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A machine learning based delta-radiomics process for early
prediction of treatment response of pancreatic cancer
Haidy Nasief 1, Cheng Zheng 2, Diane Schott 1, William Hall1, Susan Tsai3, Beth Erickson1 and X. Allen Li 1*

Changes of radiomic features over time in longitudinal images, delta radiomics, can potentially be used as a biomarker to predict
treatment response. This study aims to develop a delta-radiomic process based on machine learning by (1) acquiring and
registering longitudinal images, (2) segmenting and populating regions of interest (ROIs), (3) extracting radiomic features and
calculating their changes (delta-radiomic features, DRFs), (4) reducing feature space and determining candidate DRFs showing
treatment-induced changes, and (5) creating outcome prediction models using machine learning. This process was demonstrated
by retrospectively analyzing daily non-contrast CTs acquired during routine CT-guided-chemoradiation therapy for 90 pancreatic
cancer patients. A total of 2520 CT sets (28-daily-fractions-per-patient) along with their pathological response were analyzed. Over
1300 radiomic features were extracted from the segmented ROIs. Highly correlated DRFs were ruled out using Spearman
correlations. Correlation between the selected DRFs and pathological response was established using linear-regression-models.
T test and linear-mixed-effects-models were used to determine which DRFs changed significantly compared with first fraction. A
Bayesian-regularization-neural-network was used to build a response prediction model. The model was trained using 50 patients
and leave-one-out-cross-validation. Performance was judged using the area-under-ROC-curve. External independent validation was
done using data from the remaining 40 patients. The results show that 13 DRFs passed the tests and demonstrated significant
changes following 2–4 weeks of treatment. The best performing combination differentiating good versus bad responders (CV-AUC=
0.94) was obtained using normalized-entropy-to-standard-deviation-difference-(NESTD), kurtosis, and coarseness. With further
studies using larger data sets, delta radiomics may develop into a biomarker for early prediction of treatment response.
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INTRODUCTION
Pancreatic cancer (PC) is a devastating malignancy and one of the
leading causes of cancer deaths in the United States.1 Despite
aggressive combined modality treatment approaches, the overall
5-year survival rate remains <5%.2,3 Local recurrence following
definitive therapy remains a common and morbid event that
occurs in 20–60% of all patients.1,3–5 Approximately 40% of PC
patients present with locally advanced unresectable disease.6 A
subgroup of these patients who do not develop metastatic
disease may be cured with advanced treatment such as adaptive
radiation therapy (RT) with high-radiation doses.3 Detecting
treatment response in an early stage during the treatment is
desirable to allow adjustment of the remaining treatment
according to patient or tumor-specific response, and hence,
delivering the most effective adaptive treatment.
Medical imaging is routinely used to monitor and/or predict

treatment response for cancer treatment.7–13 Radiomics translates
medical images into the quantitative data. It has been reported
that image-derived radiomic features can measure spatial hetero-
geneity of a tumor and can detect spatial response variations.14–17

CT-derived textures have shown promising prognostic value in a
variety of applications. For instance, Hou et al. performed radiomic
analysis using contrast-enhanced CT and found that the identified
radiomic features have the potential to predict treatment
response in esophageal carcinoma (AUC= 0.97).12 Coroller et al.
found that CT-based radiomic features can capture detailed
information about tumor phenotype and can be developed as a

prognostic biomarker to predict distant metastasis in lung
adenocarcinoma.13 Radiomics has the potential to identify
imaging biomarkers for the management of PC. For instance,
Eilaghi et al. reported that CT texture features of the dissimilarity
and normalized inverse difference were associated with overall
survival for PC.18 Chen et al. showed that the first-order radiomic
features, e.g., mean, skewness, and kurtosis, demonstrated
significant changes during chemotherapy-RT (CRT) that can be
correlated with pathological responses.19

Delta radiomics can assess the relative net change of radiomic
features in longitudinal images,17,20 which can offer abundant
information to identify, quantify, and potentially predict therapy-
induced changes over the course of treatment. Delta-radiomics
features (DRFs) can be derived from a variety of metrics in
conjunction with clinical outcome. The presence of a trend in DRF
during treatment may indicate a good or poor response to
treatment. For instance, Al-Kadi and Watson showed that fractal
texture changes in time-sequenced contrast-enhanced CT images
could be used to differentiate between aggressive and nonag-
gressive malignant tumors with 83% accuracy and could
potentially impact the clinical decision for choosing the appro-
priate treatment plan.21 Fave et al. used DRFs to create a model for
survival and distant metastases finding that radiomic features
such as compactness and texture strength improved the
prognostic power of the model.22 However, as delta radiomics is
in its infancy, a general methodology on how to identify DRFs is
desirable. Thus, in this study, we developed a delta-radiomics
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process based on machine learning and tested the process by
analyzing the longitudinal CTs acquired during CRT for pancreatic
cancer.

RESULTS
The proposed delta-radiomics process and the machine-learning
algorithms were successfully used to perform the delta-radiomics
analysis on the selected patient data. Major findings are
described below.

Selection of delta-radiomics features
It was found that based on the Spearman correlation coefficients
obtained, a total of 73 DRFs extracted from the segmented
pancreas head of each daily CT set had rs < 0.9, i.e., not containing
redundant information, thus, justifying the use of these features
for the delta-radiomics analysis. This DRF set was examined across
all patients to ensure its reproducibility. Figure 1 shows a sample
of the numerical correlation coefficients, the histograms, and the
scatter plot (left), Spearman ranking (middle) showing colored
dots whose size and color correspond to the correlation value and
white blocks representing insignificant coefficients, and an
example of a Spearman correlation heatmap for some of the
DRFs (right).

Effects of respiration motion and CT acquisition
To select the DRFs that are not substantially affected by
respiratory motion, all extracted features were compared between
the low and high motion groups. It was found that, among the
extracted DRFs, 35% were affected by the motions with COV > 5%,
of which 45% had a COV < 10%. The effect of motion was more
apparent for the higher order features extracted on the daily CTs
acquired between weeks 2 and 4 of the treatment. The mean,
mean absolute deviation, autocorrelation, texture strength, inverse
difference normalized, information measure, inverse variance, sum
average, gray level nonuniformity, and the newly developed
NESTD are examples of the features with less motion dependence
(COV <5% and nonsignificant p-values from both the t test and
the MSLR test). A comparison of two DRFs, one with large motion
effect (cluster prominence, top left) and another with small
motion effect (texture strength, top right) in different weeks
between the low and high motion groups and the difference in
the COV for selected DRFs (bottom) between the two groups are
shown in Fig. 2. The weekly DRF value (top left and right panels in
Fig. 2) combines the DRF values of all five fractions in the week.
For the effect of the different acquisition parameters (scanners),

the t test and regression analysis showed that there was no
significant difference (p > 0.05) in the selected DRFs between the

two different acquisition protocols, indicating the DRFs can be
used for all the selected patient data obtained from the two CT
scanners.

Correlation with treatment outcomes
It was found from the linear regression analysis that 27 out of the
47 DRFs that were not affected by both respiratory motion and
image acquisition exhibited a trend to correlate with the
pathological response. These DRFs include autocorrelation, cluster
shade, cluster tendency, coarseness, complexity, contrast, differ-
ence entropy, dissimilarity, energy, entropy, mean, median,
standard deviation, global uniformity, gray level nonuniformity,
high gray level run emphasis, homogeneity, information measure,
inverse difference normalized (IDN), inverse variance, kurtosis,
skewness, NESTD, short-run emphasis, max probability, mean
absolute deviation, and run percentage. The values of these DRFs
were different between the good- and bad-response groups,
indicating their associations with the responses.
Figure 3 presents comparisons of sample DRFs between the

good and bad-response groups in boxplots, showing (a) the
average DRFs for all fractions for the maximum to mean ratio
(MaxMean, left) feature with no significant difference (t test
p-value > 0.05) between the two response groups, where the DRF
value for each patient was the average of all fractions, and the
average DRFs for all fractions of the contrast feature (right)
exhibiting significant changes (p < 0.05) between the good- and
bad-response groups, the presented boxplots show the median
and interquartile range for each response group and the diamond
data point in the middle represents the mean of the group, and
(b) examples of distribution of good- and bad-response group
including all patients and all fractions within each response group
for coarseness, kurtosis, NESTD, and contrast during the entire
course of treatment.
Figure 4 compares the boxplots and the p-values of daily DRFs

of contrast feature for all patients in a response group between
the two response groups, showing (a) all daily DRFs for both
groups plotted together and (b) DRFs for the two response groups
plotted for each fraction. In fractions 14–18, the differences in the
daily DRFs between the two response groups are significant in
four consecutive fractions (p < 0.05).
Based on the analysis with t test and linear mixed-effects model,

it was found that 13 of the 27 selected DRFs passed both tests
with p-value < 0.05, indicating their significant correlations with
the pathological response. These candidate DRFs included
complexity, cluster tendency, coarseness, information measure,
contrast, entropy, inverse variance, gray level nonuniformity,
mean, IDN, kurtosis, skewness, and NESTD. Shape features did
not show significant correlation to the treatment response.

Fig. 1 DRFs’ Spearman correlations. A sample of the correlation histogram with p-values is shown on the left, Spearman ranking (middle) for
some of the DRFs, and an example of a Spearman Correlation heatmap for some of the DRFs (right)
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Prediction model building using machine-learning algorithms
Different weight planes for different DRFs were obtained from the
SOM confirming that the candidate DRFs were not highly
correlated. The SOM showed some degree of overlap in the
candidate DRFs values between the two response groups. To
determine whether the candidate DRFs, identified by the analysis
of using the mixed-effect model and t test and confirmed by the
self-organizing map (SOM), can be used to distinguish the good or
bad response, they were used to build a response prediction
model using a Bayesian regularization backpropagation neural
network. Based on the network using the DRFs confirmed by the
self-organizing maps, seven individual candidate DRFs (kurtosis,
skewness, coarseness, NESTD, IDN, mean, and contrast) were
identified to have the strongest correlation with the response,
thus, could be used to build a response prediction model.
The prediction model was improved by combining the DRFs.

The best performing two-feature combination with cross validated
area under the ROC curve (CV-AUC) of 0.92 was found to be for
the kurtosis–coarseness combination. The performance increased
to 94% using the kurtosis–coarseness–NESTD combination with an
accuracy of 0.9. A similar performance (CV-AUC= 0.93) was
obtained for the combination of Skewness–IDN–contrast. Table 1
summarizes the best performing two- and three-feature combina-
tions, determined using the CV-AUC of the ROC curve, and their
confidence intervals. Figure 5 shows 3D scatter plots of the best
performing feature combinations (kurtosis–NESTD–Coarseness),
including weekly DRFs of the 2–4 weeks for 50 good responders
(150 data points) and 40 bad responders (120 data points). Using
the external independent validation set (DRFs for weeks 2–4), the
testing AUC was 0.96 for the Skewness–IDN–contrast and 0.98 for

the kurtosis–coarseness–NESTD combination with an accuracy of
0.94. It is clear that these DRFs and their appropriate combinations
can accurately predict the treatment response.

DISCUSSION
As demonstrated in this work, delta radiomics is a quantitative
method that can assess the treatment-induced net change of
radiomic features over time and may be used for early prediction
of treatment response during the treatment. A rigorous delta-
radiomics analysis process to select appropriate DRFs to predict
response was developed and demonstrated based on the 28 daily
CT sets collected acquired during routine CT-guided CRT and
pathological treatment response data for 90 pancreatic cancer
patients. The process has identified appropriate delta-radiomic
features that can predict treatment pathological response during
the CRT delivery.
One limitation of delta radiomics is contour variations between

the image sets that can affect the reproducibility of the results.17

Our newly developed NESTD map provided a useful tool to detect
structure boundaries and to adjust the contours as needed for a
more robust and reproducible feature extraction process. Another
limitation, common for any radiomics work, is the restriction for
using the data with certain technical and patient variations, e.g.,
from different scanners or different institutions, limiting the size of
the data that can be used to train deep networks.17 For delta
radiomics, however, DRFs are the relative values that may not
strongly depend on certain imaging variations. For example, this
study shows that variations in imaging parameters from two
different scanners did not affect the DRF analysis. On the other
hand, the data for patients with large amounts of motion or stent

Fig. 2 DRFs as a function of motion artifact. A comparison of two DRFs, cluster prominence (left), and texture strength (right), along with the
t test p-value in different weeks during CRT between the low and high motion groups, and the difference in coefficient of variance (COV)
between high and low motion for selected DRFs (right) with 5–10% levels indicated with cluster prominence and texture strength highlighted
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artifact that distort image quality needed to be excluded as they
can introduce errors in DRFs. An exception is that certain features,
which can have a low coefficient of variance, thus, can be less
affected by the amount of motion, can still be identified as
potential candidate DRFs.
The use of machine-learning algorithms appears to be an

effective approach to build a response prediction model based on
DRFs. Some potential problems can arise when implementing a
neural network and limit its performance, such as local minima,
overfitting, or classifying external independent data set as an

outlier. In this study, the use of Bayesian regularization and
Mahalanobis distance can account for these potential problems.
The results reported here show promising initial results and
demonstrate the need to further test this approach by using more
patient data or data of other treatment or tumor sites. Larger data
sets would improve the robustness of the neural network training
using a variety of features including higher order features. More
rigorous outcome data (e.g., local tumor control, survival) would
help strengthen the correlation analysis. With further studies
based on large and diversified patient data sets, the proposed

Fig. 3 DRFs t test and distributions. Boxplots and corresponding t test p-value for (a) average DRFs of all fractions for maximum to mean ratio
(MaxMean) feature indicating no significant difference between the two response groups and for the contrast feature showing significant
differences. The presented boxplots show the median and interquartile range for each response group, and the diamond data point in the
middle represents the mean of the group, (b) distribution of good- and bad-response group including all patients and all fractions within each
response group for Coarseness, Kurtosis, NESTD, and contrast
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delta-radiomics process may be developed as an invaluable tool
to identify imaging biomarkers for individualized treatment, e.g.,
guide adaptive radiation therapy.

METHODS
A general delta-radiomics process
We propose a delta-radiomic process based on machine learning. The
process starts with acquiring a set of longitudinal images at different time
points during treatment, followed with segmenting regions of interest
(ROIs) on the image at the first time point. The longitudinal images are
registered with each other either rigidly or deformably. The segmented
ROIs are then populated to the images at the subsequent time points. The
quality of the ROI contours is checked, either manually or automatically, to
ensure their consistency over time. Radiomic features are extracted from
the segmented ROIs from each time point and the changes in these
radiomic features (i.e., DRFs) from those at the first time point are
calculated. Due to the large number of radiomic features that can be

extracted from the images, a Spearman correlation is used to rule out
redundant DRFs. The selected DRFs are then tested to determine their
significance as a function of treatment response using linear regression
models, t test and mixed-effect models. Significant DRFs are further tested
and modeled using machine-learning algorithms to create a model that
can be used to predict outcome of a new patient. Figure 6 shows this
general process for the delta-radiomics analysis. This process and the
details of the machine-learning algorithms are further explained using the
patient imaging and outcome data described below.

Patient data
The proposed delta-radiomics process is demonstrated and tested by
retrospectively analyzing the imaging and outcome data collected from 90
pancreatic cancer patients treated in our clinic in compliance with the
relevant HIPPA guidelines and regulations. Written consent was waived for
retrospective studies under the Medical College of Wisconsin IRB approval.
All patients had resectable or borderline resectable pancreatic head tumor,
and were treated with pre-operative chemotherapy with Folfirinox or Folfiri

Fig. 4 Fractional changes of the contrast feature. Comparisons of the boxplots and p-values of daily DRFs of the contrast feature for all
patients in a response group between the two response groups, showing (a) all daily DRFs for both groups plotted together and (b) daily DRFs
for the two response groups plotted for each fraction
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and concurrent CRT with gemzar or gemcitabine followed by surgery
during the period between 2012 and 2017. All RT were delivered with daily
guidance of non-contrast CTs acquired using two in-room CT scanners
(installed in two RT rooms) immediately prior to each delivery. These daily
CTs were analyzed. The patients had a median age of 67 years at the start
of treatment, with 54% males and 46% females.
All patients underwent pancreatectomy after CRT with gross and

microscopic pathology reported. The surgical specimen was fixed in
formalin overnight, and then the pancreas was serially sectioned. The area
of tumor and surrounding fibrosis in the pancreas were submitted for
microscopic examination. Hematoxylin and eosin sections were prepared,
and treatment effect was evaluated. A modified Ryan Scheme for tumor
regression score recommended by the College of American Pathologists
was used to evaluate treatment effect as follows: Grade 0 (G0): no viable
cancer cells (complete response), Grade 1 (G1): single cells or small groups
of residual cancer (near complete response), Grade 2 (G2): residual cancer
with evident tumor regression, but more than single cells or rare small
groups of cancer cells (partial response), and Grade 3 (G3): extensive
residual cancer without evident regression (poor or no response).23 Among
the 90 patients, there were 50 patients with good pathological response
(G1 and G2), and 40 with bad pathological response (G3). These good- and
bad-pathological response data were used to create the good and bad
groups used in our analysis.

CT acquisition parameters
To include more patient data while ensuring a robust model and exclude
DRFs that are affected by acquisition parameter variations, the daily CT
data were obtained from patients scanned using two Siemens CT scanners
(in-room CTs) with slightly different acquisition parameters. The first group
included daily CT data acquired from 50 patients using a CT scanner
(Definition AS, Siemens), with a standard abdominal protocol consisting of
the following parameters: 120 kVp tube voltage, 252 mA tube current, 0.5 s,
1.2 -mm focal spot, and standard filtered back-projection (FBP) algorithm
with B30f kernels. The second group included daily CT data from 40
patients scanned using a different CT scanner (Emotion, Siemens) with
another standard abdominal protocol employing the following para-
meters: 130 kVp tube voltage, 226mA tube current, 0.6 s, 0.95 -mm focal
spot, and standard FBP with B31s kernels. All analyzed CTs were
reconstructed in a 512 × 512 × Z (slices) voxels with resolution
0.98mm× 0.98mm× 3mm. To assess the effect of the acquisition
parameters on radiomic feature selection, patients with the same
pathological response were divided into two groups based on the two
acquisitions protocols, and a multivariate regression analysis was used to
determine the effect of acquisition protocols on the DRFs.
For each patient, daily CT sets were collected from the 28 treatment

fractions during the delivery of CRT of 50.4 Gy in 28 daily fractions,
resulting in a total of 2520 daily CT sets for analysis. For patients with
respiratory motion >8mm (n= 30), the daily CTs were acquired with
respiratory gating, reducing the motion to below 3mm (the residual
motion in the gating window) during the CT acquisition. For each patient,
daily CTs were registered rigidly with each other with manual adjustment,
if necessary, to achieve the best local matching between the two CT sets.
For each case, the contour of pancreatic head was delineated on the
contrast-enhanced simulation CT and MRI and was populated to the CT of
the first day (the first RT fraction), then to other daily CTs based on rigid
image registration. The obtained contours were edited by experienced
researchers using MIM software and verified independently by other
experienced researchers to ensure consistency. In addition, these contours
were checked using a new method proposed in this work (see below).
To minimize the effect of interfraction variation, daily CTs were

registered locally based on the obtained contours. To estimate the effect
of intrafraction (mostly respiratory) motions on DRFs, patients with the
same pathological response were divided into two groups: low (<3mm)
and high (3–8mm) motions, to examine the effect of motion on DRFs and
to ensure that the DRFs selected for building the prediction model are not
affected by the motions.

Contour validation
Accurate and consistent segmentation between daily CTs is essential to
improve the accuracy and reproducibility of the extracted DRFs. Since
manual segmentation can vary significantly among even well-trained
observers,24 it is desirable to develop a new method to reduce the
segmentation variation. To do so, we introduced a new feature (normal-
ized entropy to standard deviation difference, NESTD) that combines the
GLCM “Entropy” feature and the histogram “Standard Deviation (STD)”
feature. This new feature can be used to improve the detection of organ
boundaries and to provide a way to standardize contour validation.
To obtain NESTD, a square ROI containing the pancreas and the

surrounding tissue was defined for each CT slice. Normalized color
encoded entropy and standard deviation maps were generated, using a
script implementing MATLAB® built-in functions (“entropyfilt” and “stdfilt”).
For each map, the output pixel contains the feature value of a 3-by-3
neighborhood around the corresponding pixel in the input image. For
pixels on the borders of the input image, a symmetric padding was used
(i.e., the values of the padding pixels were a mirror reflection of the border
pixels). The NESTD map was generated by taking the difference between
the normalized entropy and standard deviation maps and was applied to
detect the boundaries of different organs and to adjust the contours if
necessary.24 Figure 7 shows an example of the entropy, standard deviation,
and the resultant NESTD map for one CT slice. The same process was
repeated for all the slices covering the pancreatic head. To evaluate the
effectiveness of using the NESTD map for contour validation, the resultant
map was overlaid on the original CT where the pancreas head was
delineated. If the contour included tissue other than the pancreatic head,
the contour would be adjusted. To obtain a feature value, the average of
the values of the NESTD over the entire 3D tumor was used.
In this study, the contours generated manually were validated utilizing

the NESTD map, and were adjusted if necessary. For example, the vessels

Table 1. The best performing two- and three-feature combinations as
judged by the AUC and the confidence interval

Two-features combination AUC Confidence interval

Kurtosis, coarseness 0.92 [0.90, 0.95]

NESTD, coarseness 0.90 [0.89, 0.97]

Kurtosis, NESTD 0.89 [0.84, 0.91]

Kurtosis, skewness 0.88 [0.84, 0.92]

Two features combination AUC Confidence interval

Kurtosis, coarseness, NESTD 0.94 [0.91, 0.95]

Skewness, contrast, IDF 0.93 [0.91, 0.95]

Kurtosis, NESTD, skewness 0.82 [0.90, 0.95]

Kurtosis, skewness, mean 0.88 [0.85, 0.91]

Fig. 5 3D scatter plots for the best performing feature combination.
The weekly DRFs for weeks 2–4 for 50 good responders (150 data
points) and the 40 bad responders (120 data points) for the best
performing features combinations (kurtosis–NESTD–coarseness) is
displayed
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that were not easily visualized on the CT and were included in the manual
contour can be excluded by utilizing the new feature map.

Delta-radiomics features
CT texture analysis was performed to extract over 1300 radiomic features
from the segmented ROIs, using an available software package, IBEX25.
Features extracted included intensity-based histogram, gray level run-
length matrix (GLRNM)26–32, gray level co-occurrence matrix (GLCM)27,28,
neighbor gray tone difference matrix (NGTDM)29,33, intensity histogram
Gaussian fit, shape-based features,27–30 and our newly proposed NESTD
feature.24

Since relatively high numbers of extracted radiomic features compared
with the sample size can reduce the statistical power and increase the
probability of data overfitting, a Spearman rank-order correlation
coefficient was used to rule out low-rank redundant features (rs > 0.9). To
reduce directional dependence, GLCMs for a distance d= 1 and a
particular direction were summed over the set of axial slices. These
direction-specific matrices were then summed and averaged to create the
final GLCM for the 3D ROI.27,28 Similarly, the GLRNMs were calculated in the
0 and 90 directions, and then summed and averaged to create a global 3D
run-length matrix.30–32,34,35

The DRF of a radiomic feature at the nth fraction was calculated as the
relative change of the feature value from its value at the first fraction, such
that:

DRFn ¼ Feature valueFrac 1 � Feature valueFrac n
Feature valueFrac 1

;where n ¼ 2 : 28 (1)

All DRFs were categorized based on the coefficient of variance (COV).
The p-values of the t test and the modified signed-likelihood ratio test
(MSLR) for equality of COV were calculated to assess the robustness of
DRFs using R® software.
Spearman correlations, coefficient of variance (COV), and the modified

signed-likelihood ratio test (MSLR) for equality of COV, and the t test,
regression models, linear mixed-effects models that will be discussed in
the next sections were built using R® built-in ggpubr, corrplot, lme4,
datarim, cvequality packages, and functions.

Machine-learning Algorithms
For the analysis of correlation between DRFs and pathological response,
DRFs that were not prone to motion variation and/or acquisition
parameters (due to the choice of acquisition parameters) were used in a
machine-learning process. This process started with dividing the data set
into two groups, good- (50 cases with 28 fractions each) and bad- (40 cases
with 28 fractions each) response groups, based on their pathology
response to CRT. To determine potential DFRs that could correlate to
treatment response, DRFs were evaluated to determine when they started
to change during the treatment as compared with their values at the first
fraction and if these changes were different between the patients with
good and bad responses. A metric trend was established using a linear
regression model to find the best fit for each feature versus response and
determine those with potential trends. A t test was performed to
determine which DRFs changed significantly between the two response
groups for the entire course of treatment, between two time points (e.g.,
daily, weekly) to pinpoint the time at which significantly different changes
between the two response groups occurred. Features were also evaluated
to determine if they changed during the treatment by fitting linear mixed-
effects models using R® software for the DRFs as a function of response
with two random effects as follows:

model ¼ lme DRFð � Responseþ 1 Patientjð Þ þ 1 Fractionjð Þd e (2)

The first random effect assumes a different intercept for each patient to
account for patient-dependent variation. The second random effect
accounts for the fractional-dependent variation from the longitudinal
study. The p-value of the log likelihood ratio for each model was
calculated. The features that showed a trend and passed both the linear
mixed-effect model and the t test (p < 0.05) were selected to be used to
build a model to predict treatment response as early as possible during
treatment.
To confirm that the DRFs selected by the t test, regression model and

the linear mixed-effect model are appropriate and to ensure these features
are not highly correlated to each other, a self-organizing neural network36

was built using the Matlab built-in neural clustering app to cluster the data
based on the similarity while considering clustering in multiple dimen-
sions. The training was performed using a batch algorithm, the slope of the
DRFs over time for each data set was presented to the network before any
weight was updated. The algorithm then determined a winning neuron for
each input vector. Each of the weight vectors was updated such that it
moves to the average position of all input vectors for which it or a
neighbor neuron was a winner. Using self-organizing map, the weight
plane of each feature used in the training process can be visualized. This
can provide us with information regarding the potential of using a feature
to discriminate between the two response groups. If the weight plan of
two inputs is similar, then these inputs are highly correlated. This was used
to assure that the features included are not highly correlated and to
confirm previous analysis.
To identify DRFs with the highest prediction power, a feedforward

backpropagation neural network was utilized. The good- and bad-response
groups were divided into training and testing sets. For each feature, the
daily DRFs for 50 patients (30 good- and 20 bad-responders with 28
fraction each, i.e., 840 (30 × 28) data points for good- and 560 (20 × 28)
data points for bad-response group) were computed and used for the
training. Combinations of either two or three of the DRFs that were
previously selected using the t test and linear mixed-effect model, and
were confirmed to be less correlated using the self-organizing map were
used. Multiple models were examined using all possible two and three DRF
combinations at a time. For each model, the neural network inputs (two or
three daily DRFs) were nonlinearly mapped to three hidden neurons which
were linearly mapped to an output variable.37

However, two potential problems arise when optimizing a neural
network, (1) a local minimum, where optimization terminate at a local not
global minimum of the cost function, and (2) overfitting, where the model
fits the noise in the training set. Generally, regularization by adding weight
penalty terms to the cost function can help avoid these potential
problems. However, it can be computationally intensive if the weights
penalty is determined by validation. To efficiently determine the weight
penalty parameters, a Bayesian regularization scheme (using “trainbr”
function) was added to the neural network in the training process, leading
to Bayesian neural network (BNN) models.37–40

By introducing Bayesian inference in the neural network, the optimal
weight penalty parameter is estimated by a Bayesian approach to compute
the likelihood of class membership given some characteristic of that class
such that,41–44

p wjjt
� � ¼ p tjwj

� �
pðwjÞ

pðtÞ (3)

where, p (t|wj) is the class conditioned probability or likelihood of target t
given model parameter w, p (wj) is a prior probability, p(t) is an evidence
(usually ignored), and p(wj|t) is the measurement conditioned or the
posterior probability
In a Multivariate Normal Bayesian Classification, given multiple classes,

each class wj has its own mean vector mj and covariance matrix cj, such

Fig. 7 An example of NESTD map generation. a entropy map, b STD map, c the resultant NESTD map, and d the NESTD map overlaid on the
original CT image
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that the class-conditional probabilities are

p tjwj

� �
¼ 2π�d=2 cj

�� ���1=2
exp� 1=2 ðt �mjÞTc�1

j ðt �mjÞ (4)

To move from probabilities to discriminants we need to maximize: p(wj|t)
or p(t|wj) p(ωj) or log(p(t|ωj))+ log((P(ωj)) and to link classical neural
network with Bayesian statistics, minus the log likelihood is defined.42 In
other words, we need to maximize

� log pðtjwjÞ � 1=2 log cj
�� ��� 1=2ðt �mjÞT c�1

j ðt �mjÞ
� �

(5)

However, even with Bayesian regularization nonlinear neural network
model, performance can be reduced when the model is evaluated over
independent testing set. One possibility is that some values among the
test data can be considered outliers relative to the training data used in
building the models. To overcome this potential problem, Mahalanobis
distance can be used to consider the mean and the covariance matrix of
each class, and hence, its spread in the multidimensional space.38

In other word from Eq. 5, the expression �1=2=ðt �mjÞT c�1
j ðt �mjÞ can

be thought of as t �mj
��� ��2c�1

j which looks like a squared distance
multiplied by the inverse covariance matrix (c), that acts as a metric
(stretching factor) on the space. Thus, using the Mahalanobis distance is
equivalent to maximizing the likelihood p(t|wj) used in Bayesian statistics.38

Classification using BNN models incorporating the minimum (Mahalanobis)
distance classifier (using “Mahal” function) can reduce the number of the
data points classified as outliers. The results of the classification were the
class with the highest probability (i.e., minimum distance to the centroid of
the trained class as defined by the mean and covariance matrix of the
model).
In our analysis for the training set, cross-validation (using “cvpartition”

function) was performed using a leave-one-out method (one patient, with
its all daily DRFs, is left out). Testing was performed using external
independent validation sets of the daily DRFs from 40 patients not used for
the training (20 good- and 20 bad-responders with 28 fraction each). A
total of 120 weekly DRFs values from weeks 2–4 during the treatment were
used to examine the performance of BNN. Classification was done using
the minimum Mahalanobis distance to the centroid of the training class.
The performance of each model was judged using the AUC. For each DRFs’
combination examined, to obtain the confidence intervals for the AUC,
bootstraps sampling (using “bootstrp” function) was utilized with nboot=
100, i.e., from each bootstrap sample data one BNN model was trained,
yielding 100 BNN models, and the ensemble mean of the resulting 100
BNN models was used as the final BNN model.

DATA AVAILABILITY
Data relating to the weekly DRFs for weeks 2–4 for the 50 good responders (150 data
points) and the 40 bad responders (120 data points) for the best-performing feature
combinations (kurtosis, NESTD, and coarseness) that are used to generate the 3D
plots, table showing the mean and standard deviation per fraction from all patients in
the same response group for the relative net change of volume and sphericity for the
good and bad response groups, figures showing the average changes over time for
volume and sphericity showing overlap between the two response groups until the
last week of treatment, which suggest that these features are not very useful for early
prediction of treatment response, box plots of features showing significant
differences between the two response groups (mean, IDN, entropy, and NESTD)
combining all fractions and all patients in each response group, box plots of weekly
change of a feature showing significant difference (kurtosis) and a feature not
showing significant difference (IQR) for all patients and all fractions in the good and
bad response groups, confusion matrix for the training and the external independent
validation sets using the combination of kurtosis, coarseness, and NESTD features are
available in the supplementary materials. Data are available from the corresponding
author upon reasonable request.

CODE AVAILABILITY
Sample Matlab and R scripts are available in the supplementary materials. For our
analysis, the pancreatic head was segmented in MIM 6.7.6 software (available at
https://www.mimsoftware.com/). Radiomic features were extracted using IBEX
software standalone version (available at https://www.dropbox.com/sh/
tjk28ti5btmtos4/AAD9pkpfgmzlDYU-3TMCR0a2a). MATLAB scripts were written with
built-in MATLAB function in MATLAB R2015a version (available at https://www.
mathworks.com/products/matlab.html). Codes are available from the corresponding
author upon reasonable request.
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