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This report provides a summary of the main outcomes of the 3rd edition of the workshop on Machine Learning (ML) for Earth
System Observation and Prediction (ESOP/ML4ESOP) co-organised by the European Centre for Medium-Range Weather Forecasts
(ECMWF) and European Space Agency (ESA). The 4-day workshop was held on 14-17 November 2022 in hybrid format, with an in-
person component at the ECMWF Reading site and an interactive online component, attracting a record number of submissions
and over 700 registrations. The workshop aimed to document the current state-of-the-art, progress and challenges in the rapidly
evolving field of the integration of ML technologies in ESOP and to provide a venue for discussion and collaboration for ESOP and
ML specialists. The workshop was structured along five main thematic areas covering the principal components of standard ESOP
workflows. Highlights from the presentations and a discussion of the most promising development directions from the workshop
Working Groups in all the different thematic areas are provided in this Report.
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INTRODUCTION
The third edition of the ECMWF–ESA Workshop on Machine
Learning for Earth Observation and Prediction (ML4ESOP) took
place from 14 to 17 November 2022 at ECMWF Reading, UK
(https://events.ecmwf.int/event/304/). After two exclusively online
editions1,2, this edition of the workshop was run in a hybrid
format, hosting about 120 people on-site and large and active
virtual participation (about 700 registered participants). The
attendance numbers, together with a record number of 121
abstract submissions, confirm the large interest in machine
learning (ML) for Earth system science applications and also the
growing popularity of the ECMWF–ESA workshop series as a
reference meeting and discussion venue in this area.
As it has become traditional in this series of workshops, two

leading experts were invited to provide broad overviews of the
state-of-the-art, current opportunities, and challenges in their field
of expertise.
Prof. Stephen Penny’s talk concentrated on the interactions and

synergies between data assimilation (DA) and ML3. One fascinat-
ing suggestion was that current DA could leverage ML tools and
ideas to greatly increase efficiency, which in turn could make more
advanced algorithms affordable, e.g., allowing much larger
ensemble sizes in ensemble DA and thus opening the way to
more fully nonlinear/non-Gaussian assimilation methods.
Prof. Damien Borth’s presentation focussed on recent advances

in ML tools used in Earth Observation (EO) and Remote Sensing4,5.
The main focus of the talk was on efficient representation
learning, i.e., the increasingly sophisticated set of techniques that
allows a ML model to automatically discover the representations
needed for feature detection or classification from raw data. This is
a field of research in ML which is particularly relevant for EO,
where there are huge quantities of unlabelled, remotely sensed
data which could potentially be used.

From both these talks, it was apparent that increasingly
sophisticated ML techniques have further spread into research
and operational practice in the Earth sciences and, more
importantly, they are being tailored to this specific domain with
compelling results.
The workshop was structured according to separate thematic

areas (TA) designed to cover the main application areas of ML in
EO, numerical weather prediction (NWP), and climate prediction:

● TA1: ML for Earth observations
● TA2: Hybrid-ML in data assimilation
● TA3: ML for model emulation and model discovery
● TA4: ML for user-oriented Earth science applications
● TA5: ML at the network edge and high-performance

computing

The following sections will describe in more detail the
presentations and discussions in the working groups on each TA.

TA1: ML FOR EARTH OBSERVATIONS
Current ML applications
The working group was chaired by Rochelle Schneider (ESA) and
Alan Geer (ECMWF). Membership of the working group indicated a
very broad interest in ML4EO that spans university, national
meteorological services, and the private sector, with attendees
drawn from Europe, America, Asia, Africa, and Australia. Applica-
tion areas were similarly broad, including renewable energy,
hydrology, clouds, environmental health, pollution, wildfires,
urbanisation, geodesy, and crop classification.
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Limitations, opportunities, and challenges
Much of the discussion reflected how far EO applications of ML
have progressed in terms of serving real applications. To be
beneficial to society, operational AI tools should ideally be
reproducible, scalable, maintainable, transferable, and explainable.
They need to integrate well with existing non-Artificial Intelligence
(AI) tools rather than compete, i.e., aiming to fully replace state-of-
the-art methods. Further, the ‘train once’ approach often needs to
be replaced by continuous learning and retraining from fresh
observations.
The perennial question of finding enough training data brought

up the contrast between applications that can use non-expert
labelling, achievable through citizen science or gamification (e.g.,
zooniverse.org), applications that require domain experts for
labelling, and those where ‘ground truth’ observations are
required6. Developments in the wider AI community could help,
including the idea of ‘one shot’ learning (a human only needs to
see one Zebra), meta-learning (learning how to learn) and the
possibility of using non-domain foundation models in EO (could a
foundation model transition from cats and dogs to crop type
identification?)
Another widely recognised issue was the choice between using

in-house or cloud-based computing resources7. The latter are
attractive for the easy access to sophisticated TPUs and GPUs to
speed up training, and the possibility of rapidly scaling up
applications thereafter. But issues were raised over the expense
relative to in-house hardware, the dependence on private
backends into which an application can become locked-in, a
perceived lack of support and doubts over data protection and
security8.

Future directions
Including AI onboard satellites could speed up event detection
(the idea of ‘smart satellites’) and could also help with data
compression, prioritisation, and cooperation between satellites9,10.
However, it is important that the full raw observational data is
downlinked to earth and archived, possibly with less timeliness, in
order to support future learning and development. The group also
discussed federated learning, particularly for applications which
rely on sensitive data (e.g., health), where AI is trained on
dispersed data that is kept private.

TA2: HYBRID DATA ASSIMILATION—ML APPROACHES
Current ML applications
Rossella Arcucci (Imperial College London) and Marcin Chrust
(ECMWF) co-chaired this working group, which explored the
utilisation of hybrid ML and DA approaches. A very broad group of
members coming from academia, industry, NWP centres, and
research centres took part in an active discussion about the
potential use of ML with DA from a perspective of improving DA
modelling. Hybrid approaches based on ML and DA have become
increasingly popular in the DA field, with applications spanning
from using neural networks to emulate model components within
DA to entirely replacing the well-established DA algorithms with
ML-based emulators or bespoke techniques. The latter include
extended Elman networks11 that estimate posterior covariances
and recurrent neural networks that replace 4D-Var with joint
model and solver learning12. A large body of literature has been
also dedicated to performing DA in latent spaces of a ML
algorithm, balancing accuracy and computational cost13. The link
between probabilistic ML approaches and differential equations is
highlighted when the frameworks of DA and ML are combined
from a Bayesian perspective. This equivalency, which demon-
strates the parallels between the two areas, is presented formally
in refs. 14,15.

Limitations, opportunities, and challenges
Learning full models or replacing DA algorithms with ML
approaches is still considered challenging in operational settings
given the difficulty posed by the high-dimensional nature of the
systems involved. The development of hybrid models that
combine physics-based models with statistical models has been
proposed as an attractive alternative. It has been shown that
statistical models that are used to correct physics-based models
can be made situation dependent and trained within the
framework of 4D-Var16. It was agreed that developing a common
ML-DA framework would offer the potential to leverage the
strengths of both approaches. ML, in particular, may present an
opportunity to surpass the linearity and Gaussianity constraints
imposed in current DA schemes utilised in numerical weather
centres, while also significantly reducing the cost of the analysis
process. The latter aspect is of growing importance as the
resolution of the models and the analysis is increased in future.

Future directions
The combination of ML with DA advances the state-of-the-art of
ML modelling in various fields and applications. The development
trends and future challenges of this fast-growing field include
learning state-observation mapping in DA or developing ML
surrogates of dynamical systems assisted by DA. The working
group participants reached a broad consensus that conventional
DA methods can be used to improve ML algorithms, especially in
addressing issues associated with noisy, incomplete or biased
data. These hybrid models provide strengths in interpretability
and noise reduction. Significant space for further breakthrough
advances still exists, especially in applying these approaches in
operational contexts.

TA3: ML FOR MODEL EMULATION AND MODEL DISCOVERY
Current ML applications
The working group was chaired by Massimo Bonavita and
Matthew Chantry (both ECMWF). Assessing the state of the field
for model emulation the group saw a full spectrum of approaches,
starting from learning to emulate a component of a weather or
climate model up to learning to emulate realistic weather models
in their entirety. On the latter approach, significant progress had
been observed in the past year, with claims that some ML models
have become competitive with operational state-of-the-art
models for deterministic predictions17–19. Model discovery is
currently less common, but successful work on e.g., predicting
rogue waves gave a blueprint for a successful application20.

Limitations, opportunities, and challenges
Training of ML models was viewed as being overly reliant on
mean-squared-error (or similarly constructed) loss functions,
which has drawbacks as models trained towards this metric make
cautious and overly smooth predictions which can be limiting in
real world applications. Detailed discussions were held on the
possibility of using Generative Adversarial Networks (GANs),
diffusion models21, and others. Also, the general approach of
training ML models using probabilistic instead of deterministic
loss functions was indicated as a promising way forward.

Future directions
From the presentations and working group discussions it was
apparent that using ML for model emulation and, more broadly,
for general forecasting purposes is developing rapidly and the
entry in the field of major commercial players will further
accelerate progress in this area. Whether these efforts will pose
a fundamental threat to the traditional Numerical Weather and
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Climate Prediction workflows based on physics-based weather
emulators remains to be seen.

TA4: ML FOR USER-ORIENTED EARTH SCIENCE APPLICATIONS
Current ML applications
The working group was chaired by Claudia Vitolo and Bertrand Le
Saux (both from ESA) and gathered a large and varied group of
experts, as ML is now pervading all sectors of Earth System
sciences and industry22. In the weather and climate domain, for
instance, Deep Learning was reported to be used for nowcasting
of precipitation23, the detection of extreme weather events24,
post-processing of predictions (e.g., downscaling,25, as well as for
the analysis of climate and weather processes at a longer time
scale. In environmental applications, participants reported to have
used ML to get actionable information from EO data in a variety of
fields, including public health, agriculture, environmental protec-
tion (on land and at sea) just to mention a few. Several compelling
industrial applications were also mentioned and included during-
flight planning (aviation sector), road maintenance planning
(transportation sector), energy demand and distribution planning
and (re)-insurance. Participants also briefly touched upon new
emerging fields in which ML may deliver promising applications,
for security or policymaking, in the near future which build on
federated learning, onboard processing, digital twin technologies
and quantum ML.

Limitations, opportunities, and challenges
A great challenge of ML in user-oriented Earth science
applications is the lack of trust in black-box models and the
lack of a common language between developers and domain
experts. However, many participants were confident that the
development of explainable AI26, hybrid modelling, use of large
pre-trained models, as well as strong community building will
help to bridge the gap and lower the barrier to ML adoption.
Technical issues such as costly compute resources and complex
software usage are also deemed as critical and potentially
limiting, and initiatives to provide accessible cloud computing,
open and reusable source code are seen as potential enablers.
Lastly, generative models (for image, text and data) are
scrutinised with circumspection as they appear to have great
potential for new applications27 but in the meantime raise
problems of transparency and ethics28.

Future directions
Several perspectives emerged from the discussions and presenta-
tions. The development of new techniques and frameworks is
considered highly impactful on society (for low-cost speed-up of
complex numerical models, for fast simulations) and climate (for
improving early warnings and identifying new sustainable
environmental solutions for challenges affecting many sectors,
e.g., energy). According to several participants, transformer
models and explainable ML are deemed extremely promising to
overcome the current lack of trust in black-box models22,29. AI is
expected to be used more and more in extreme weather event
predictions and digital twins modelling coupling various Earth
system processes. In the longer term, there is a demand for
investigating green computing, operationalisation, transparent ML
and process understanding in Earth system sciences.

TA5: ML AT THE EDGE AND HIGH-PERFORMANCE COMPUTING
Current ML applications
During the workshop, novel computing with transformative power
was a ubiquitous topic of discussion. With the rapid advances in
computing technology, ML-enhanced high-performance

computing has become an increasingly important tool in Earth
science research, as illustrated by Carlos Alberto Gómez Gonzalez
from Barcelona Supercomputing Centre in his talk on deep
learning for empirical downscaling30 used to obtain e.g., estimates
of nitrogen dioxide or precipitation fields at fine resolutions. At the
other extremity of the computer power spectrum, on-board
processing with machine learning at the edge has already proved
to be useful for Earth observation, as it enables real-time
processing of satellite data and instantaneous response to events
such as floods10. It also helps reduce the cost of data transmission,
as the data is processed on the satellite itself before being
transmitted to the ground.

Limitations, opportunities, and challenges
Modular computing environments, that is, systems which
integrate different types of compute resources, are seen as a
way to offer a degree of flexibility and scalability to large-scale
computing applications. Thus, program parts of complex
simulations can be distributed over several modules so that
various hardware properties can be optimally leveraged. This
also allows for the addition and removal of components to meet
changing demands and requirements or integrate future
technologies such as quantum computing or neuromorphic
modules. More powerful supercomputers built on this principle
might be the way to enter the exascale era of computing. And
such capacity is likely to be required to face the new challenges
of this century: running numerical models with enough precision
to allow forecast of weather events at a local scale or supporting
the development of digital twins to enable monitoring,
forecasting and assessing the impact of climate change, as
mentioned by Jacqueline Lemoigne from NASA in her talk,
showing examples such as IDEAS31.

Future directions
Many exciting perspectives were drawn and discussed. Distrib-
uted computing in space might offer the possibility to optimise
the collaboration of small sensing satellites and satellites with
computing payloads and enable cognitive cloud computing in
space (C3S). Lisa Woerner from DLR highlighted the potential of
quantum techniques for global Earth observation to climate
change impact reduction. She stressed in particular the promises
of quantum computing and quantum ML for which potential
benefits could be gained from further exploration of under-
utilised areas of machine learning, such as reinforcement
learning32. Bertrand Le Saux from ESA detailed the ongoing
efforts to bring the power of Quantum Computing to Earth
observation and presented two fields of research on the use of
quantum ML for such classical data: quantum kernels and hybrid
classical-quantum neural networks. They already yield the first
proofs of concepts for image classification on gate-based
quantum computers33,34 or quantum annealers35 and analysis
of time-series36. These hybrid quantum-classical architectures
form the foundation of the next generation of ML that can be run
on modular HPC.

CONCLUSION
We believe the workshop continues to be a valuable environment
for fostering knowledge exchange and facilitating breakthrough
discoveries in the field of ML4ESOP. The range of applications of
ML technologies in ESOP is truly remarkable and keeps on
growing (for example, the new application areas bridging AI with
Quantum Computing and the use of AI solutions close the data,
e.g., onboard orbiting satellites). Themes like reproducibility and
interpretability of ML outputs, together with scalability and
maintainability of ML technologies still dominate the discussion
towards the operational application of ML solutions. From the
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working groups outcomes, a clear consensus emerged of the need
and opportunity to leverage ML strengths to try to fill gaps in our
knowledge-based models and improve perceived weaknesses in
current operational methods. On the other hand, a philosophical
and practical divergence of approaches is beginning to appear in
the application of ML technologies in ESOP. On one side, a
gradual, incremental adoption of ML solutions in established
workflows, aimed at improving results and reducing computa-
tional costs while striving to maintain a more or less complete
understanding of the modelled system. This is the avenue typically
chosen by domain scientists and practitioners in ESOP. On the
other side, a growing corpus of research aims to show the
potential of AI/ML to disrupt traditional practices through end-to-
end, completely data-driven ML/AI solutions. In these applications,
the modelled system is seen as a black (or grey) box, but the
computational efficiencies are compelling and the quality of the
predictions is becoming competitive with the state-of-the-art. This
is the avenue favoured by some ML researchers approaching the
ESOP world. It will be fascinating to see which approach will turn
out to be more fruitful in the long run, but it can already be said
that this dynamic has set in motion a far-reaching debate in the
ESOP community on current methodologies and their long-term
sustainability.
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