig. 7e).Overall, these results underscore the vital role of the SPP1 signaling
in mediating interactions between Macro_SPP1 and CSC and the

consequential impact of their co-location on the boundary area. Addi-
tionally, we also observed MIF signaling pathway and chemokine-related
interactions in communicationbetween cluster3 andall clusters (Figure S5).
Notably, TGFB signalingdemonstrated activities in the self-communication
of cluster 3, suggesting immunosuppressive communication within the co-
location area (Figure S5).

Discussion
CSC have been implicated in fostering tumor progression, metastasis, and
therapy resistance, leading to an immunosuppressive TME5. However, the
investigation of CSC and their spatial organization inHCC remains limited.
In this study, we developed a reliable CSC signature using single-cell data
and intriguingly, observed the accumulationofMacro_SPP1 inproximity to
CSC in ST data. Both CSC andMacro_SPP1 were linked to worse survival,
underscoring their potential as prognostic biomarkers.Ourfindingsprovide
insights into the modulation of the TME by CSC, guiding future trials and
biomarker discovery.

At the single-cell level, we characterized the CSC signature and
elucidated their phenotype. CSC exhibited significant proliferation, with
upregulated proliferation-related pathways. Metabolically, CSC demon-
strated anaerobic glycolysis and enhanced glutathionemetabolism, awell-
known antioxidant response36,37. Reactive oxygen species resulting from
glutathione depletion hindered CSC self-renewal, promoting differ-
entiation and rendering differentiated cancer cells susceptible to
apoptosis38,39. Hypoxia could induce an increase in the expression of
transcription factors (e.g., OCT4, SOX2, c-myc, and Nanog) contributing
toCSC sustenance40,41. Hypoxia also has been linked to cisplatin resistance
through an AKT-HIF1α-PDGF-BB autocrine signaling loop and
enhanced HCC stemness and CD24+HCC cell maintenance via both
HIF1α-dependent and HIF2α-dependent mechanisms42,43. Furthermore,
DNA repair played a pivotal role in maintaining genome integrity,
enabling CSC to withstand stressful conditions44,45.

Moreover, our study explored the TMEmodulation by CSC, revealing
their impact on tumor immunity. The proximity of Macro_SPP1 to cancer
cells suggested potential juxtacrine interactions. Liver CSC, characterized by
low proteasome activity and low intracellular ROS levels, were reported to
facilitatemacrophagemigration and recruitment to the tumor site46. SPP1+
macrophages were identified as a new marker for the protumor sub-
population of monocyte-derived TAMs47. SPP1, a multifunctional secreted
phosphorylated glycoprotein, is known for its involvement in cancer cell
growth and resistance to chemoradiotherapy, inducing EMT, autophagy,
aberrant glucose metabolism, epigenetic alterations, and reduction of drug
uptake48,49. Inhibition of SPP1 in mice increased T lymphocyte infiltration,
suggesting the potential for combined anti-PD-1 therapy with SPP1 inhi-
bition in HCC clinical trials50. Macro_SPP1 exhibited elevated expression
levels of metalloproteinases, including MMP9, MMP12, and MMP7, cap-
able of degrading ECMproteins, implying their role in chemoresistance and
quiescence within the hepatic CSC niche51,52. This observation also suggests
ECM alterations in the liver CSC niche. Transcription factor HIF1A
appeared to potentially regulate both CSC and Macro_SPP1 activities,
particularly in hypoxia-induced pathways.

Additionally, we found the co-location of SPP1+macrophages and
CSC were related to poor prognosis in HCC. Unraveling the interaction
patterns between the two cell types could uncover new therapeutic targets
for the combination of CSC-based treatments. Through cell-cell commu-
nication analysis, we found SPP1-CD44 as the main ligand-receptor pair
involved in the interaction between SPP1+macrophages and CSC. Spatial
transcriptomics analysis revealed that the SPP1 signaling pathway was the
most activated interaction in the co-location area of CSC andMacro_SPP1.
Notably, SPP1-CD44 and SPP1-(ITGAV+ ITGB) were the main ligand-
receptorpairs involved in cell-cell communication.TheSPP1/CD44axishas
been linked to cancer chemoresistance in solid tumors, and itmay represent
a critical mechanism for cell-to-cell communication between cancer cells
andTAMs53,54. SPP1 facilitated cancer cell chemoresistance by activating the
CD44 receptor, and anti-SPP1 and anti-CD44 antibodies improved cancer
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cell sensitivity to cisplatin in a mouse model55. High CD44 expression has
been observed in gastric cancer stem cells, and SPP1-expressing TAMs
correlated with a worse clinical outcome in gastric cancer, suggesting the
SPP1/CD44 axis may be associated with stemness properties and resistance

to anticancer therapies. A similar significance of SPP1/CD44-related signals
has been suggested in glioma and HCC56,57.

In comparison to prior research, our study holds several strengths. It is
the first to comprehensively characterize CSC in HCC and investigate their

SPP1 − (ITGA4+ITGB1)

SPP1 − (ITGA5+ITGB1)

SPP1 − (ITGA9+ITGB1)

SPP1 − (ITGAV+ITGB1)

SPP1 − (ITGAV+ITGB3)

SPP1 − (ITGAV+ITGB5)

SPP1 − CD44

C
3 

−
>

 C
1

C
3 

−
>

 C
2

C
3 

−
>

 C
3

C
3 

−
>

 C
4

C
3 

−
>

 C
5

C
3 

−
>

 C
6

C
3 

−
>

 C
7

C
3 

−
>

 C
8

C
3 

−
>

 r
ef

er
en

ce

min

max
Commun. Prob.

p−value

p > 0.05

0.01 < p < 0.05

p < 0.01

ligand-receptor pairs in SPP1 signaling 

C1 C2

C3C4

C5
C6

C7

C8

reference

0.0000

0.0025

0.0050

0.0075

0.000 0.005 0.010 0.015 0.020

Outgoing interaction strength

In
co

m
in

g 
in

te
ra

ct
io

n 
st

re
ng

th

Count

250
500

750

1000

the role of C3 in signalling

ANGPTL4 − (ITGA5+ITGB1)
ANGPTL4 − SDC1
ANGPTL4 − SDC2
ANGPTL4 − SDC3
ANGPTL4 − SDC4

ANXA1 − FPR1
AREG − EGFR

C3 − (ITGAM+ITGB2)
C3 − (ITGAX+ITGB2)

C3 − C3AR1
CCL15 − CCR1
CCL16 − CCR1
CCL3 − CCR1

CCL3L3 − CCR1
CCL5 − CCR1

EREG − EGFR
F2 − PARD3

GDF15 − TGFBR2
HBEGF − EGFR

HC − C5AR1
LGALS9 − CD44
LGALS9 − CD45

LGALS9 − HAVCR2
MDK − (ITGA6+ITGB1)

MDK − LRP1
MDK − NCL

MDK − SDC1
MDK − SDC2
MDK − SDC4

MIF − (CD74+CD44)
MIF − (CD74+CXCR4)

NAMPT − (ITGA5+ITGB1)
NAMPT − INSR

PLG − PARD3
PROS1 − AXL

SPP1 − (ITGA5+ITGB1)
SPP1 − (ITGAV+ITGB1)
SPP1 − (ITGAV+ITGB5)

SPP1 − CD44
TNF − TNFRSF1A
TNF − TNFRSF1B

TNFSF12 − TNFRSF12A

CSC −>CSC

CSC −> Macro_SPP1

Macro_SPP1 −> CSC

Macro_SPP1 −> Macro_SPP1

min

max
Commun. Prob.

p−value

p < 0.01

cell-cell communication in single-cell level

1

SPP1 signaling pathway network

Sender

Receiver

Mediator

Influencer

C1 C2 C3 C4 C5 C6 C7 C8

re
fe

re
nc

e

R
el

at
iv

e 
st

re
ng

th

0

a

b

c

d

e

Outgoing signaling patterns

SPP1
MIF

COMPLEMENT
MK

CXCL
AGT

ANGPTL
PARs
TGFb

PERIOSTIN
PDGF

PTN
GRN

VISFATIN
GDF
GAS

SEMA3
PROS
VEGF
WNT

GALECTIN
TWEAK

CCL
ACTIVIN

HGF
NRG

CALCR
CSF
FGF

LIGHT
PSAP
BMP

ANNEXIN
BMP10

IGF
IL2

EDN
TRAIL

IL16
EGF

ANGPT
PTH

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
re

fe
re

nc
e

0
0.005
0.01

0.015
0.02

0

0.
1

0.
2

R
el

at
iv

e 
st

re
ng

th

Fig. 7 | SPP1 signaling in cell-cell communication. a The cell-cell communication
between CSC and Macro_SPP1 at the single-cell level. b The role of cluster 3 in the
cell-cell communication in the tumor boundary area of cluster 3. (c) The outgoing

pattern of the CNV clusters in the tumor boundary area of cluster 3. d The
SPP1 signaling pathway network in the tumor boundary area of cluster 3. e The
ligand-receptor pairs in SPP1 signaling pathway signaled by cluster 3 to all clusters.

https://doi.org/10.1038/s41698-024-00564-3 Article

npj Precision Oncology |            (2024) 8:75 12



spatial organization, advancing our understanding of cancer stemness.
Additionally, we identified and validated theCSC signature, facilitatingCSC
detection and targeting.Withover 80,000 cells in single-cell and eight spatial
transcriptomic samples, our study achieves both breadth and depth.
However, certain limitations must be acknowledged. The lack of
immunotherapy-treated patients in our cohort necessitates further ver-
ification of CSC’ role in immunotherapy. Comprehensive experimental
validations are also required to interpret the geneswithin the CSC signature
in the context of the immune response.

Methods
Patient samples
Formalin-fixed paraffin-embedded (FFPE) HCC samples were obtained
from 32 pre-treatment patients at the Cancer Hospital, Chinese Academy
ofMedical Science in Beijing, China. The protocol received approval from
Institut Curie’s Ethics Committee (No.23/262-4004). Written informed
consent was obtained from all patients included in this study. This work
was conducted in accordance with all relevant ethical regulations
including the Declaration of Helsinki. The American Joint Committee on
Cancer (AJCC) stage of each sample was evaluated by pathologists. There
were 16 early-stage patients (AJCC I-II) and 16 were advanced-stage
patients (AJCC III-IV). Thirty two samples were utilized for IHC, and
eight representative samples were employed for spatial transcriptomic
sequencing.

Data and materials
The single-cell data sets of GSE151530 andGSE149614 were acquired from
the Gene ExpressionOmnibus (GEO) database. The corresponding clinical
data and metadata were obtained from the original studies. In total, our
study encompassed 81,508 cells derived from 45 HCC tumor samples for
discovering analysis. In addition, we obtained another two single-cell
datasets (GSE166635, GSE146115) for validation.

For bulk-level analysis, we retrieved mRNA expression data and
clinical information for HCC patients from TCGA, accessible through
UCSC Xena (http://xena.ucsc.edu/). Additionally, we gathered data
from 13 publicly available immunotherapy cohorts from the GEO
database and original studies for further analysis (Table S2). In the case
of the immunotherapy cohorts, patients were categorized into two
groups based on their response status: complete response and partial
response as responders, and stable disease and progressive disease as
non-responders.

Dimension reduction and clustering analysis
The top 2000 most variable genes were identified using the FindVar-
iableFeatures function and subsequently employed for principal
component analysis (PCA) in Seurat package. Tomitigate batch effects
within the datasets, we applied the Harmony algorithm from the
Harmony R package before conducting the clustering analysis. Cell
subtypes were then determined using the FindNeighbors and
FindCluster functions. We used the curated markers to annotate cells:
epithelial cells (EPCAM, KRT8, KRT19), fibroblasts (COL1A1,
COL1A2, DCN), endothelial cells (PLVAP, VWF, PECAM1), T cells
(CD3D, CD3E, TRAC), B cells (MS4A1, CD79A), myeloid cells (CD14,
CD163, CD68, FCGR3A).

InferCNV for single-cell analysis
We employed the InferCNV analysis (https://github.com/broadinstitute/
InferCNV) to identify somatic large-scale chromosomal copy number
alterations in each cell. For this purpose, we selected all fibroblasts
(n = 3722) and endothelial cells (n = 4388) as spiked-in controls. To meet
thedata requirements,weprepareda rawcountsmatrix, annotationfile, and
gene/chromosome position file. Next, we created an infercnv object using
the CreateInfercnvObject function. Subsequently, the inferCNV analysis
was conducted with the default parameters (cutoff=0.1, cluster_by_-
groups=TRUE, denoise=TRUE, HMM=FALSE).

CytoTRACE score
The CytoTRACE algorithm is an unsupervised framework used to predict
relative differentiation states from single-cell transcriptomes21. It has been
validated in large-scale datasets and has shown superior performance
compared to existing computational techniques for assessing stemness. The
CytoTRACE algorithm calculates the gene expression matrix and assigns a
score to each individual cell, representing its stemness. In this study, we
utilized the R package CytoTRACE to calculate the CytoTRACE score
specifically for malignant cells. The ScanoramaCT python module was
exploited to mitigate batch effects within the datasets. The CytoTRACE
scores range from 0 to 1, with higher scores indicating higher stemness
(lower differentiation) and vice versa.

Differential expression analysis and gene set enrichment
analysis
We used FindMarkers in Seurat package with MAST differentially
expression analysis method to identify the DEGs between different groups.
It was run with cutoff logfc 0.25, only.pos =F. We used GSEA in Rpackage
fgsea todetermine the enrichmentof cancerhallmarkandBiologicalProcess
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) genesets.

Transcription factor analysis
Our objective was to investigate the unique activity of TFs in CSC. TF
activity was inferred using the Dorothea resource, which contains signed
TF-target interactions (https://saezlab.github.io/dorothea)23. To construct
TF regulons, we utilized the ‘dorothea regulon human’ wrapper function
fromthe ‘dorothea’ library and selectedhigh-confidenceTFs at levels ‘A’, ‘B’,
and ‘C’. The run_viper functionwas then employed to calculate the activities
of the regulons. In the context of single-cell data, we constructed regulons
based on the mRNA expression levels of each TF and its direct targets. We
combined the VIPER algorithm with DoRothEA using the run_viper
function to estimate TF activities from the Dorothea regulons.

Metacell analysis
For metacell analysis, we employed the R metacell package to separate
tumor cells into multiple metacells27. Initially, we excluded specific mito-
chondrial genes annotated with the prefix “MT-“, as they are commonly
associated with stressed or dying cells. Using gene count matrices, we
selected feature genes with a scaled variance (variance/mean on down-
sampled matrices) greater than 0.08. These genes were utilized to calculate
cell-to-cell similarity using Pearson correlations. We constructed balanced
K-nn similarity graphs formalignant cells, where the parameter Kwas set to
100 and limited the number of neighbors for each cell. Subsequently, we
performed resampling procedures, resampling 75% of the cells with 500
iterations, and executed coclustering graph construction with a minimum
cluster size of 50. The expression of each gene in a specific metacell was
defined as the average expression of that gene in the corresponding indi-
vidual cells. Additionally, the CytoTRACE score for each metacell was
calculated as the mean score of its constituent individual cells.

WGCNA
WGCNA was performed using the R package WGCNA to identify genes
associated with CSC58. The pickSoftThreshold function was utilized to
determine appropriateweightingparameters fornearby components,which
served as a soft threshold for network construction. Subsequently, a
weighted adjacency matrix was generated, and gene modules were con-
structed using hierarchical clustering based on the 1-Tom dissimilarity
measure of the topological overlap matrix. Finally, the correlation between
the modules and the CytoTRACE score was calculated. In our specific
analysis, the initial step involved the inclusion of expression profiles from
the top 5000 variable genes identified within the 320metacells. Hierarchical
clustering was then applied to these 5000 genes, resulting in their division
into 27 distinctmodules. Regarding the relation ofmodules to themetacells,
wefirst calculated theCytoTRACEscore for eachmetacell as themean score
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derived from its constituent individual cells. Themodule eigengene, defined
as the first principal component of the expression matrix represents the
module expressions of the module. The eigengene can be thought of as a
weighted average expression profile. Subsequently, the correlation between
the eigengene in all modules and the CytoTRACE score was determined
using a univariate regression model to assess the relationship between the
gene expression patterns within these modules and the stemness char-
acteristics represented by the CytoTRACE scores.

AUCell
Initially, for each cell, we utilized an expression matrix to compute gene
expression rankings employing the AUCell_buildRankings function,
using the default parameters provided by the package. The AUCell_cal-
cAUC function was employed to compute the area-under-the-curve
(AUC) values based on the gene expression rankings. These AUC values
essentially represent the fraction ofCSC signature genes positionedwithin
the top-ranking genes for each cell. Cells with heightened expression levels
for genes within the CSC signature were associated with correspondingly
elevated AUC values, signifying a stronger association with the CSC
characteristics.

Survival analysis
Survival analysis was conducted using the R package survival. The Cox
proportional hazardsmodelwas employed to calculate the hazard ratiowith
a reported 95% confidence interval, and Kaplan-Meier survival curves were
generated using the survfit function. The “maxstat.test” function from the R
package maxstat was employed to perform dichotomy of cell population
infiltration or gene expression by testing all potential cutting points to
identify the maximum rank statistic. Based on the selected maximum
logarithm statistics, patients were divided into two groups. The two-sided
log-rank testwas then applied to compare theKaplan-Meier survival curves.
The comparison of the percentage of patients who responded to immu-
notherapy treatment between different groups was determined using the
Chi-squared test.

IHC analysis
A total of 32 HCC samples were subjected to IHC analysis. The histologic
stage of all HCC tissues were determined by the pathology department. The
slices were then dewaxed and incubated with specific primary antibodies
(ENO1: ab227978, TKT: ab131331, CD63: ab134045, G6PD: ab133525 and
KRT8: ab53280) at 4 C overnight, followed by incubation with biotinylated
secondary antibody (Proteintech, Wuhan, China) at room temperature for
1 hour. Positive stainingwas detected usingDAB chromogenic reagent, and
each section was counterstained with hematoxylin. Each sample was
assigned a score according to the intensity of the staining (0 = no staining;
1 = weak staining; 2 = moderate staining; and 3 = strong staining) and the
proportion of stained cells (0 = 0%; 1 = 1–25%; 2 = 25–50%; 3 = 50–75%;
4 = 75–100%). The final score was calculated as the staining intensity
multiplying positive area score, ranging from 0 to 12. The IHC results of
tissues were independently reviewed by two experienced pathologists who
were blinded to the clinical parameters.

Spatial transcriptomics sequencing
Sample fixation and H&E staining. Eight FFPE human cancer tissue
blocks were obtained from patients with HCC. Five-micrometer FFPE
sections of these samples were placed on IHC slides. The slides were
then incubated at 42 °C for 2 hours and allowed to dry at room tem-
perature. Afterward, the slides were dried again for 3 hours at 60 °C.
Hematoxylin (Dako, Part number S330930-2) and Eosin (Sigma-
Aldrich, Product number HT110216) were used for H&E staining,
with the staining times adjusted according to the tissue type.
Approximately 100 µL of 85% Glycerol (Thermofisher, Catalog
number 15514011) was added, coverslips were applied, and tissue
imaging was performed. To remove the coverslips, a beaker filled with
Milli-Q water was used.

Probe hybridization. The Visium slide was placed into a cassette. 100 µL
of 0.1 NHCl (Sigma-Aldrich, Product numberH1758) was added to each
well and incubated at 42 °C for 15 minutes. The HCl was then removed,
and decrosslinking buffer was added. The slide was incubated at 95 °C for
1 hour. The Pre-hybridization step was continued according to The
Visium Spatial Gene Expression for FFPE reagent kit (10×Genomics,
User Guide CG000407 Rev C, human transcriptome Product number
1000338). 100 µL of Pre-hybridization mix was added to each well and
incubated at room temperature for 15 minutes. After incubation, the Pre-
hybridization mix was removed, and 100 µL of Hybridization mix was
added. The Visium slide was incubated with the Hybridization mix
overnight at 50 °C.

Probe ligation, probe release and extension, probe elution, and
library preparation. For the remaining steps of library preparation,
including probe ligation, probe release and extension, probe elution, and
FFPE library construction, the user guide of “Visium Spatial Gene
Expression for FFPE reagent kit” (10× Genomics, User Guide CG000407
Rev C, mouse transcriptome Product number 1000339, human tran-
scriptome Product number 1000338) was followed. The finished libraries
were sequenced on Novaseq6000 (Illumina). The length of read 1 and
read 2 were 28 base pairs and 91 base pairs, respectively.

Pathological annotations for HE images
All Visium spots in the Visium sections were annotated individually by two
pathologists, Lin Li and Tongji Xie. Using a cell-type-specific coverage
threshold of >50%, the pathologists annotated the spots according to his-
tological classes, including normal hepatocytes, tumor cells, stromal cells,
and immune cells.

Clustering analysis of spatial transcriptomics
The gene-spotmatrices generated from the ST data were analyzed using the
Seurat package inR and stlearn in Python. For stlearn, the input consisted of
the expressionmatrix of the ST data and theHE-stained histological image.
The HE-stained histological images were extracted and converted to a
resolution of 2048 pixels using ResNet, a well-established convolutional
neural networkmodel commonly used for image classification in computer
vision, and ImageNet, a dataset containing millions of images. PCA was
performed to reduce the spatial gene expression and pixel matrices to 50
principal components each. The gene expression was then adjusted mor-
phologically using the SME normalization algorithm from stlearn based on
the spot image matrix, resulting in a morphologically adjusted gene
expressionmatrix.Additionally, FindVariableFeatures, FindNeighbors, and
FindCluster functionswere employed for clustering analysis in each sample.

Identification of malignant cells in spatial analysis
A series of immune-related signatures, including pan-immune markers
(PTPRC), pan-T cell markers (CD2, CD3D, CD3E, CD3G), B cell markers
(CD79A, MS4A1, CD79B), and myeloid cell markers (CD68, CD14), were
utilized for spot scoring. The average value of these features was designated
as the normal tissue expression score (NormalScore) for each spot. Based on
the clustering results, the cluster with the highest median NormalScore was
definedas the inferCNVreference. Subsequently, the inferCNVanalysiswas
conducted with the following parameters: cutoff = 0.1, cluster_by_groups =
FALSE, denoise = TRUE, HMM=TRUE, analysis_mode = “subclusters”,
tumor_subcluster_partition_method = “random_trees”, HMM_type =
“i6”. The HiddenMarkovModel (HMM) was employed to assess the CNV
level for the spots. To achieve a more accurate classification of spatial spots
and distinguish malignant spots from non-malignant spots, hierarchical
clustering based on tree partitioning using the inferCNV package with the
random trees method was performed, dividing all spots into 8 clusters.
Reference spots were labeled as “reference”. In the context of the inferCNV
analysis, a gene state of 3 indicated no CNV variation, a state greater than 3
indicated CNV amplification, and a state less than 3 indicated CNV dele-
tion. The CNV score of each gene was defined as the absolute value of the
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gene stateminus 3. TheCNV score of each cluster was calculated as the sum
of the CNV scores of all genes. The tumor cluster was defined based on the
CNV score and the pathological annotations.

Cell-Cell communication analysis
CellChat, an R package,was utilized to analyze communication interactions
and identify communicating molecules at the single-cell level between CSC
and other principal cell types. CellChatDB.humanwas employed to analyze
the primary signaling inputs and outputs among all cell clusters. The role of
CSC in the cell-cell communication network was determined using the
netAnalysis_signalingRole_scatter function. The aggregated cell-cell com-
munication network was calculated using the “aggregateNet” function in
CellChat, and the signaling from each cell group was visualized. Signaling
groups based on functional or structural similarity were identified using the
“computeNetSimilarity” function. The outgoing/incoming signaling pat-
terns of cells were calculated using the “netAnalysis_signalin-
gRole_heatmap” function. Ligand-receptor pairs involved in signaling
between cells were identified using the “netVisual_bubble” function.

Statistical analysis
The Mann-Whitney U test was performed to analyze the differences
between the two groups. Spearman’s correlation test was used to assess the
correlations between two variables. A two-tailed P-value of 0.05 was con-
sidered statistically significant. R 4.2.0 was used for the entire data proces-
sing, statistical analysis, and plotting procedures.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The names of the public accessible repositories and accession numbers can
be found in Table S4. The raw sequence data reported in this paper have
been deposited in the Genome Sequence Archive in National Genomics
Data Center, China National Center for Bioinformation/Beijing Institute of
Genomics, Chinese Academy of Sciences (GSA: HRA006757) and was
available upon request.

Code availability
This studyutilizedpublicly available packageswithRversion4.2.0. The code
used fordata analysis andfigure generationpresented in this publication can
be obtained upon request.
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