Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Honey bees as models for gut microbiota research

Abstract

The gut microbiota of the honey bee (Apis mellifera) offers several advantages as an experimental system for addressing how gut communities affect their hosts and for exploring the processes that determine gut community composition and dynamics. A small number of bacterial species dominate the honey bee gut community. These species are restricted to bee guts and can be grown axenically and genetically manipulated. Large numbers of microbiota-free hosts can be economically reared and then inoculated with single isolates or defined communities to examine colonization patterns and effects on host phenotypes. Honey bees have been studied extensively, due to their importance as agricultural pollinators and as models for sociality. Because of this history of bee research, the physiology, development, and behavior of honey bees is relatively well understood, and established behavioral and phenotypic assays are available. To date, studies on the honey bee gut microbiota show that it affects host nutrition, weight gain, endocrine signaling, immune function, and pathogen resistance, while perturbation of the microbiota can lead to reduced host fitness. As in humans, the microbiota is concentrated in the distal part of the gut, where it contributes to digestion and fermentation of plant cell wall components. Much like the human gut microbiota, many bee gut bacteria are specific to the bee gut and can be directly transmitted between individuals through social interaction. Although simpler than the human gut microbiota, the bee gut community presents opportunities to understand the processes that govern the assembly of specialized gut communities as well as the routes through which gut communities impact host biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Similarities (center) and differences (right and left sides) between the gut microbiota of humans and the gut microbiota of honey bees.
Fig. 2: Design of gnotobiotic honey bee studies.
Fig. 3: Summary of the effects of the honey bee gut microbiota on host and the gut microbial metabolism.

Similar content being viewed by others

References

  1. Ghannoum, M. A. et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 6, e1000713 (2010).

    PubMed  PubMed Central  Google Scholar 

  2. Findley, K. et al. Topographic diversity of fungal and bacterial communities in human skin. Nature 498, 367–370 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Drell, T. et al. Characterization of the vaginal micro- and mycobiome in asymptomatic reproductive-age Estonian women. PLoS One 8, e54379 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).

    CAS  PubMed  Google Scholar 

  5. Trompette, A. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20, 159–166 (2014).

    CAS  PubMed  Google Scholar 

  6. Rooks, M. G. & Garrett, W. S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16, 341–352 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kamada, N., Chen, G. Y., Inohara, N. & Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 14, 685–690 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Qin, N. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 513, 59–64 (2014).

    CAS  PubMed  Google Scholar 

  9. Zitvogel, L. et al. Cancer and the gut microbiota: an unexpected link. Sci. Transl. Med. 7, 271ps1 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. Engel, P., Martinson, V. G. & Moran, N. A. Functional diversity within the simple gut microbiota of the honey bee. Proc. Natl. Acad. Sci. USA 109, 11002–11007 (2012).

    CAS  PubMed  Google Scholar 

  11. Zheng, H. et al. Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. MBio 7, e01326–16 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Raymann, K., Shaffer, Z. & Moran, N. A. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol. 15, e2001861 (2017).

    PubMed  PubMed Central  Google Scholar 

  13. Lee, F. J., Rusch, D. B., Stewart, F. J., Mattila, H. R. & Newton, I. L. Saccharide breakdown and fermentation by the honey bee gut microbiome. Environ. Microbiol. 17, 796–815 (2015).

    CAS  PubMed  Google Scholar 

  14. Martinson, V. G. et al. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol. Ecol. 20, 619–628 (2011).

    PubMed  Google Scholar 

  15. Moran, N. A., Hansen, A. K., Powell, J. E. & Sabree, Z. L. Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS One 7, e36393 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sabree, Z. L., Hansen, A. K. & Moran, N. A. Independent studies using deep sequencing resolve the same set of core bacterial species dominating gut communities of honey bees. PLoS One 7, e41250 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 14, 374–384 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Leonard, S. P. et al. Genetic engineering of bee gut microbiome bacteria with a toolkit for modular assembly of broad-host-range plasmids. ACS Synth. Biol. 7, 1279–1290 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bonilla-Rosso, G. & Engel, P. Functional roles and metabolic niches in the honey bee gut microbiota. Curr. Opin. Microbiol. 43, 69–76 (2018).

    CAS  PubMed  Google Scholar 

  20. Anderson, K. E. & Ricigliano, V. A. Honey bee gut dysbiosis: a novel context of disease ecology. Curr. Opin. Insect Sci. 22, 125–132 (2017).

    PubMed  Google Scholar 

  21. Zayed, A. & Robinson, G. E. Understanding the relationship between brain gene expression and social behavior: lessons from the honey bee. Annu. Rev. Genet. 46, 591–615 (2012).

    CAS  PubMed  Google Scholar 

  22. von Frisch, K. The Dance Language and Orientation of Bees (Harvard University Press, Cambridge, MA, USA, 1967).

    Google Scholar 

  23. Robinson, G. E., Page, R. E. Jr., Strambi, C. & Strambi, A. Hormonal and genetic control of behavioral integration in honey bee colonies. Science 246, 109–112 (1989).

    CAS  PubMed  Google Scholar 

  24. Page, R. E. Jr. & Peng, C. Y. Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp. Gerontol. 36, 695–711 (2001).

    PubMed  Google Scholar 

  25. Shpigler, H. Y. et al. Deep evolutionary conservation of autism-related genes. Proc. Natl. Acad. Sci. USA 114, 9653–9658 (2017).

    CAS  PubMed  Google Scholar 

  26. Gallai, N., Salles, J. M., Settele, J. & Vaissiere, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).

    Google Scholar 

  27. Stokstad, E. The case of the empty hives. Science 316, 970–972 (2007).

    CAS  PubMed  Google Scholar 

  28. Honeybee Genome Sequencing Consortium. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443, 931–949 (2006).

    Google Scholar 

  29. Wallberg, A. et al. A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nat. Genet. 46, 1081–1088 (2014).

    CAS  PubMed  Google Scholar 

  30. Nelson, R. M., Wallberg, A., Simões, Z. L. P., Lawson, D. J. & Webster, M. T. Genomewide analysis of admixture and adaptation in the Africanized honeybee. Mol. Ecol. 26, 3603–3617 (2017).

    CAS  PubMed  Google Scholar 

  31. Goodman, A. L. et al. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc. Natl. Acad. Sci. USA 108, 6252–6257 (2011).

    CAS  PubMed  Google Scholar 

  32. Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).

    PubMed  Google Scholar 

  33. Hamilton, D. R. & Bradley, R. E. Sr. An integrated system for the production of gnotobiotic Anopheles quadrimaculatus. J. Invertebr. Pathol. 30, 318–324 (1977).

    CAS  PubMed  Google Scholar 

  34. Dillon, R. & Charnley, K. Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res. Microbiol. 153, 503–509 (2002).

    CAS  PubMed  Google Scholar 

  35. Oertel, E. Metamorphosis in the honeybee. J. Morphol. 50, 295–339 (1930).

    Google Scholar 

  36. Martinson, V. G., Moy, J. & Moran, N. A. Establishment of characteristic gut bacteria during development of the honeybee worker. Appl. Environ. Microbiol. 78, 2830–2840 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bodenheimer, F. S. Studies in animal populations. II. Seasonal population-trends of the honey-bee. Q. Rev. Biol. 12, 406–425 (1937).

    Google Scholar 

  38. Winston, M. L. The Biology of the Honey Bee (Harvard University Press, Cambridge, MA, USA, 1987).

    Google Scholar 

  39. Hroncova, Z. et al. Variation in honey bee gut microbial diversity affected by ontogenetic stage, age and geographic location. PLoS One 10, e0118707 (2015).

    PubMed  PubMed Central  Google Scholar 

  40. Vojvodic, S., Rehan, S. M. & Anderson, K. E. Microbial gut diversity of Africanized and European honey bee larval instars. PLoS One 8, e72106 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Nelson, J. A., Lineburg, B. & Sturtevant, A. P. Growth and Feeding of Honeybee Larvae (US Department of Agriculture, Washington, DC, USA, 1924).

    Google Scholar 

  42. Jay, S. C. The development of honeybees in their cells. J. Apic. Res. 2, 117–134 (2015).

    Google Scholar 

  43. White, P. B. The normal bacterial flora of the bee. J. Pathol. Bacteriol. 24, 64–78 (1921).

    Google Scholar 

  44. Gilliam, M. Microbial sterility of the intestinal content of the immature honey bee, Apis mellifera. Ann. Entomol. Soc. Am. 64, 315–316 (1971).

    Google Scholar 

  45. Schwarz, R. S., Moran, N. A. & Evans, J. D. Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers. Proc. Natl. Acad. Sci. USA 113, 9345–9350 (2016).

    CAS  PubMed  Google Scholar 

  46. Powell, J. E., Martinson, V. G., Urban-Mead, K. & Moran, N. A. Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Appl. Environ. Microbiol. 80, 7378–7387 (2014).

    PubMed  PubMed Central  Google Scholar 

  47. Kwong, W. K., Engel, P., Koch, H. & Moran, N. A. Genomics and host specialization of honey bee and bumble bee gut symbionts. Proc. Natl. Acad. Sci. USA 111, 11509–11514 (2014).

    CAS  PubMed  Google Scholar 

  48. Schmehl, D. R., Tomé, H. V. V., Mortensen, A. N., Martins, G. F. & Ellis, J. D. Protocol for the in vitro rearing of honey bee (Apis mellifera L.) workers. J. Apic. Res. 55, 113–129 (2016).

    Google Scholar 

  49. Crane, E. Bees and Beekeeping: Science, Practice, and World Resources (Comstock Pub. Associates, Ithaca, NY, USA, 1990).

    Google Scholar 

  50. Kasiotis, K. M., Anagnostopoulos, C., Anastasiadou, P. & Machera, K. Pesticide residues in honeybees, honey and bee pollen by LC–MS/MS screening: reported death incidents in honeybees. Sci. Total Environ. 485–486, 633–642 (2014).

    PubMed  Google Scholar 

  51. Rumkee, J. C. O., Becher, M. A., Thorbek, P. & Osborne, J. L. Modeling effects of honeybee behaviors on the distribution of pesticide in nectar within a hive and resultant in-hive exposure. Environ. Sci. Technol. 51, 6908–6917 (2017).

    CAS  PubMed  Google Scholar 

  52. Kwong, W. K. et al. Dynamic microbiome evolution in social bees. Sci. Adv. 3, e1600513 (2017).

    PubMed  PubMed Central  Google Scholar 

  53. Cox-Foster, D. L. et al. A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318, 283–287 (2007).

    CAS  PubMed  Google Scholar 

  54. Disayathanoowat, T., Young, J. P., Helgason, T. & Chantawannakul, P. T-RFLP analysis of bacterial communities in the midguts of Apis mellifera and Apis cerana honey bees in Thailand. FEMS Microbiol. Ecol. 79, 273–281 (2012).

    CAS  PubMed  Google Scholar 

  55. Ahn, K., Xie, X., Riddle, J., Pettis, J. & Huang, Z. Y. Effects of long distance transportation on honey bee physiology. Psyche 2012, 9 (2012).

    Google Scholar 

  56. Jeyaprakash, A., Hoy, M. A. & Allsopp, M. H. Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using 16S rRNA sequences. J. Invertebr. Pathol. 84, 96–103 (2003).

    CAS  PubMed  Google Scholar 

  57. Corby-Harris, V. et al. Origin and effect of α2.2 Acetobacteraceae in honey bee larvae and description of Parasaccharibacter apium gen. nov., sp. nov. Appl. Environ. Microbiol. 80, 7460–7472 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Mohr, K. I. & Tebbe, C. C. Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ. Microbiol. 8, 258–272 (2006).

    CAS  PubMed  Google Scholar 

  59. Anderson, K. E., Rodrigues, P. A., Mott, B. M., Maes, P. & Corby-Harris, V. Ecological succession in the honey bee gut: shift in Lactobacillus strain dominance during early adult development. Microb. Ecol. 71, 1008–1019 (2016).

    CAS  PubMed  Google Scholar 

  60. Anderson, K. E. et al. Microbial ecology of the hive and pollination landscape: bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS One 8, e83125 (2013).

    PubMed  PubMed Central  Google Scholar 

  61. Olofsson, T. C., Alsterfjord, M., Nilson, B., Butler, E. & Vásquez, A. Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera. Int. J. Syst. Evol. Microbiol. 64, 3109–3119 (2014).

    PubMed  PubMed Central  Google Scholar 

  62. Rokop, Z. P., Horton, M. A. & Newton, I. L. Interactions between cooccurring lactic acid bacteria in honey bee hives. Appl. Environ. Microbiol. 81, 7261–7270 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Milani, C. et al. Phylotype-level profiling of lactobacilli in highly complex environments by means of an ITS-based metagenomic approach. Appl. Environ. Microbiol. 84, e00706–18 (2018).

    PubMed  Google Scholar 

  64. Raymann, K. et al. Imidacloprid decreases honey bee survival rates but does not affect the gut microbiome. Appl. Environ. Microbiol. 84, e00545–18 (2018).

    CAS  PubMed  Google Scholar 

  65. Segers, F. H., Kešnerová, L., Kosoy, M. & Engel, P. Genomic changes associated with the evolutionary transition of an insect gut symbiont into a blood-borne pathogen. ISME J. 11, 1232–1244 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rangberg, A., Diep, D. B., Rudi, K. & Amdam, G. V. Paratransgenesis: an approach to improve colony health and molecular insight in honey bees (Apis mellifera)? Integr. Comp. Biol. 52, 89–99 (2012).

    PubMed  Google Scholar 

  67. Rangberg, A., Mathiesen, G., Amdam, G. V. & Diep, D. B. The paratransgenic potential of Lactobacillus kunkeei in the honey bee Apis mellifera. Benef. Microbes 6, 513–523 (2015).

    CAS  PubMed  Google Scholar 

  68. Sonnenburg, J. L. Microbiome engineering. Nature 518, S10 (2015).

    CAS  PubMed  Google Scholar 

  69. Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C. & Moran, N. A. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc. Natl. Acad. Sci. USA 114, 4775–4780 (2017).

    CAS  PubMed  Google Scholar 

  70. Ihle, K. E., Baker, N. A. & Amdam, G. V. Insulin-like peptide response to nutritional input in honey bee workers. J. Insect Physiol. 69, 49–55 (2014).

    CAS  PubMed  Google Scholar 

  71. Kannan, K. & Fridell, Y. W. C. Functional implications of Drosophila insulin-like peptides in metabolism, aging, and dietary restriction. Front. Physiol. 4, 288 (2013).

    PubMed  PubMed Central  Google Scholar 

  72. Shin, S. C. et al. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334, 670–674 (2011).

    CAS  PubMed  Google Scholar 

  73. Nelson, C. M., Ihle, K. E., Fondrk, M. K., Page, R. E. & Amdam, G. V. The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biol. 5, e62 (2007).

    PubMed  PubMed Central  Google Scholar 

  74. Kešnerová, L. et al. Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biol. 15, e2003467 (2017).

    PubMed  PubMed Central  Google Scholar 

  75. Harris, J. W. & Woodring, J. Effects of stress, age, season, and source colony on levels of octopamine, dopamine and serotonin in the honey bee (Apis mellifera L.) brain. J. Insect Physiol. 38, 29–35 (1992).

    CAS  Google Scholar 

  76. Flint, H. J., Scott, K. P., Louis, P. & Duncan, S. H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577–589 (2012).

    CAS  PubMed  Google Scholar 

  77. Flint, H. J., Bayer, E. A., Rincon, M. T., Lamed, R. & White, B. A. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat. Rev. Microbiol. 6, 121–131 (2008).

    CAS  PubMed  Google Scholar 

  78. Frias, B. E. D., Barbosa, C. D. & Lourenco, A. P. Pollen nutrition in honey bees (Apis mellifera): impact on adult health. Apidologie 47, 15–25 (2016).

    CAS  Google Scholar 

  79. Mollet, J. C., Leroux, C., Dardelle, F. & Lehner, A. Cell wall composition, biosynthesis and remodeling during pollen tube growth. Plants 2, 107–147 (2013).

    PubMed  PubMed Central  Google Scholar 

  80. Kwong, W. K., Zheng, H. & Moran, N. A. Convergent evolution of a modified, acetate-driven TCA cycle in bacteria. Nat. Microbiol. 2, 17067 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Koch, H., Abrol, D. P., Li, J. & Schmid-Hempel, P. Diversity and evolutionary patterns of bacterial gut associates of corbiculate bees. Mol. Ecol. 22, 2028–2044 (2013).

    CAS  PubMed  Google Scholar 

  82. Fürst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J. & Brown, M. J. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506, 364–366 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Powell, E., Ratnayeke, N. & Moran, N. A. Strain diversity and host specificity in a specialized gut symbiont of honeybees and bumblebees. Mol. Ecol. 25, 4461–4471 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Powell, J. E., Leonard, S. P., Kwong, W. K., Engel, P. & Moran, N. A. Genome-wide screen identifies host colonization determinants in a bacterial gut symbiont. Proc. Natl. Acad. Sci. USA 113, 13887–13892 (2016).

    CAS  PubMed  Google Scholar 

  85. Goodman, A. L. et al. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6, 279–289 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kwong, W. K., Mancenido, A. L. & Moran, N. A. Immune system stimulation by the native gut microbiota of honey bees. R. Soc. Open Sci. 4, 170003 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. Engel, P., Bartlett, K. D. & Moran, N. A. The bacterium Frischella perrara causes scab formation in the gut of its honeybee host. MBio 6, e00193–15 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Tang, H. Regulation and function of the melanization reaction in Drosophila. Fly 3, 105–111 (2009).

    CAS  PubMed  Google Scholar 

  89. Emery, O., Schmidt, K. & Engel, P. Immune system stimulation by the gut symbiont Frischella perrara in the honey bee (Apis mellifera). Mol. Ecol. 26, 2576–2590 (2017).

    CAS  PubMed  Google Scholar 

  90. Raymann, K., Bobay, L. M. & Moran, N. A. Antibiotics reduce genetic diversity of core species in the honeybee gut microbiome. Mol. Ecol. 27, 2057–2066 (2018).

    CAS  PubMed  Google Scholar 

  91. Li, J. H. et al. New evidence showing that the destruction of gut bacteria by antibiotic treatment could increase the honey bee’s vulnerability to Nosema infection. PLoS One 12, e0187505 (2017).

    PubMed  PubMed Central  Google Scholar 

  92. Moeller, A. H. et al. Cospeciation of gut microbiota with hominids. Science 353, 380–382 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Tung, J. et al. Social networks predict gut microbiome composition in wild baboons. eLife 4, 305224 (2015).

    Google Scholar 

  94. Wong, A. C., Chaston, J. M. & Douglas, A. E. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. ISME J. 7, 1922–1932 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Tol, van, S. & Dimopoulos, G . In: A. S, Raikhel ed. Advances in Insect Physiology 51, 243–291 (Academic Press: Cambridge, MA, USA, 2016).

  96. Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl. Acad. Sci. USA 114, 9641–9646 (2017).

    CAS  PubMed  Google Scholar 

  97. McFrederick, Q. S. et al. Flowers and wild megachilid bees share microbes. Microb. Ecol. 73, 188–200 (2017).

    PubMed  Google Scholar 

  98. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Google Scholar 

  99. Engel, P., Stepanauskas, R. & Moran, N. A. Hidden diversity in honey bee gut symbionts detected by single-cell genomics. PLoS Genet. 10, e1004596 (2014).

    PubMed  PubMed Central  Google Scholar 

  100. Steele, M. I., Kwong, W. K., Whiteley, M. & Moran, N. A. Diversification of type VI secretion system toxins reveals ancient antagonism among bee gut microbes. MBio 8, e01630–17 (2017).

    PubMed  PubMed Central  Google Scholar 

  101. Russell, A. B. et al. A type VI secretion-related pathway in Bacteroidetes mediates interbacterial antagonism. Cell Host Microbe 16, 227–236 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kwong, W. K., Steele, M. I. & Moran, N. A. Genome sequences of Apibacter spp., gut symbionts of Asian honey bees. Genome Biol. Evol. 10, 1174–1179 (2018).

    PubMed  PubMed Central  Google Scholar 

  103. Carlucci, C., Petrof, E. O. & Allen-Vercoe, E. Fecal microbiota-based therapeutics for recurrent Clostridium difficile infection, ulcerative colitis and obesity. EBioMedicine 13, 37–45 (2016).

    PubMed  PubMed Central  Google Scholar 

  104. Mountfort, D. O., Campbell, J. & Clements, K. D. Hindgut fermentation in three species of marine herbivorous fish. Appl. Environ. Microbiol. 68, 1374–1380 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Bauer, E. et al. Physicochemical conditions, metabolites and community structure of the bacterial microbiota in the gut of wood-feeding cockroaches (Blaberidae: Panesthiinae). FEMS Microbiol. Ecol. 91, 1–14 (2015).

    PubMed  Google Scholar 

  106. Buchon, N., Broderick, N. A. & Lemaitre, B. Gut homeostasis in a microbial world: insights from Drosophila melanogaster. Nat. Rev. Microbiol. 11, 615–626 (2013).

    CAS  PubMed  Google Scholar 

  107. Tegtmeier, D., Thompson, C. L., Schauer, C. & Brune, A. Oxygen affects gut bacterial colonization and metabolic activities in a gnotobiotic cockroach model. Appl. Environ. Microbiol. 82, 1080–1089 (2015).

    PubMed  Google Scholar 

  108. Heinken, A. & Thiele, I. Anoxic conditions promote species-specific mutualism between gut microbes in silico. Appl. Environ. Microbiol. 81, 4049–4061 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Johnson, K. S. Oxygen levels in the gut lumens of herbivorous insects. J. Insect Physiol. 46, 897–903 (2000).

    CAS  PubMed  Google Scholar 

  110. Cox, C. R. & Gilmore, M. S. Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infect. Immun. 75, 1565–1576 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Blaser, M. J. Antibiotic use and its consequences for the normal microbiome. Science 352, 544–545 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Reybroeck, W., Daeseleire, E., De Brabander, H. F. & Herman, L. Antimicrobials in beekeeping. Vet. Microbiol. 158, 1–11 (2012).

    CAS  PubMed  Google Scholar 

  113. Evans, J. D. & Armstrong, T. Inhibition of the American foulbrood bacterium, Paenibacillus larvae larvae, by bacteria isolated from honey bees. J. Apic. Res. 44, 168–171 (2015).

    Google Scholar 

  114. Evans, J. D. & Spivak, M. Socialized medicine: individual and communal disease barriers in honey bees. J. Invertebr. Pathol. 103, S62–S72 (2010). (Suppl. 1).

    PubMed  Google Scholar 

  115. Tian, B., Fadhil, N. H., Powell, J. E., Kwong, W. K. & Moran, N. A. Long-term exposure to antibiotics has caused accumulation of resistance determinants in the gut microbiota of honeybees. MBio 3, e00377–12 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Ludvigsen, J., Porcellato, D., L’Abée-Lund, T. M., Amdam, G. V. & Rudi, K. Geographically widespread honeybee-gut symbiont subgroups show locally distinct antibiotic-resistant patterns. Mol. Ecol. 26, 6590–6607 (2017).

    CAS  PubMed  Google Scholar 

  117. Ludvigsen, J., Amdam, G. V., Rudi, K. & L’Abée-Lund, T. M. Detection and characterization of streptomycin resistance (strA-strB) in a honeybee gut symbiont (Snodgrassella alvi) and the associated risk of antibiotic resistance transfer. Microb. Ecol. https://doi.org/10.1007/s00248-018-1171-7 (2018).

    Article  PubMed  Google Scholar 

  118. Thursby, E. & Juge, N. Introduction to the human gut microbiota. Biochem. J. 474, 1823–1836 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Crailsheim, K. et al. Standard methods for artificial rearing of Apis mellifera larvae. J. Apic. Res. 52, 1–16 (2013).

    Google Scholar 

  120. Bonoan, R. E., O’Connor, L. D. & Starks, P. T. Seasonality of honey bee (Apis mellifera) micronutrient supplementation and environmental limitation. J. Insect Physiol. 107, 23–28 (2018).

    CAS  PubMed  Google Scholar 

  121. Ludvigsen, J. et al. Shifts in the midgut/pyloric microbiota composition within a honey bee apiary throughout a season. Microbes Environ. 30, 235–244 (2015).

    PubMed  PubMed Central  Google Scholar 

  122. Glenny, W. et al. Honey bee (Apis mellifera) colony health and pathogen composition in migratory beekeeping operations involved in California almond pollination. PLoS One 12, e0182814 (2017).

    PubMed  PubMed Central  Google Scholar 

  123. Zanni, V., Galbraith, D. A., Annoscia, D., Grozinger, C. M. & Nazzi, F. Transcriptional signatures of parasitization and markers of colony decline in Varroa-infested honey bees (Apis mellifera). Insect Biochem. Mol. Biol. 87, 1–13 (2017).

    CAS  PubMed  Google Scholar 

  124. Laidlaw, H. H. Artificial insemination of the queen bee (Apis mellifera L.): morphological basis and results. J. Morphol. 74, 429–465 (1944).

    Google Scholar 

  125. Schulte, C., Theilenberg, E., Müller-Borg, M., Gempe, T. & Beye, M. Highly efficient integration and expression of piggyBac-derived cassettes in the honeybee (Apis mellifera). Proc. Natl. Acad. Sci. USA 111, 9003–9008 (2014).

    CAS  PubMed  Google Scholar 

  126. Kohno, H., Suenami, S., Takeuchi, H., Sasaki, T. & Kubo, T. Production of knockout mutants by CRISPR/Cas9 in the European honeybee, Apis mellifera L. Zool. Sci. 33, 505–512 (2016).

    CAS  PubMed  Google Scholar 

  127. Marco Antonio, D. S., Guidugli-Lazzarini, K. R., do Nascimento, A. M., Simões, Z. L. & Hartfelder, K. RNAi-mediated silencing of vitellogenin gene function turns honeybee (Apis mellifera) workers into extremely precocious foragers. Naturwissenschaften 95, 953–961 (2008).

    CAS  PubMed  Google Scholar 

  128. Chen, Y. P. & Evans, J. D. Managed pollinator CAP coordinated agricultural project. A national research and extension initiative to reverse pollinator decline. RNAi in treating honey bee diseases. Am. Bee J. 152, 1171–1173 (2012).

    Google Scholar 

  129. Yu, N. et al. Delivery of dsRNA for RNAi in insects: an overview and future directions. Insect Sci. 20, 4–14 (2013).

    PubMed  Google Scholar 

  130. Flenniken, M. L. & Andino, R. Non-specific dsRNA-mediated antiviral response in the honey bee. PLoS One 8, e77263 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Killer, J., Dubná, S., Sedláček, I. & Švec, P. Lactobacillus apis sp. nov., from the stomach of honeybees (Apis mellifera), having an in vitro inhibitory effect on the causative agents of American and European foulbrood. Int. J. Syst. Evol. Microbiol. 64, 152–157 (2014).

    CAS  PubMed  Google Scholar 

  132. Bottacini, F. et al. Bifidobacterium asteroides PRL2011 genome analysis reveals clues for colonization of the insect gut. PLoS One 7, e44229 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Ellegaard, K. M. et al. Extensive intra-phylotype diversity in lactobacilli and bifidobacteria from the honeybee gut. BMC Genomics 16, 284 (2015).

    PubMed  PubMed Central  Google Scholar 

  134. Scardovi, V. & Trovatelli, L. D. New species of bifid bacteria from Apis mellifica L. and Apis indica F. A contribution to the taxonomy and biochemistry of the genus Bifidobacterium. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. 123, 64–88 (1969).

    CAS  PubMed  Google Scholar 

  135. Kwong, W. K. & Moran, N. A. Cultivation and characterization of the gut symbionts of honey bees and bumble bees: description of Snodgrassella alvi gen. nov., sp. nov., a member of the family Neisseriaceae of the Betaproteobacteria, and Gilliamella apicola gen. nov., sp. nov., a member of Orbaceae fam. nov., Orbales ord. nov., a sister taxon to the order ‘Enterobacteriales’ of the Gammaproteobacteria. Int. J. Syst. Evol. Microbiol. 63, 2008–2018 (2013).

    CAS  PubMed  Google Scholar 

  136. Engel, P., Kwong, W. K. & Moran, N. A. Frischella perrara gen. nov., sp. nov., a gammaproteobacterium isolated from the gut of the honeybee, Apis mellifera. Int. J. Syst. Evol. Microbiol. 63, 3646–3651 (2013).

    CAS  PubMed  Google Scholar 

  137. Kešnerová, L., Moritz, R. & Engel, P. Bartonella apis sp. nov., a honey bee gut symbiont of the class Alphaproteobacteria. Int. J. Syst. Evol. Microbiol. 66, 414–421 (2016).

    PubMed  Google Scholar 

  138. Roh, S. W. et al. Phylogenetic characterization of two novel commensal bacteria involved with innate immune homeostasis in Drosophila melanogaster. Appl. Environ. Microbiol. 74, 6171–6177 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Kwong, W. K. & Moran, N. A. Apibacter adventoris gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from honey bees. Int. J. Syst. Evol. Microbiol. 66, 1323–1329 (2016).

    CAS  PubMed  Google Scholar 

  140. Corby-Harris, V. & Anderson, K. E. Draft genome sequences of four Parasaccharibacter apium strains isolated from honey bees. Genome Announc. 6, e00165–18 (2018).

    PubMed  PubMed Central  Google Scholar 

  141. Endo, A. et al. Characterization and emended description of Lactobacillus kunkeei as a fructophilic lactic acid bacterium. Int. J. Syst. Evol. Microbiol. 62, 500–504 (2012).

    PubMed  Google Scholar 

  142. Endo, A. & Okada, S. Reclassification of the genus Leuconostoc and proposals of Fructobacillus fructosus gen. nov., comb. nov., Fructobacillus durionis comb. nov., Fructobacillus ficulneus comb. nov. and Fructobacillus pseudoficulneus comb. nov. Int. J. Syst. Evol. Microbiol. 58, 2195–2205 (2008).

    CAS  PubMed  Google Scholar 

  143. Chouaia, B. et al. Acetic acid bacteria genomes reveal functional traits for adaptation to life in insect guts. Genome Biol. Evol. 6, 912–920 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Burritt, N. L. et al. Sepsis and hemocyte loss in honey bees (Apis mellifera) Infected with Serratia marcescens strain sicaria. PLoS One 11, e0167752 (2016).

    PubMed  PubMed Central  Google Scholar 

  145. Tian, B. & Moran, N. A. Genome sequence of Hafnia alvei bta3_1, a bacterium with antimicrobial properties isolated from honey bee gut. Genome Announc. 4, e00439–16 (2016).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy A. Moran.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Steele, M.I., Leonard, S.P. et al. Honey bees as models for gut microbiota research. Lab Anim 47, 317–325 (2018). https://doi.org/10.1038/s41684-018-0173-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41684-018-0173-x

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology