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Addressing the challenges of applying precision oncology
Seung Ho Shin1,2, Ann M. Bode1,2 and Zigang Dong1,2

Precision oncology is described as the matching of the most accurate and effective treatments with the individual cancer patient.
Identification of important gene mutations, such as BRCA1/2 that drive carcinogenesis, helped pave the way for precision diagnosis
in cancer. Oncoproteins and their signaling pathways have been extensively studied, leading to the development of target-based
precision therapies against several types of cancers. Although many challenges exist that could hinder the success of precision
oncology, cutting-edge tools for precision diagnosis and precision therapy will assist in overcoming many of these difficulties.
Based on the continued rapid progression of genomic analysis, drug development, and clinical trial design, precision oncology will
ultimately become the standard of care in cancer therapeutics.
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INTRODUCTION
Improving efficacy, minimizing the adverse side effects of drugs,
and overcoming acquired resistance to drug treatment have been
major goals and emphases in cancer therapy. In order to attain the
objectives of precision oncology, basic and clinical researchers
have identified and clarified differences derived from genetic
features between individuals. The existence of specific genetic
differences between individuals is exemplified by the finding in
1932 that phenylthiocarbamide (PTC) exhibits the unusual
property of either tasting very bitter or having no taste at all
based on the individual’s genetics. Notably, this trait is inherited to
the next generation.1, 2 The “one-size-fits-all strategy” is no longer
relevant to cancer treatment. The tailoring of distinct treatments
to each specific individual became known as “personalized
medicine”3 and later the name was changed to “precision
medicine”.4 Many countries have now launched government-
driven projects focusing on precision medicine, including the
Precision Medicine Initiative (National Institutes of Health, USA),4

Cancer Moonshot program5 (National Cancer Institute, USA) and
HORIZON 2020 Work Program for 2016–2017 (EU).6

The accelerating momentum of precision medicine, and
especially precision oncology, has stemmed from the increasing
amount of “-omics” information acquired from patients and,
importantly, the successful integration of the fields of basic and
clinical cancer research. Next-generation sequencing instrumenta-
tion is capable of sequencing several genomes a day at a cost of
about $1000 each, making this technology an essential and
straightforward part of translational cancer research.7 Driver-gene
mutations identified from comprehensive genome analyses are
now frequently detected in many cancer patients,8 and the
aberrant gene products are currently being targeted by specific
antagonists or monoclonal antibodies.9 Oncologists are now able
to stratify subsets of cancer and make informed therapeutic
decisions. Consequently, targeted therapy has gained credibility in
reinforcing and/or replacing conventional cytotoxic chemother-
apy. Several targeted agents are presently approved by the FDA
and are being used clinically against several types of cancer.

Here, we categorize the work flow of precision oncology into
two segments, precision diagnosis and precision therapy, and
provide milestones and important aspects characterizing each
segment. By reviewing targeted therapies clinically approved
against breast cancer, lung cancer and melanoma, we reveal the
current status and expose possible challenges in precision
oncology. Two of the most effective state-of-the-art tools for the
success of precision oncology are also described.

PRECISION ONCOLOGY FOR PATIENTS—FROM PRECISION
DIAGNOSIS TO PRECISION THERAPY
In order to better understand and utilize precision oncology (i.e.,
precision medicine as it applies to cancer), analyzing the
procedures step by step is crucial. Precision oncology comprises
precision diagnosis and precision therapy. Precision diagnosis
begins with an accurate diagnosis of each individual cancer
patient and ideally classifies subjects into cancer patients and
individuals at high risk for specific cancers.10 By detecting
biomarkers that are associated with specific cancer types such
as BRCA1/2 mutations in breast cancer,11, 12 we can diagnose the
current or potential risks of each individual. Accumulating
evidence shows that multiple biomarkers (so called “signature”)
can help in creating more precise and evidence-based therapeutic
strategies to modulate cancer.13, 14 Establishing molecular
subtypes and categorizing tumors into one of the subtypes
enhances the accuracy of therapeutic options.15 The information
derived from precision diagnosis reveals the precise medical
measures, including surgery, radiation, chemotherapy, adjuvant
therapy, supplements, and/or vaccines,16 that are needed for each
individual.
Precision therapy matches the most effective treatment to the

individual cancer patient based on the genetic profile of the
specific cancer, and can be divided into two categories that
include precision chemotherapy and precise therapeutic proce-
dures. Precision chemotherapy is the use of the correct drugs
prescribed that assures maximum benefit with minimum risk or
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toxicity for the patient. Therapeutic measures could include
surgery and radiation therapy tailored to the patient’s needs.

Precision diagnosis
Information-based diagnosis can assist clinicians not only in
identifying tumor type and stage, but also in revealing important
genetic mutations that drive carcinogenesis. Advances in technol-
ogy have clearly resulted in more effective therapeutic decisions.
Final goals include optimization of clinical outcomes, avoidance of
unnecessary therapies, minimized side effects, and overcoming or
avoiding drug resistance.

BRCA1/2 are a milestone for precision diagnosis. The discovery of
the breast cancer susceptibility genes, BRCA1/2, was traced from a
family with a history of breast cancer, and indicated the
association between genetic features and the early onset of the
disease.11, 12 In addition to other breast cancer susceptibility
genes, the BRCA1/2 mutation test is one of the most well-
established models in precision oncology. It has become a
guideline that aids clinicians in creating prevention strategies
and targeted therapies. More than one million individuals have
been tested for BRCA1/2 mutations worldwide.17

The landscape of mutations in the BRCA1/2 genes has been
extensively studied and the relationship between the mutations
and breast cancer risk is also well-defined. More than 1800
different variants (i.e., intronic changes, insertions, deletions and
missense mutations) have been observed in BRCA1 and 2000
different variants have been reported to occur in BRCA2.17 BRCA1/
2 mutations are currently the most significant gene variations in
breast cancer surpassing tumor protein p53 (TP53), phosphatase
and tensin homolog (PTEN), liver kinase B1 (LKB1), and cadherin1
(CDH1) mutations.17–19 BRCA1/2 mutations are estimated to
account for ~15% of the relative familial risk of breast cancer.17

Mutations in BRCA1 and BRCA2 reportedly contribute equally to
early-onset breast cancer.20

Development and improvement of genetic tests. Recent progress
in immunohistochemistry (IHC) has helped clinicians to identify the
presence of specific biomarkers and to categorize patients in
pathology.21, 22 Detection of human epidermal growth factor
receptor 2 (HER2)23 in breast cancer and PD-L124 in lung cancer
based on IHC aided the prescription of suitable drugs for the
patients. However, many other techniques are currently available to
quantify changes in gene expression, and include reverse
transcriptase-polymerase chain reaction,25 DNA arrays,26 Nano-
String technology,27 comparative genomic hybridization arrays, and
single-nucleotide polymorphism analysis.28 Genetic tests have been
developed for diagnostic, predictive and prognostic purposes and
some have been approved by the FDA, whereas others are still
under development for breast cancer,29–37 lung cancer,38–44 and
melanoma45–49 (Table 1). Although the most significant genes, such
as BRCA1/2, can only predict or explain a portion of disease
susceptibility, the number of genes examined in a single test has
continually increased to improve accuracy.14, 50 Of particular note
(Table 1), the 70-gene signature test for breast cancer (MammaPrint
by Agendia)29 showed the most efficacy in a clinical trial.51 The
study in 6693 women with early-stage breast cancer was conducted
to examine whether the gene signature test could reduce the use
of chemotherapy. For patients who had high clinical risk and low
genomic risk for recurrence, the difference in the 5-year survival
rates between chemotherapy (98.8%) and no-chemotherapy
(97.3%) was only 1.5%.51 The result shows that approximately
46% of women with breast cancer who are at high clinical risk
might not require chemotherapy and that the 70-gene signature
could aid in treatment decisions.51 The Oncotype Dx test by
Genomic Health also helps clinicians in selecting proper treatment
options for patients with invasive breast cancer.34, 52 The Oncotype
Dx test generates a recurrence score (0–100) by analyzing the
expression of 21 genes.53, 54 Survival rates of patients with high
recurrence scores (31 and higher) have been improved by adjuvant
chemotherapy, whereas patients with low recurrence scores (less
than 17) are unlikely to get benefits from the chemotherapy.52

Table 1. Genetic tests for breast cancer, lung cancer and melanoma

Type Test name Institution FDA approval No. of genes Ref.

Breast cancer MammaPrint Agendia Yes 70 29

Prosigna NanoString Tech. 50 33

GeneSearch BLN test Veridex 2 30

INFORM HER2 Dual ISH Ventana 1 32

HER2 CISH pharmDx Kit Dako 1 31

Oncotype Dx Genomic Health No 21 34

EndoPredict Sividon Diagnostics 11 35

Breast Cancer Index test BioTheranostics 7 36

FEMTELLE Sekisui Diagnostics 2 37

Lung cancer Therascreen EGFR RGQ PCR kit QIAGEN Yes 1 40

cobas EGFR Mutation Test Roche 1 38

VENTANA ALK (D5F3) CDx Assay Ventana Medical Systems 1 41

Vysis ALK Break Apart FISH Probe Kit Abbott Molecular 1 39

Lung Cancer Mutation Panel Quest Diagnostics No 34 42

Lung Cancer Comprehensive Mutation and
Translocation Panel

ARUP Laboratories 11 43

SnaPshot Multiplex System Thermo Fisher 11 44

Melanoma cobas 4800 BRAF V600 Roche Yes 1 45

THxID-BRAF bioMerieux 1 46

53-Immune Gene Network Panel Icahn School of Medicine Mount Sinai No 53 47

myPATH Myriad 23 48

Sentosa SQ Melanoma Panel Vela Diagnostics 10 49
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Precision therapy
Precision therapies have been applied in breast cancer, lung
cancer and melanoma, but many challenges still need to be
addressed.

Breast cancer and targeted therapy. The most well-known target-
based treatment against breast cancer is directed at the estrogen
receptor (ER) and the HER2 (Table 2).55 The discovery of these two
protein receptors opened a new avenue for targeted therapy that
showed improved efficacy compared to aromatase inhibitors,
which suppress plasma estrogen levels in postmenopausal
women.56 Tamoxifen, a pro-drug targeting the ER, is metabolized
in the liver into active metabolites that have a higher affinity for
the ER compared to the parental tamoxifen.57 Trastuzumab is a
monoclonal antibody targeting HER2 and is used in patients with
breast cancers overexpressing this receptor (Table 2).58, 59

Trastuzumab inhibits the activity of HER2, which forms hetero-
dimers with other tyrosine kinase receptors (i.e., EGFR, HER3 and
HER4) and promotes tumorigenesis.60 From a clinical trial of 469
women with metastatic breast cancer overexpressing HER2,
combinational treatment with trastuzumab and standard che-
motherapy attenuated disease progression compared to standard
chemoptherapy alone (i.e., median, 4.6 vs. 7.4 months).61 The
objective response rate (i.e., 32 vs. 50%) and survival time (i.e.,
median, 20.3 vs. 25.1 months) were also improved by the addition
of trastuzumab to the chemotherapy.61 A combination of
pertuzumab, trastuzumab, and chemotherapy (i.e., docetaxel)
improved the median overall survival time (i.e., 40.8 vs.
56.5 months) compared to trastuzumab-only plus chemother-
apy.62 A conjugate drug of a HER2 monoclonal antibody and a
cytotoxic drug, ado-trastuzumab emtansine, prolonged
progression-free survival and overall survival with lower adverse
effects compared with a combination of lapatinib and chemother-
apy (Table 2).63

Challenges of targeted breast cancer therapies. The identification
of driver genes in breast cancer increases the likelihood of
matching the correct, most effective drug to the right patient. Only
a few genes, however, have been validated to act as driver genes.
BRCA1/2, estrogen receptor alpha (ESR1), HER2, PI3-K/Akt/mTOR, Egfr,

cyclin dependent kinase 4 (CDK4)/Rb, Ras/Raf/mitogen-activated
protein kinase (MEK) are known to be critical in breast cancer
therapy (Table 2).64, 65 For instance, somatic mutations of PI3-K
occur in more than 10% of all breast cancers65 and Akt1 and Akt3
mutations and PTEN deletion contribute to the activation of the
PI3-K pathway.28, 66 Nevertheless, approximately 50% of the
familial relative risk (the ratio of the risk of disease for a relative
of an affected individual to that for the general population) of
breast cancer is still unexplained.17 Couch et al. estimated that
contributions of genes including BRCA1/2, TP53, PTEN, LKB1, CDH1,
and known/predicted single-nucleotide polymorphisms in breast
cancer, and the current knowledge of genetic variations, only
covered half of the breast cancer risk.17

Variants of uncertain significance (VUS) add another layer of
complication in breast cancer treatment. VUS refers to changes in
a normal gene sequence for which the clinical association with
disease is unclear.67 Although many efforts have been made to
evaluate and classify genetic variants, including missense, intronic,
and small in-frame insertions and deletions,68–70 the rarity of the
individual VUS makes interpretation difficult because of insuffi-
cient statistical power.
Furthermore, some breast cancer patients lack good target

proteins for therapy. Triple-negative breast cancer (TNBC), for
example, is negative for ER and progesterone receptor (PgR) and
lacks HER2 amplification and therefore cannot be treated with
classic endocrine therapy or HER2-targeted therapy.71, 72 The loss
of HER2 expression in metastatic tumors compared with HER2-
amplified primary breast cancers is frequently observed, and ER-
positive/PgR-positive/HER2-amplified tumors become TNBC after
chemotherapy.55, 73, 74 Although alternative molecular targets,
such as EGFR, which is frequently amplified and is related to poor
prognosis,75, 76 are being elucidated (Table 2), TNBC has only a
small number of therapeutic options, and remains a difficult type
of cancer in the field of breast cancer therapy.77

Lung cancer and targeted therapies. FDA approval of gefitinib, an
epidermal growth factor receptor (EGFR) inhibitor,78 accelerated
target-based therapy in lung cancer patients replacing cytotoxic
chemotherapy for first-line therapy.79, 80 For patients with EGFR-
activating mutations (exon19del or L858R), erlotinib81, 82 also

Table 2. Targeted therapies in breast cancer

Target gene Alteration Drug type Examples

HER2/ERBB2 Amplification/mutation HER2 inhibitor Trastuzumab, ado-trastuzumab emtansine,
pertuzumab, lapatinib

ER − ER inhibitor Tamoxifen

Amplification ER downregulator Fulvestrant

EGFR Amplification/mutation EGFR inhibitor Gefitinib, erlotinib, afatinib, osimertinib,
olmutinib, cetuximab

PI3-K Amplification/mutation mTOR inhibitor Rapamycin, everolimus

AKT1/2/3 Amplification

PTEN Mutation/deletion

mTOR Amplification

KRAS Amplification/mutation BRAF, MEK inhibitor Vemurafenib, trametinib

BRAF Amplification/mutation

NF1 Mutation

CDKN1B Alteration CDK4 inhibitor Palbociclib

CCND1 Amplification

BRCA1/2 Mutation/deletion PARP inhibitor Olaparib

ATM Mutation

ATR Mutation
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performed better than conventional chemotherapies, such as
cisplatin. EGFR-targeted therapy was combined with cytotoxic
drugs as a combination therapy that showed improved
progression-free survival.83, 84 However, almost all patients treated
with the EGFR inhibitors acquired resistance to the drugs due to
secondary EGFR mutations such as T790M.85, 86 Second-
generation EGFR inhibitors (e.g., afatinib87, 88) were designed to
target mutant EGFR better than the wild-type receptor. Third-
generation EGFR inhibitors, including osimertinib and olmutinib,
irreversibly bind to EGFR T790M and have been approved for use
in the U.S. and South Korea, respectively (Table 3).89–91

Crizotinib is an FDA-approved inhibitor of anaplastic lymphoma
kinase (ALK), Ros proto-oncogene 1 (ROS1), and Met proto-
oncogene (MET; Table 3). ALK is a cell surface protein that
stimulates signaling pathways, such as the Ras/Raf/MEK, PI3-K/
mTOR, and Janus kinase (JAK)/signal transducer and activator of
transcription (STAT) pathways,92 and is activated by gene
translocation and fusion with other genes.93–98 ROS1 is an orphan
receptor tyrosine kinse (RTK) activated by chromosomal rearran-
gement and fusion with other genes.99 MET, another type of RTK,
is overexpressed/amplified or exhibits an exon 14 skip-mutation
in non-small-cell lung cancer (NSCLC) patients.100 Crizotinib has
shown its superiority over standard chemotherapy in ALK-positive
lung cancer patients101, 102 and ROS1-rearranged NSCLC
patients.103 Lung adenocarcinoma patients harboring the MET
exon 14 splice site mutation also responded to crizotinib.104

However, ALK mutations, such as R1174L, L1196M, and R1275Q,
conferred resistance to crizotinib and led to the development of
second-generation ALK inhibitors. FDA has approved the use of
ceritinib,105 which targets the L1196M gatekeeper mutation, and
alectinib,106 which targets the R1174L, L1196M, and R1275Q
mutations.
BRAF is a signaling protein activated by various RTKs. In NSCLC,

2–4% of patients possess BRAF V600 mutations.100 Although BRAF
inhibitors (vemurafenib and dabrafenib) were originally developed
for the treatment of melanoma, recent clinical trials with the
inhibitors showed potential in BRAF V600 mutant NSCLC patients
(Table 3). Vemurafenib resulted in tumor regression in the majority
(14 of 19) of NSCLC patients, and the objective response rate was
42%.107 In a phase 2 trial, dabrafenib treatment with trametinib, a
MEK inhibitor, reached 63% overall response in BRAF V600E-
mutant NSCLC patients, who had documented tumor progression
after previous platinum-based chemotherapy.108

Immunotherapy has received substantial attention recently as a
cancer therapy. Unlike other therapies, the goal of immunother-
apy is to boost or restore the ability of immune cells to kill tumor
cells.109 Tumor cells suppress and evade the immune system
through interactions between the programmed cell death protein
1 (PD-1) of T-cells and the PD ligand 1 (PD-L1) of tumor cells.110

Two monoclonal antibodies against PD-1 (Table 3), including
nivolumab111–114 and pembrolizumab,115, 116 have received FDA

approval for second-line treatment against NSCLC that express
PD-L1.

Challenges of targeted lung cancer therapies. The war against
drug resistance is probably the most difficult challenge in lung
cancer treatment. Clonal evolution, the accumulation of genetic
and epigenetic changes over time in individual cells,117, 118 is now
believed to be the root of drug resistance.119, 120 Biopsies that
were taken after the failure of rociletinib targeting EGFR mutant
(T790M)-expressing lung cancer121 showed that at least a portion
of the resistant tumor still expressed the T790-wild-type pro-
tein.120 The wild-type clones existed before treatment with
rociletinib. Piotrowska et al. concluded that combination treat-
ment using rociletinib targeting mutant EGFR T790M clones and
other drugs targeting wild-type EGFR T790 are required to further
improve the drug response rate and final outcomes.120 However,
when first-generation EGFR inhibitors (gefitinib and erlotinib) and
third-generation EGFR inhibitors (rociletinib/CO-1686, osimertinib/
AZD9291, olmutinib/HM61713 and WZ4002) were used in
combination, a new mutation of C797S emerged and complicated
the therapeutic options.122 Studies showed that if the C797S
mutation was on a different allele of T790M, combination
treatment with gefitinib and WZ4002 inhibited EGFR signaling.
In contrast, if C797S and T790M were on the same EGFR allele, the
combination of gefitinib and WZ4002 was not effective.122

Monitoring changes in cancer cells at the molecular level will be
helpful in preventing and resolving drug resistance in lung cancer.

Melanoma and targeted therapies. BRAF in the mitogen-activated
protein kinase (MAPK) pathway (Ras-Raf-MEK-ERK) is constitutively
activated by mutations in 40% of melanomas.123 The most
common mutations are V600E and V600K, representing 73 and
19%, respectively.124 The growth of BRAF V600E-expressing
melanoma can be inhibited directly by vemurafenib125 or
dabrafenib (Table 4).126 Drug resistance, also called “bypass
tracks”, is increasingly relevant as targeted therapy emerges.127

Patients with BRAF mutations acquired resistance due to increased
expression and phosphorylation of platelet-derived growth factor
receptor beta (PDGFβ) and N-Ras.128 The MEK inhibitor, trametinib,
also suppresses BRAF V600E-expressing or V600K-expressing
melanomas by targeting the BRAF downstream MAPK pathway
(Table 4).129 Because drug monotherapies commonly result in
resistance,128, 130 combination treatment with a BRAF inhibitor
and a MEK inhibitor has been prescribed to increase the patient’s
response rate and also lengthen their survival time.131 Especially,
combination therapy as a first-line approach increased overall
survival rates in a clinical trial.132 In patients with BRAF V600
mutations, a combination of cobimetinib (MEK inhibitor) and
vemurafenib treatment showed median overall survival of
22.3 months, compared with 17.4 months by placebo and
vemurafenib treatment.132

Table 3. Targeted therapies in lung cancer

Target gene Alteration Drug type Candidate

EGFR Amplification EGFR inhibitor Gefitinib, erlotinib, afatinib, osimertinib, olmutinib

ALK Translocation/mutation ALK inhibitor Crizotinib, alectinib, ceritinib

MET Amplification MET/ROS1 inhibitor Crizotinib, cabozantinib

RET Amplification/mutation

ROS1 Fusion

PD-L1 − PD-1 inhibitor Nivolumab, pembrolizumab

HER2 Amplification HER2 inhibitor Trastuzumab, afatinib, dacomitinib

BRAF Amplification/mutation BRAF inhibitor Vemurafenib, dabrafenib
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Melanoma cells express the CTLA-4 and PD-1 immune receptor
proteins that are normally expressed in T-cells. Because each of
these two proteins can inhibit activation of T-cells and down-
regulate the immune response, the abnormal expression of CTLA-
4 and PD-1 in tumor cells is suggested as a molecular mechanism
of immune evasion in tumors.133 Ipilimumab, a CTLA-4 mono-
clonal antibody, was approved by the FDA for treatment of
patients with metastatic melanoma (Table 4).134, 135 The PD-1
monoclonal antibodies, nivolumab136–138 and pembrolizumab,139

were also effective against metastatic melanoma (Table 4).
Ipilimumab and nivolumab are also used in combination to treat
melanoma.140

Challenges of targeted melanoma therapies. Similar to other types
of cancer, one of the greatest challenges in melanoma treatment
is the relapse and development of resistant disease after therapy.
Recently, even patients who have undergone immunotherapy
were shown to acquire resistance to PD-1 blockade in mela-
noma.141 Zaretsky et al. reported a delayed relapse of patients
who had had initial tumor regression induced by continuous
pembrolizumab treatment. The analyses of biopsies showed that
JAK1/2 truncating mutations resulted in loss of PD-L1 expression
and changed the molecular profile of the melanoma.141, 142

Overall, although immunotherapy has become a promising and
unique strategy for cancer treatment, an integrative strategy
should be prepared to prevent drug resistance.

TOOLS FOR PRECISION ONCOLOGY
The demand for new diagnostic and treatment tools has been
driven by precision oncology. In particular, the use of liquid
biopsies and patient-derived xenograft (PDX) models has received
considerable attention from researchers and clinicians. For
precision diagnosis, having new diagnostic platforms like liquid
biopsies is crucial because this type of assay can gather
information from patients in a manner that is minimally invasive.
For precision therapy, testing drugs in a paradigm like the PDX
model is beneficial because this model can be used to represent
tumors of patients before drugs are prescribed.

Liquid biopsies
A biopsy is an examination of tissue obtained from a living body
to discover the presence, cause, or extent of a disease. Although
biopsies have become more important as the field of precision
oncology continues to expand, sampling some types of tumors is
still difficult and can result in diagnostic errors. To address this
problem, biofluid samples, including serum, plasma, saliva, urine,
and cerebrospinal fluid, are now being used to screen for tumors,
characterize molecular features, and analyze tumor types.143–146

Liquid biopsies can provide clear information regarding the
genetic makeup of each tumor. Because liquid biopsies are
relatively non-invasive, clinicians can repeat sampling and monitor
disease progression over time without performing solid-tissue
biopsies. Circulating tumor cells (CTCs) and cell-free DNA (cfDNA)
are promising components of liquid biopsies.
CTCs are cancer cells that are shed into the vascular system

from the primary tumor and are circulating around the body in the

blood.147 CTCs have been detected in patients with metastatic
tumors at an average concentration of 1–10 cells/ml, but are
extremely rare in individuals without tumors or with non-
malignant tumors.143, 148–150 Circulating non-tumor epithelial cells
in the blood of patients undergoing surgery and the difficulty in
identifying markers of CTCs pose challenges to this technology.
However, because dynamic changes occur in surface markers of
CTCs, analysis of DNA/RNA from CTCs can enable clinicians to
predict tumor progression and drug susceptibility of the
patient.146, 151–154 A clinical trial with CTCs showed its promise
as a prognostic marker and limitation as an indicator of changing
chemotherapy.155 The trial divided patients with metastatic breast
cancer into four groups. Patients whose CTC number was not
increased at baseline remained on initial therapy (arm A), and
patients whose CTC numbers had been increased, but later
decreased after 21 days of therapy, also remained on the initial
therapy (arm B). Patients whose CTC numbers were consistently
increased were randomly assigned to maintain initial therapy (arm
C1) or changed to an alternative therapy (arm C2). Overall survival
rates between arms A, B, and C (sum of C1 and C2) showed
significant differences between groups (i.e., 35 vs. 23 vs.
13 months, respectively). However, no difference was observed
between the overall survival rates of arms C1 and C2. This result
indicates that CTC is a strong prognostic marker of overall survival
in patients with metastatic breast cancer, although changing
chemotherapy options based on CTC does not prolong the overall
survival rate.155 In summary, monitoring the efficacy of adjuvant
therapies is feasible with CTC-based liquid biopsies, analyses of
CTCs will be one of the key players in precision diagnosis.
cfDNA refers to tumor DNA released from primary cancers into

the biofluids of cancer patients.146 The majority of cfDNA is
derived from cells that have undergone apoptosis or necrosis and
then release fragments of DNA of approximately 150–180 bp in
length.144, 146 Similar to acquiring CTC, tumor cell-derived cfDNA is
difficult to obtain because of the extensive amount of cfDNA that
is also released from non-malignant cells.156 Nevertheless, cfDNA
could provide a better diagnostic tool than CTCs from the same
patient to detect mutations.157 Because cfDNA could be used to
monitor clonal evolution and emergence of drug resistance,158

this type of analysis might assist clinicians in making tailored
therapeutic decisions for cancer patients in the future.

PDX models
The PDX model uses actual patient tumor fragments that have
been sectioned from the cancer patient and implanted into
immunodeficient mice.159 By treating mice harboring the PDX
tumor fragment, the efficacy of a drug can be predicted before
being prescribed to the actual patient. Thus PDX is a platform that
provides evidence-based guidelines in choosing the correct and
most effective drug to prescribe to a patient. For preclinical drug
development, the PDX model overcomes the important limitation
of using conventional cancer cell lines, which have developed
characteristics that do not accurately reflect the actual cancer
patient tumor. Conventional cell line-based xenografts lack the
broad diversity and heterogeneity of cancer.160 In contrast, the
PDX model preserves the heterogeneity and microenvironment of
the original tumor after being passaged in mice.159, 160 In 1985 the

Table 4. Targeted therapies in melanoma

Target gene Alteration Drug type Candidate

BRAF Amplification/mutation BRAF inhibitor Vemurafenib, dabrafenib

MEK Amplification/mutation MEK inhibitor Trametinib, cobimetinib

CTLA-4 Amplification CTLA-4 inhibitor Ipilimumab

PD-1 − PD-1 inhibitor Nivolumab, pembrolizumab
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PDX model was confirmed to have good predictive value in
showing that drug responses from PDX models corresponded very
well with the response from patients.161 The tumor heterogeneity
of the PDX was shown to be well preserved in patient-derived
tumor cells (PDTC).162 These results support the potential of the
PDTC-PDX pipeline for drug development. Although the lack of
functional immune reactions in this model is a limitation,
humanized mice that mimic the human immune system and
resultant microenvironment allow researchers to better under-
stand translational oncology.163 Overall, this clinically relevant
mouse model should be beneficial in drug development and
precision therapy for cancer patients.
Establishing PDX models worldwide reflects the high expecta-

tions of translating preclinical research to the clinic. Novartis, a
large pharmaceutical company (Switzerland), has established
about 1000 PDX models expressing a diverse pool of driver
mutations in cancer.164 EurOPDX, a European consortium for PDX,
has established more than 1500 subcutaneous and orthotopic
PDX models165 and the Jackson Laboratory (ME, USA) has created
about 550 PDX models.165 The US–China (Henan) Hormel Cancer
Institute (Zhengzhou, China) has established unique PDX models
that include Wilms’ tumor and esophageal cancer models. Dana-
Farber Cancer Institute (MA, USA) established a Public Repository
of Xenografts (PRoXe), which includes PDXs of leukemia and
lymphoma.166 Of particular note, EurOPDX launched cBioPortal,
where information on models and their molecular annotation
have been opened to the public to provide a platform of PDX
studies.167

LIMITATIONS AND PROSPECTS OF PRECISION ONCOLOGY
Despite the growing enthusiasm and enormous investment in
precision oncology, empirical evidence and verification is still
critically needed showing that precision therapy is significantly
better than conventional treatments.168, 169 Results from one of
the first clinical trials based on precision oncology were not
promising.170 In this trial, the genomic information of patients was
analyzed and patients who had targetable driver mutations were
subjected to precision therapy. Unfortunately, the use of
molecular-targeted drugs did not result in improved
progression-free survival compared to treatments based on the
clinicians’ choice (i.e., randomized trial). Another study that
enrolled patients with different types of tumors, including colon,
thyroid and ovarian cancer expressing the BRAF V600 mutation,
showed similar results.107 In this study, vemurafenib, an FDA-
approved drug against melanoma, was only effective in some of
the non-melanoma patients. These results suggest that prescrip-
tion of drugs against a certain type of cancer does not guarantee
success in treatment of other types of cancers although they
harbor the same mutation/alteration on the target protein.
Several factors could have led to the lack of success of the

current precision oncology-based trials.171 One factor could be the
lack of specific molecular-targeted drugs. Drugs are not yet
available for many drivers in carcinogenesis at least partly due to
the tremendous cost in money and time. Furthermore, many
drugs are so toxic that clinicians are forced to reduce the dose,
which results in only a partial inhibition of the targeted pathway
giving the tumor the opportunity to develop resistance to the
drugs. Other factors include tumor heterogeneity and constant
evolution.119, 172–174 In addition, the genomic signature from one
part of the tumor measured at a certain time point likely does not
represent other parts or different time points of tumor develop-
ment. These features pose a huge hurdle to precision oncology.
To address tumor heterogeneity and evolution, the National

Cancer Institute recently revealed a new trial design of
genomically informed precision therapy, referred to as the NCI-
MATCH (Molecular Analysis for Therapy Choice) Trial.175, 176 NCI-
MATCH aims to identify ‘actionable mutations’ and test whether a

drug or drug combinations are active against specific molecular
abnormalities.176 The multi-arm phase 2 trial initially aimed to
screen 3000 patients and enroll 1000 adults with advanced solid
tumors for which standard therapy has not yet been developed.
The initial trial with 10 treatment arms has completed accrual and
patient recruitment was closed in November 2015 for planned
interim analysis. Based on the low number of actionable
mutations and the enrollment number exceeding expectations
from the interim analysis, the trial reopened on May 31, 2016,
extending treatment arms to 24 and aiming to screen 6000
patients.177 Genetic variants of the patients will be analyzed for
143 genes and the patients assigned to one of several different
treatment groups.175 The hope is that this new design will increase
the flexibility of clinical decisions and improve the overall
outcome of the patients.
One of the most promising and successful examples of

precision oncology is the treatment of chronic myeloid leukemia
(CML) with imatinib.10 The high proportion of the clonal BCR–ABL
translocation in CML enabled almost all CML patients to benefit
from imatinib.178 Likewise, finding concurrent driver mutations or
clonal markers will benefit a large group of people. The hope is
that predicting/monitoring changes in cells and dividing patients
with subgroups before or at the point of cancer relapse will
improve clinical outcomes.
Pan-cancer precision diagnosis and therapy are emerging. For

instance, pembrolizumab, a PD-1 inhibitor, is approved by the FDA
for treatment of metastatic melanoma,179 metastatic NSCLC,180

Hodgkin’s lymphoma,181 and metastatic head and neck squamous
cell carcinomas.182 Although the proportion of patients who are
eligible for the treatment is lower than that of imatinib-CML cases,
this target-based approach provided a better treatment option
compared to adjuvant chemotherapy. Furthermore, RTK inhibitors
also aim to cover patients across various cancer types. One of the
newest approaches is a fibroblast growth factor receptor (FGFR)
inhibitor that directly targets its genetic alterations. BGJ398, a
FGFR1-3 inhibitor, was tested in patients with advanced solid
tumors including lung, breast, bladder, colon, and liver.183 The
phase 1 trial showed that BGJ398 exhibits anti-tumor activity
against FGFR1-amplified NSCLC and FGFR3-mutant bladder
cancer.183 For precision diagnosis, eligible patients for targeted
therapies will be screened and for precision therapy, the targeted
drug(s) will be administered at a correct dose to benefit each
individual.
The advances in lipidomics, proteomics, and metabolomics will

aid in the implementation of precision oncology. In the field of
lipidomics, arachidonic acid is a signaling precursor that has
attracted interest for anti-cancer therapy.184, 185 A recent study of
lipidomic profiling showed that lung tumors possess higher levels
of arachidonic acid-containing phospholipids and phosphatidyli-
nositols compared to normal tissue.185 Myc inactivation caused a
significant decrease in arachidonic acid and its lipid metabo-
lites.185 These results suggest that arachinonic acid and its
metabolites can serve as biomarkers in precision diagnosis. In
the field of proteomics, cryo-electron microscopy (cryo-EM)
has received considerable attention as a tool for “visual
proteomics”.10, 186 For example, the structure of the ATP-binding
cassette subfamily G2 (ABCG2), a human multidrug transporter,
revealed that two cholesterol molecules are bound to a
hydrophobic pocket between the transmembrane domains.187

The cryo-EM structure provides structural insights of cholesterol
recognition and pharmacokinetics of ABCG2 in precision therapy.
In the field of metabolomics, gut microbiota possess a large
repertoire of metabolizing xenobiotics, small molecules that are
foreign to the human body.188 For example, irinotecan becomes
SN-38, an active topoisomerase inhibitor in the body.189 SN-38 is
glucuronidated by host liver enzymes and loses its activity (SN-
38G). However, bacterial β-glucuronidase hydrolyzes and reacti-
vates SN-38G in the large intestine, causing intestinal damage and
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diarrhea.189 Accumulative knowledge of microbiota in each
patient could enhance the efficacy of precision therapy and lower
adverse side effects.
To summarize, precision oncology has emerged to improve

efficacy, minimize side effects of drugs and avoid drug resistance
in cancer therapy. Precision oncology is categorized into two
segments, precision diagnosis and precision therapy. In precision
diagnosis, mutations of important genes such as BRCA1/2 have led
clinicians to tailor treatment options to individuals. Improvement
on genetic tests facilitated molecular target-based precision
therapy. In breast cancer, lung cancer, and melanoma, drugs that
inhibit important target proteins prolonged progression-free
survival and overall survival of the patients compared to genotoxic
chemotherapy. Although difficulties due to clonal evolution and
cancer heterogeneity still exist, state-of-the-art tools such as liquid
biopsies and PDX models will enhance the efficacy of precision
diagnosis and precision therapy, respectively. Supported by
government-driven projects worldwide, precision oncology will
be the standard pipeline of cancer therapy.
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