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Using UNSEEN trends to detect decadal changes in 100-year
precipitation extremes
T. Kelder 1,2✉, M. Müller 2,3, L. J. Slater 4, T. I. Marjoribanks 5, R. L. Wilby 1, C. Prudhomme 6,7, P. Bohlinger 2, L. Ferranti6 and
T. Nipen 2

Sample sizes of observed climate extremes are typically too small to reliably constrain return period estimates when there is non-
stationary behaviour. To increase the historical record 100-fold, we apply the UNprecedented Simulated Extreme ENsemble
(UNSEEN) approach, by pooling ensemble members and lead times from the ECMWF seasonal prediction system SEAS5. We fit the
GEV distribution to the UNSEEN ensemble with a time covariate to facilitate detection of changes in 100-year precipitation values
over a period of 35 years (1981–2015). Applying UNSEEN trends to 3-day precipitation extremes over Western Norway substantially
reduces uncertainties compared to estimates based on the observed record and returns no significant linear trend over time. For
Svalbard, UNSEEN trends suggests there is a significant rise in precipitation extremes, such that the 100-year event estimated in
1981 occurs with a return period of around 40 years in 2015. We propose a suite of methods to evaluate UNSEEN and highlight
paths for further developing UNSEEN trends to investigate non-stationarities in climate extremes.
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INTRODUCTION
Handling the non-stationarity of climate extremes is an active area
of research1–3 that is confounded by the brevity and sparsity of
observational records4–6. Non-stationary precipitation analyses
typically focus on detecting multidecadal to centennial changes in
annual precipitation maxima7–9. However, annual maximum
precipitation events do not necessarily cause high impacts and
hence, a more pressing research challenge is the detection of
changes in larger extremes10,11, such as the 1-in-100-year event.
Furthermore, the impacts of abrupt warming in recent decades
may not yet be detectable in short precipitation records.
Therefore, robust detection of short-term (decadal, rather than
centennial) trends in climate extremes may provide actionable
information.
An emerging alternative to traditional observation-based

extreme value and weather generator analyses is to pool
ensemble members from numerical weather prediction sys-
tems12–22—the UNprecedented Simulated Extreme ENsemble
(UNSEEN) approach15,16. This technique creates numerous alter-
native pathways of reality, thus increasing the event sample size
for statistical analysis. The larger sample size offers a broader view
of present-day hazards and, therefore, has potential to improve
design-levels. For example, the 2013/14 winter flooding in the UK
had no observational precedent, but could have been anticipated
with the UNSEEN approach15. Similarly, estimates of storm surge
levels of the River Rhine12,13, global ocean wind and wave
extremes17–19, and losses from extreme windstorms21 have all
been improved with the UNSEEN approach. UNSEEN can also
enhance food security through better drought exposure esti-
mates14,22 and can assist policy makers and contingency planners
by quantifying and explaining the most severe events possible in
the current climate, such as heatwaves in China16. However,
validating the UNSEEN method is a well-recognised challenge for

existing studies, and UNSEEN has not yet been used to facilitate
detection of non-stationarity in climate extremes over short
periods of a few decades.
Here, we provide a framework to systematically evaluate the

robustness of the UNSEEN method and present the UNSEEN
trends approach, where we provide more confident short-term
trend estimates from the larger event sample to better constrain
changes in climate extremes. We do this in a storyline context23,
taking observed flood episodes as a starting point for our analysis.
We select the west coast of Norway and the Svalbard Archipelago
as demonstration regions; two contrasting areas in terms of
precipitation extremes. Western Norway experiences the highest
precipitation extremes within Europe24 and has a dense station
network25,26, whereas Svalbard is a semi-desert with very few
meteorological stations27, where climate change is expected to
increase the frequency of precipitation extremes27,28. Both regions
endured severe damages from recent extreme events, such as the
September 200529 and October 201430 floods over Western
Norway and the slush-avalanche induced by extreme precipitation
over the Svalbard Archipelago in 201228. These extreme events
were driven by atmospheric rivers29,31 (ARs), which cause heavy
precipitation over a prolonged period. As AR-related floods
predominantly occur in autumn and frequently strengthen over
a period of several days29,30, we select autumn (September to
November) spatially averaged 3-day extreme precipitation (SON-
3DP) as target events (Fig. 1).
Previous UNSEEN studies used the Hadley Centre global climate

model, HadGEM3-GC214–16,22 and the European Centre for
Medium-range Weather Forecasts (ECMWF) ensemble prediction
systems17–20 and earlier versions of the seasonal prediction
system12,13,21. Here, we are the first to use the latest ECMWF
seasonal prediction system SEAS532 with an open access, high-
resolution, large ensemble, multidecadal, homogeneous hindcast
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period (1981–2015). The ECMWF atmospheric model has skill in
simulating ARs for Northern Europe33, giving confidence in the
realism of these extreme events in SEAS5, hence is a good
candidate for the UNSEEN method. We use the 25-member
ensemble across lead times of 2–5 months, resulting in a sample
of 100 members (called the UNSEEN ensemble) and evaluate the
independence and stability of the pooled sample for SON-3DP
events across Western Norway and Svalbard. We then use the
UNSEEN trends approach to identify unprecedented extreme
precipitation events and to detect trends in 100-year precipitation
events over a 35-year period. These findings give insights about
the robustness of current design standards and may eventually
advance understanding of physical processes driving climate
extremes and their non-stationarity.

RESULTS
Ensemble member independence and model stability
Independence of ensemble members is an important prerequisite
for the UNSEEN approach, as dependent members would

artificially inflate the sample size, without adding new information.
Previous studies have assessed the independence of ensemble
members for lead times of 9–10 days17–19, but as far as we are
aware, no independence test has yet been performed in UNSEEN
studies of seasonal prediction systems.
For the regions studied here, ensemble members with lead

times beyond one month are not dependent on atmospheric
initial conditions, because the synoptic patterns related to ARs are
known to be unpredictable beyond two weeks33,34. However,
predictability on a seasonal timescale may be found through
slowly varying components of the ocean-atmosphere system.
Therefore, although ensemble members might represent unique
weather events because of the disconnect from initial atmospheric
conditions, these could have a conditional bias due to favourable
conditions in the slowly varying components of the ocean-
atmosphere system.
To test the seasonal dependence of SON-3DP, we first select the

seasonal maximum event for each forecast then concatenate
these events to create a 35-year timeseries (Fig. 2a, b, c). To
robustly assess the independence between each of the ensemble
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Fig. 1 Precipitation extremes over the study area. a Climatological values of autumn 3-day cumulative precipitation over the Norwegian
and Svalbard region. Blue shades indicate the empirical 200-year precipitation values calculated from all August-initialised forecasts over
1981–2015. Two domains are indicated with red rectangles: a Norwegian west coast domain (WC, 4–7 E, 58–63N) and a Svalbard domain (SV,
8–30 E,76–80N). White contours denote the regions with high climatological values over which the precipitation is averaged within the
domains: 90 mm for WC and 35mm for SV. This restricts the domain to a homogeneous region with high precipitation. b, c Extracted seasonal
maximum 3-day precipitation timeseries for Svalbard (b) and Norway (c). The grey boxplots show the UNSEEN ensemble (100 ensembles per
year, illustrated as the median, interquartile range, 1.5x interquartile range and outliers) and the blue crosses show the events in the observed
record. Note, for Svalbard no gridded precipitation record is available.
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members, we calculate the Spearman rank correlation coefficient
(ρ) for every distinct pair of ensemble members (Fig. 2d), resulting
in 300 ρ values for each lead time. The value of ρ ranges from ca.
−0.6 to 0.6, and the median correlation is close to zero for all lead
times for both Western Norway and Svalbard (Fig. 2e, f). A wide
range in ρ values is expected due to chance from the large
number of correlation tests, and none of the lead times fall outside
the range that would be expected for uncorrelated data for
the West Coast of Norway (Fig. 2f). For Svalbard, slightly higher
ρ values are found, with the median correlation still within the
expected range, but the interquartile range just exceeds the upper
boundary of the confidence intervals for the first two lead times
(Fig. 2e). The small correlations found for Svalbard might be driven
by the trend that we detect for this region (UNSEEN-trends
section), and thus, the UNSEEN ensemble members represent
unique events that follow the slowly evolving climate signal, as
desired.
A second potential issue for generating the UNSEEN ensemble

could be a drift in the simulated climatology35,36, which may alter
precipitation extremes over longer lead times. Therefore, model
stability is a requirement for pooling lead times. Model stability is
assessed by comparing the distribution of predicted SON-3DP
events across different lead times. For both regions, the
probability density functions of the pooled SON-3DP events for
the considered lead times are remarkably similar (Fig. 3a, b).
Moreover, the empirical extreme value distributions of the
individual lead times fall within the uncertainty range of the
distribution of all lead times pooled together and thus, the model
can be considered stable over lead times (Fig. 3c, d).

Fidelity of UNSEEN extremes
Confidence in simulated ‘unprecedented extremes’ in large
ensembles is complicated by the inability to validate extremes,
given the limited sample sizes of observations. Here, we evaluate
the UNSEEN ensemble by bootstrapping the ensemble into
datasets of 35 years and assessing whether observations fall
within the range of the bootstrapped distribution, following
previous UNSEEN studies15,16 (see ‘Methods’). We perform this
analysis for the SEAS5 UNSEEN SON-3DP ensemble over Western
Norway and Svalbard (domains in Fig. 1). As evaluation products,
we use 1. SeNorge: a gridded precipitation product produced from
the dense station network of Norway25,26 and 2. The ERA5
reanalysis37, which is more readily comparable to SEAS5 because
they are both model-based products with the same resolution.
Furthermore, ERA5 facilitates evaluation over Svalbard, where no
gridded precipitation record exists. Note, the SeNorge high-
resolution station-based observational dataset (1 km) is upscaled
to the resolution of SEAS5 (36 km) to reduce the spatial-scale
mismatch between forecasts and interpolated observations38,39.
For a comprehensive global model validation of SEAS5, see
Johnson et al.32.
In this study, we use SEAS5 simulated large-scale precipitation

(LSP) to represent precipitation extremes over the study regions
(see Methods). This is because convective processes cannot be
resolved in a global model of 36 km resolution40 and because 3-
day extremes over the domains are known to be driven by large-
scale ARs27,29,30. Owing to this design decision, a discrepancy may
exist between the simulated large-scale precipitation and
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Fig. 2 A workflow for analysing ensemble member dependence. a August 2014 initialised 25-member seasonal forecasts of 3-day
precipitation time series over the SON forecast horizon. Ensemble members 0 and 1 are shown in blue and orange, respectively. b From the
forecast members 0 and 1, the September-November (SON) maximum value for the 2014 season is selected. c A series of the maximum 3-day
precipitation values for the SON season for each year in the hindcast record is created for member 0 and member 1. The 2014 maximum, as
illustrated in b, is encircled. d The standardised anomaly of the maximum 3-day precipitation series for the two members are correlated.
Spearman’s rho correlation is shown and the one-to-one line is indicated in black. This process is repeated for the 300 distinct ensemble
member pairings for each of the four lead times (May–August). e, f Boxplots of the resulting 300 Spearman’s rho correlations for each lead
time over Svalbard (e) and Norway (f). Grey shading shows the confidence intervals of the boxplot statistics (whiskers: 1.5x interquartile range,
box limits: interquartile range and centre line: median), based on a permutation test with 5% significance level.
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recorded (total) precipitation. For Western Norway, the boot-
strapping test indicates that the observed mean and standard
deviation fall outside the 95% confidence intervals of the SEAS5
LSP ensemble, indicating a low bias (black histograms compared
to blue line; Fig. 4). This bias can be estimated as a ratio between
the mean of the reference SON-3DP extreme events and the mean
of the SEAS5 LSP events. The ratios indicate a high discrepancy for
observed precipitation (SeNorge:SEAS5 LSP, 1.74) and reanalysis
(ERA5 TP: SEAS5 LSP, 1.80), but a lower discrepancy if we use ERA5
large-scale precipitation as reference instead (ERA5 LSP: SEAS5
LSP, 1.29; supplementary Fig. 1). This shows that the large-scale
SON-3DP simulations over Western Norway are more reliable than
the comparison with observed data suggest, but that convective
precipitation, which is not accounted for within SEAS5 LSP, makes
a substantial contribution to total precipitation during the SON-

3DP events. For Svalbard, where we only have the ERA5 reanalysis,
there is close agreement between SEAS5 and ERA5 large-scale
SON-3DP extremes (ratio of 1.08, supplementary Fig. 2). Note, low
biases in precipitation extremes are not uncommon in global
Earth System Models41, especially for mountainous regions like
Western Norway.
To further assess the discrepancy between SEAS5 and ERA5

large-scale precipitation output (the 1.29 ratio), we compare the
large-scale circulation of the two most severe observed events in
2005 and 2014, as well as the composite of the 10% highest
UNSEEN events for Western Norway (Fig. 5). This analysis indicates
that the UNSEEN events are described by a south-westerly flow
onto the West coast of Norway, consistent with the observed
large-scale patterns and expected atmospheric circulation
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patterns associated with precipitation extremes over Norway
within the ERA-Interim reanalysis42.

Bias correction
Bias correction of the UNSEEN ensemble is necessary for impact
modelling43 and, as is the case here, to compare UNSEEN
extremes to observed extremes. A range of methods are available
for correcting biases in climate models44, to statistically ‘nudge’
the quantiles of the model simulations closer to the observed
values. However, the UNSEEN extremes of interest are by
definition beyond the observed range and hence extrapolation
of the bias correction is required. No perfect bias correction
method exists and climate extremes within the observed range
are already largely sensitive to uncertainties within the observa-
tions, and to resolution mismatch45. Extrapolation most commonly
assumes a constant transfer function beyond the highest
observed quantile or assumes an extreme value distribution44.
Since both these assumptions are very sensitive to the largest
observed values and might change the distribution without any
physical reason, we consider that the simplest form of bias
correction, the mean bias ratio between observed extremes and
simulated extremes, is the least likely to introduce additional error.
Note, with a single factor over the 35 years we only remove the
systematic or time-independent error, since only this time-
independent component can be removed with a statistical
correction procedure46. This approach assumes that the model
error is stationary over time, a feature that is hard to evaluate but
has been suggested by model-based experiments47.
We apply this constant bias correction (1.74, see ‘Fidelity of

UNSEEN extremes’) to the UNSEEN ensemble for Western Norway
to generate the bias-corrected UNSEEN ensemble (henceforth

referred to as UNSEEN-BC). We found little sensitivity to using the
median (1.72), 5-year (1.69) or 20-year (1.70) values in the bias
correction procedure. The effect of the bias correction on the
statistical moments of the distribution is illustrated with the
bootstrapping test (Fig. 4, see ‘Fidelity of UNSEEN extremes’),
showing that the mean and standard deviation are adjusted whilst
the shape of the distribution (the skewness and kurtosis) is
preserved. The test furthermore indicates that UNSEEN-BC is
statistically consistent with the observed values.
Another important requirement of the bias correction proce-

dure is that it does not inflate any detected trends44. We repeat
the fidelity test for the non-stationary generalised extreme value
(GEV) parameters (Fig. 6), instead of the empirical moments
presented above. To avoid poorly fit timeseries, we set the quality
control criteria: location 0< μ0 < 200ð Þ, log scale 0<ϕ0 < 5ð Þ and
shape �1< ξ <1ð Þ. Applying these criteria excludes 58 out of the
10,000 bootstrapped samples. As in the case of the empirical
moments (Fig. 4), the bootstrapped UNSEEN mean (location) and
variability (log scale) do not pass the fidelity test, while the
bootstrapped UNSEEN-BC distributions do. Furthermore, Fig. 6
indicates that the location trend parameter (μ1) is sensitive to the
bias correction, whereas the scale trend (ϕ1) and shape (ξ)
parameters are not. Although the absolute trend is sensitive to the
bias correction procedure, the trend expressed as a percentage
change between 1981 and 2015 (see Eq. (8) in ‘Methods’) is not.
For example, if the simulated mean was 40mm in 1981 and 60
mm in 2015, a bias-correction factor of 2.0 would result in 80 mm
in 1981 and 120mm in 2015. The absolute increase between 1981
and 2015 would double from 20 to 40mm, but the percentage
increase would still be 50%. Hence, the trend estimates and
confidence intervals in the 100-year return intervals expressed as a
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percentage change since 1981 presented in the next section are
insensitive to the chosen bias correction procedure.

UNSEEN trends in 100-year precipitation
Climate models can be used to detect changes48–51 and to
attribute extreme events to human causes52, but are less suited to
detecting trends over the recent past, such as the last 35 years. By
design, climate model simulations are initialised once at the
beginning of a centennial run. In contrast, the seasonal forecasts
used herein are initialised every month and are, thus, more
constrained by real-world climate variability than climate model
simulations. Consequently, seasonal forecasts sample a smaller
range of climate conditions but are closer to reality than climate
model simulations. This means that their use is consistent with
analysing trends over the recent past described by the available
forecast period (for SEAS5, currently 35 years). Furthermore, the
model setup and version are the same for the entire hindcast
simulation, ensuring that, with respect to the models and

initialisation, SEAS5 is a homogeneous dataset and thus suitable
for climate analysis and detection of UNSEEN trends.
With 36 km resolution and 25 members, the ECMWF SEAS5 re-

forecast set used here is based on a modelling system of high-
resolution and has a large ensemble when compared with current
high-resolution global climate models53. SEAS5 greenhouse gas
radiative forcing captures the long-term trends in emissions32, and
the global mean temperature trend in SEAS5 follows ERA537

(Supplementary Fig. 3). There is a cold bias over the Norwegian
study domain, but the trend is consistent with ERA5 for both
Western Norway and Svalbard (Supplementary Fig. 3), confirming
the capacity of SEAS5 to detect recent trends.
To illustrate the added value of UNSEEN trends, we fit a time-

dependent GEV distribution to the observed and UNSEEN
autumn 3-day precipitation extremes (SON-3DP, see Methods).
The fidelity test indicates that the non-stationary GEV para-
meters fitted to the UNSEEN-BC ensemble for Western Norway
are statistically consistent with the parameters fitted to the
observed record (Fig. 6). Using observations, we find an increase
in 100-year SON-3DP of 4% over the period 1981–2015 in
Western Norway, but the uncertainty range is −27% to 34% (Fig.
7a). The uncertainty around the UNSEEN-trend estimate of 2% is
better constrained due to the larger sample size, with confidence
intervals ranging from −3% to 7%. A negative trend is, thus,
statistically possible, indicating that the trend over Western
Norway is not significant. For Svalbard, we find a significant
positive UNSEEN-trend of 8%, with uncertainty bounds ranging
between 4% to 12% (Fig. 7 b).
In addition to the trend in 100-year SON-3DP events, we

illustrate the change in all return values by plotting the GEV
distribution with the covariates 1981 and 2015 (Fig. 7c, d). The
likelihood ratio test shows that the GEV distribution with time
covariate improves the model fit for Svalbard (p-value= 2.7e-07).
We find that the 100-year event estimated in 1981 occurs with a
return period of 41 years in 2015 (Fig. 7c, d). For Western Norway,
the GEV distribution including a time covariate does not improve
the model fit for either the observed (p-value= 0.58) or the
UNSEEN ensemble (p-value = 0.65), and thus, a stationary GEV
distribution is deemed appropriate.

Stationary GEV analysis
We fit the GEV distribution to the observations, the UNSEEN and
the UNSEEN-BC ensemble for Western Norway (see ‘Methods’ and
Fig. 8). The fitted distributions indicate that the UNSEEN-BC
ensemble diverges from observed values at return periods ~35
years and above. To evaluate the discrepancy, we test the
sensitivity of the results to the choice of extreme value distribution
(Supplementary Fig. 4). Although the Gumbel distribution (shape
parameter ξ= 0) shows a relatively good fit to the observations
and a similar distribution to the UNSEEN ensemble, the fit is not as
good as the full GEV with fitted shape parameter, as suggested by
Supplementary Fig. 4 and confirmed by the likelihood ratio test (p-
value= 0.03 for the observed and p-value < 0.001 for the UNSEEN
ensemble). In addition, results are also very sensitive to outliers, as
can be seen when the observed extreme value distribution is
fitted to a sample where the largest value is increased by 10%
(Supplementary Fig. 4). The fidelity test on the stationary GEV
parameters confirms the large uncertainty when constraining the
shape of the distribution (ξ) based on short timeseries (35 years):
the type of the GEV distribution (Weibull, Gumbel or Fréchet)
cannot be constrained (Supplementary Fig. 5). This highlights the
challenge associated with estimating the magnitude of events of
long return periods (>20 years) from observed series of only 35
years, with greater statistical confidence in estimates from the
larger UNSEEN sample.
We find that the 2005 and 2014 observed extreme events (two

highest blue circles in Fig. 8) are similar in magnitude and
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Fig. 5 Large-scale circulation associated with observed and
UNSEEN events. Filled contours show the mean sea-level pressure
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during a the 2005 event b the 2014 event and c for a composite of
the 10% highest events within the UNSEEN ensemble.
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represent events with return periods of 21 years (CI of 19–24
years) when compared with the extreme value distribution of
UNSEEN-BC. Based on the observed values, the return period
estimate of 60 years for the events would be very uncertain, with
the lower confidence interval never reaching the event magnitude
(CI of 18–∞ years). Moreover, the highest UNSEEN-BC event (the
highest orange circle) is 1.5 times higher than the highest
observed event, with an estimated return period of ~2000 years
(CI of 1150–4800 years). The estimated return period of this event
based on the observations is completely dominated by the
uncertainties (~5000, 600–∞ years) and can only be statistically
modelled; the UNSEEN estimate is a physically simulated
‘empirical’ event within 3500 years of data. The 2005 and 2014
flood episodes caused flooding and landslides with severe
damage29,30 and yet UNSEEN-BC indicates that much more
extreme events than seen in the observed record are feasible
even under the present climate.

DISCUSSION
In this study, we build on the UNprecedented Simulated Extreme
ENsemle (UNSEEN) approach15 by applying well-established
extreme value analysis54 to the large UNSEEN ensemble to boost
confidence in decadal trend detection. We apply UNSEEN trends
to autumn 3-day precipitation in Western Norway and Svalbard –
two regions that have faced severe damage from recent extreme
precipitation events. A dense station network exists for Western
Norway, which we use to compare against our trend estimates. In
contrast, the sparse network in Svalbard limits trend detection and
we show that our UNSEEN trends approach can provide additional
information about the characteristics of extreme precipitation in
the rapidly changing Arctic28,31,55,56.
Our UNSEEN trends approach substantially reduces the

uncertainty range of the spatial averaged trend estimate for
1981–2015 in Western Norway from –27% to 34% (estimated
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using the precipitation record), to only –3% to 7%. In both cases,
we find a small and insignificant trend estimate of 4% (observed)
and 2% (our approach). For Svalbard, we detect a much stronger
and significant signal of 8% (4:12%). As a result, the 100-year
precipitation event in 1981 became a ~40-year event in 2015. The
trend in extreme precipitation over Svalbard could not be
detected from observation-based studies due to the sparse
observation network in this area27. Despite very few precipitation
extremes being recorded in the Svalbard Archipelago, it is
expected that their frequency and magnitude are increasing in a
warming climate27,28, which is consistent with our UNSEEN-trends
analysis. Those precipitation extremes are connected to the inflow

of relatively warm air and, thus, can cause severe landslides and
so-called rain-on-ice events28. Both could have significant impacts
on people living in the Arctic and on local ecosystems.
The September 2005 and October 2014 flood episodes over

Western Norway were identified as high-impact events in previous
end-user engagement sessions within the Translating Weather
Extremes into the Future (TWEX) project30. Thus, estimating their
frequency of occurrence is of high relevance to decision makers
and end-users. We show the very large uncertainties in estimating
the return periods of the observed events and illustrate how the
large UNSEEN-BC sample improves the statistical confidence in
the return period estimates. We find that instead of the unreliable
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60-year estimate from the records, UNSEEN-BC suggests that the
flood episodes are not rare exceptions, but might be expected to
occur once in 20 years under a stationary climate. Furthermore,
the UNSEEN-BC ensemble shows that an event of 1.5 times the
magnitude of the highest observed event could arise. This
application of the UNSEEN approach is similar to previous research
on the 2013/14 winter floods in the UK15 and for the 1990
windstorm losses over Germany and the UK21. A difference to the
previous studies is that we run the analysis on a 3-day resolution
based on the latest ECMWF seasonal prediction system SEAS5,
whereas monthly averages and other prediction systems were
used elsewhere.
An important point of discussion is that the presented

confidence ranges are statistical intervals that do not incorporate
physical credibility. For example, the uncorrected UNSEEN
ensemble for Western Norway has high statistical confidence in
estimating return periods from its large sample size, yet, there is
little credibility in these estimates because they are not consistent
with observed events; so bias correction is necessary (Fig. 8). To
evaluate the credibility of the UNSEEN ensemble, we perform
three tests: ensemble member independence, model stability and
model fidelity. We find that ensemble members are independent
and the model is stable over selected lead times, hence, the
effective sample size of autumn 3-day precipitation (SON-3DP)
events in Western Norway and Svalbard can be increased by a
factor of 100 compared with observations. The fidelity test shows
that using a simple constant bias correction value, the statistical
moments in UNSEEN-BC are consistent to the observed and that
the simulated trend estimate (in percentage change) is preserved.
This analysis acknowledges that the observed record is probabil-
istic in itself, in the sense that besides uncertainties within the
records45, the record could have been different had we faced
other extremes (induced by stochastic processes in the
atmosphere).
We find that part of the discrepancy between UNSEEN and the

observed SON-3DP events over Western Norway arises from the

study design decision to use only simulated large-scale precipita-
tion (see ‘Methods’). As convective processes cannot be resolved
in a global model of 36 km resolution40, only the simulated large-
scale precipitation output is chosen as the target variable.
However, ERA5 suggests that the contribution of local convection
to the total precipitation is substantial for SON-3DP events (see
‘Fidelity of UNSEEN extremes’). We apply a constant correction
ratio between the observed total precipitation and the simulation
large-scale precipitation (1.74, see ‘Fidelity of UNSEEN extremes’)
and, therefore, implicitly assume that convection can be corrected
by a constant value. Further investigating the reliability of
convective processes within SEAS5 and incorporating these
mechanisms in the UNSEEN ensemble may improve confidence
in the physical simulations of SON-3DP events over Western
Norway.
Analysis of the atmospheric drivers of the extreme events may

be used to further evaluate the credibility of UNSEEN extremes or
might highlight plausible atmospheric conditions, leading to
extremes that have not yet been observed15. For Western Norway,
the large-scale circulation patterns during UNSEEN events are
consistent with the large-scale circulation patterns during the
2005 and 2014 events (See ‘Fidelity of UNSEEN extremes’). An in-
depth analysis of the dynamics at play, such as the integrated
vapour transport over this region during the events and their
related teleconnections and sea-surface temperatures, merits
further research but is beyond the scope of this paper. To assess
the drivers of non-stationarity in extreme precipitation, covariates
that might be more appropriate than time57,58 could be selected,
such as ocean temperatures, modes of climate variability59, or
indicators of large-scale synoptic weather systems60,61. Such
analyses may improve our physical understanding of the non-
stationary processes driving climate extremes and could provide
insights into potential model biases, thereby improving con-
fidence in the detected trends over Svalbard and in assuming a
stationary GEV distribution for Western Norway. Century-long
seasonal hindcasts, such as the ASF‐20C global atmospheric
seasonal hindcasts62, might prove useful in assessing the
sensitivity of UNSEEN trends to different time windows within a
longer period.
The insights presented in this study are specific to Western

Norway and Svalbard SON-3DP but the UNSEEN-trends approach
is transferrable to other regions, temporal resolutions and spatial
extent of events, seasons and climate variables. Global validation
of the independence, model stability and model fidelity will show
in which regions the approach may challenge the robustness of
design level estimates, with a potentially high utility in supporting
data-scarce regions63. Furthermore, the large sample size may
allow estimation of extremes using empirical approaches that
avoid assumptions about underlying distributions and their non-
stationarity, thereby offering the possibility of improved design
estimates10 and empirical attribution of physical mechanisms. A
wide range of scientific disciplines might benefit from the UNSEEN
method by connecting seasonal prediction systems with impact
models to assess unprecedented impacts and improved under-
standing of the physical mechanisms leading to such events.
Our results for Western Norway highlight the strength of

UNSEEN in evaluating design-levels and present-day climate
hazards, backed by a growing body of literature12–22. For example,
UNSEEN might be helpful in reviewing design standards used to
rebuild infrastructure after the severe damage caused by the 2005
and 2014 flood episodes. Searching questions could be asked,
such as: what is the estimated economic risk of that infrastructure
failing in the coming 20 years, based on the observed record as
compared to UNSEEN estimates? UNSEEN trends may be
incorporated in risk-based decision making, where the perfor-
mance of infrastructure can be tested by estimating the risk of
failure under stationary and non-stationary conditions58. For
example, in Svalbard, the detected changes might be used to
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evaluate whether design standards are still adequate, where
ideally the physical drivers of the changes in the precipitation
extremes are attributed. We assert that further applications could
(1) help estimate design values, especially relevant for data-scarce
regions; (2) improve risk estimation of natural hazards by coupling
UNSEEN to impact models; (3) detect trends in rare climate
extremes, including variables other than precipitation; and (4)
increase our physical understanding of the drivers of non-
stationary climate extremes, through the possible attribution of
detected trends.

METHODS
Data
We use the fifth generation of the ECMWF seasonal forecasting system
SEAS5 to generate the UNSEEN ensemble. SEAS5 is a global coupled
ocean, sea-ice, and atmosphere model, which was introduced in autumn
201732. The atmospheric component is based on cycle 43r1 of the
ECMWF Integrated Forecast System. The spatial horizontal resolution is
36 km with 91 vertical levels. The ocean (Nucleus for European Modelling
of the Ocean, NEMO64) and sea-ice (Louvain-la-Neuve Sea Ice Model,
LIM265) models run on a 0.25-degree resolution. The atmosphere is
initialised by ERA-Interim66 and the ocean and sea-ice components are
initialised by the OCEAN5 reanalysis67. ECMWF provides a re-forecast
(also known as hindcast) dataset for calibration of the operational
forecasting system SEAS5. The data are initialised monthly with 25
ensemble members, each with 7-month forecast length on a daily
resolution, covering the years 1981–201632. Ensemble members are
generated by perturbing initial ocean and atmosphere conditions and
from stochastic model perturbations.
In the UNSEEN approach, ensemble members and initialisation dates are

pooled to increase the sample size of the variable of interest. Here, we
demonstrate an UNSEEN ensemble for the west coast of Norway and for
the Svalbard Archipelago to evaluate recent atmospheric river (AR) related
severe events27,29,30. ARs have been connected to precipitation extremes in
the observed records for both Norway42,68 and Svalbard27 during
September to March. AR-related floods mostly occur in autumn, because
snowfall during winter precipitation events results in storage rather than
runoff. One-day and five-day precipitation are a common diagnostic for
extreme analysis6,69. ARs frequently strengthen over a period of several
days29,30 and, therefore, multi-day diagnostics prevent splitting events.
Following the 2014 flood episode30, we use 3-day precipitation totals in
this study. We thus select autumn (September to November), 3-day
extreme precipitation (SON-3DP) as target events.
Since the hindcasts are initialised every month on the first of the month

and run over 7-months duration, there are five initialisation months (May-
September) available to forecast the entire target autumn season
(September-November). The first month is removed to avoid potentially
dependent events. This leaves 100 hindcasts, based on 25 ensemble
members with 4 initialisation dates to forecast the autumn season of each
year (Fig. 2a–c). The window of 35 years between 1981 and 2016 leads to a
total of 3500 forecasts of autumn weather conditions that could have
occurred (Fig. 1b–c). We extract the maximum 3-day cumulative
precipitation within autumn from the 3500 forecasts (SON-3DP), using
the xarray package70 in Python. To focus on the weather systems as
experienced in recent severe events, we use only the large-scale
precipitation output of the model. The west coast of Norway is
mountainous and characterised by considerable topographic variation.
Catchment-scale processes in these mountainous areas cannot be resolved
by a global model with 36 km resolution. Therefore, the precipitation
timeseries presented in this study are spatial averages where the 200-year
precipitation exceeds 90mm for the west coast of Norway (4–7° E, 58–63°
N) and 35mm for Svalbard (8–30° E, 76–80° N) (Fig. 1a).
To evaluate the precipitation extremes simulated by SEAS5, we use a 1 ×

1 km gridded station-based precipitation product for Norway25. The data
have recently been corrected for underestimation caused by wind-induced
under catch and uses more information in the interpolation scheme for
data-scarce areas, resulting in higher precipitation in those areas26. We
upscale this gridded dataset to the same resolution as SEAS5 and extract
SON-3DP values for the same spatial domain over 1981–2016. Note, for the
Svalbard Archipelago no gridded precipitation data are available as a
reference dataset. We use ERA537 large-scale and total precipitation for the
fidelity test, mean sea-level pressure and geopotential height at 500HPa

for the large-scale circulation comparison, and seasonal mean (September-
November) temperature for the global and regional temperature evalua-
tion of SEAS5. The atmospheric component is based on cycle 41r2 of the
ECMWF Integrated Forecast System (IFS), one IFS cycle older than SEAS5
(43r1). IFS large-scale precipitation represents processes resolved at scales
of the grid box size or larger, such as cloud formation or changes in
pressure, whilst convective precipitation represent smaller-scale convec-
tive processes (see the full IFS documentation and a summary of the
differences between IFS cycles at: https://www.ecmwf.int/en/forecasts/
documentation-and-support/changes-ecmwf-model).

Ensemble member independence testing
The method for independence testing applied in this study is inspired by
previous research on potential predictability: the ability of the model to
predict itself33,71. The potential predictability of a model is calculated by
using one of the forecast ensemble members as the observations and the
mean of the other ensemble members as the forecast. The correlation
between the ‘observed’ ensemble member and the mean of the other
ensemble members is calculated for every ensemble member and this
range gives an estimate of the ability of the model to forecast itself. As this
method assesses the correlation between ensemble members, it can be
used to find the degree of dependence among ensemble members. In
seasonal forecasting, this method is used to identify any predictability in
the seasonal prediction system. In contrast, here we seek to demonstrate
that there is no potential predictability in the system for the ensemble
members to represent independent, unique events.
An illustration of our method for testing independence is shown in

Fig. 2. A potential predictability test is performed but instead of correlating
an ensemble member to the mean of the other ensemble members, a
pairwise correlation test is applied between all ensemble members to
robustly assess the individual ensemble member dependence. Indeed, we
concatenate the seasons together member by member, even though they
do not necessarily originate from the same run. This approach was chosen
because the underlying initialisation method remains the same for each
member over different seasons.
For the 25 ensemble members, there are 300 distinct pairings in the

correlation matrix for each of the four lead times being analysed
(May–August). We calculate the Spearman rank correlation ρ for the
standardised SON-3DP anomalies (deviation from mean divided by the
standard deviation) for each distinct pair. From the 300 ρ values for each
lead time, boxplot statistics are calculated: the whiskers, the interquartile
range and the median. When testing for significance of the 300 ρ values,
care must be taken not to falsely detect significant correlations because of
the large number of tests. For example, with a confidence interval of 5%,
15 out of the 300 correlations would be expected to be significant by
chance alone. To avoid these problems, a permutation test is performed.
The dataset, which previously consisted of 25 timeseries (members) of 35
datapoints (years) for four initialisations months (lead times), is resampled
into 100 timeseries of 35 datapoints, with datapoints randomly picked
from all members, years and lead times to remove potential correlations.
This randomised dataset is split into four pseudo lead times of 25
timeseries, in order to calculate the boxplot statistics from the same
amount of correlation coefficients (300) as before. The data are resampled
1000 times (without replacement), resulting in 4000 boxplot statistics (4
pseudo lead times * 1000 resampled series), from which the confidence
intervals are calculated based on a 5% significance level (the 2.5 and 97.5
percentiles).

Model stability
The extreme precipitation distribution must be similar over lead times in
order to generate the UNSEEN ensemble. We use four initialisation months
(May–August) forecasting the target autumn season with lead times 2 to
5 months. For each lead time, 25 ensemble members over 35 years result
into an 875-year long dataset and the pooled ensemble into 3500 years. To
compare the distributions, we first plot the probability density function for
each of the lead times using ggplot272. Second, we plot the extreme value
distributions, focussing more on the tails of the distribution. We calculate
empirical quantiles of the extreme precipitation ensemble without
assuming any distribution a priori, to avoid problems regarding statistical
modelling of the extremes10,73. The quantile (Q) of a distribution is the
inverse of the distribution function (F(x)):

Q pð Þ ¼ F�1 pð Þ ¼ inf x : F xð Þ � pf g; 0<p< 1; (1)
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where the return value is associated with the quantile of percentile (p):

p ¼ 1� 1
T

(2)

with T being the return period. We use the quantile function in R to
compute the empirical return values and we refer to Hyndman and Fan74

for more detail.

Fidelity of the UNSEEN ensemble for Western Norway
To compare UNSEEN to the observed record, we apply a bootstrap test
presented in previous studies15,16. We bootstrap 10,000 timeseries of 35
years with replacement from all ensembles (100 × 35 years) and calculate
the mean, standard deviation, skewness and kurtosis for each. We test
whether the four distribution statistics derived from the observed
precipitation time series over the period 1981–2015 fall within the 95%
confidence intervals for the statistics derived from the bootstrapped
timeseries. We repeat the fidelity tests for the stationary and non-
stationary GEV parameters, described in following sections.

Stationary GEV distribution
The GEV distribution is described by a location �1< μ<1ð Þ, scale σ > 0ð Þ,
and shape �1< ξ <1ð Þ parameter54:

F xð Þ ¼ exp � 1þ ξ
x � μ

σ

� �� ��1
ξ

� �
; 1þ ξ

x � μ

σ

� �� �
> 0: (3)

We test the sensitivity to using the Gumbel distribution with ξ ¼ 0,
simplifying the distribution to:

F xð Þ ¼ exp �exp � x � μ

σ

� �� �h i
; �1< x <1: (4)

The quantiles of the distribution can again be obtained by inverting the
distribution:

xp ¼ μ� σ
ξ 1� �logð1� pÞf g�ξ
h i

; for ξ≠0

μ� σ log � log 1� pð Þf g ; for ξ ¼ 0

(
; (5)

where the return value xp corresponds to the return period (T) 1/
probability (p). For all statistical model fits in this study (including non-
stationary fits described in the next section), we apply maximum likelihood
estimation (MLE) to estimate the parameters of the distributions, utilising
the extRemes package75 in R. The 95% confidence intervals of the
distributions are calculated based on a parametric bootstrap, that can
better highlight the uncertainties associated with the extrapolation of
the extremes than the normal approximation (Fig. 8 and Supplementary
Fig. 6).

UNSEEN trends
In this study, we present the idea of performing trend analysis on seasonal
hindcasts, as the seasonal hindcasts provide a larger sample than
observations and a higher resolution than global climate models (see
the UNSEEN-trends section for more details). We apply well-established
extreme value theory54,76,77, by allowing the location (μ) and scale (σ)
parameters of the GEV distribution (given in Eq. 3) to vary linearly
with time (t). As the scale parameter needs to be positive, a log-link
function is used:

μ tð Þ ¼ μ0 þ μ1t: (6)

ln σ tð Þ ¼ ϕ0 þ ϕ1t: (7)

This approach selects one block maximum per year, leading to 35 data
points over the years 1981–2015 based on observed records. With UNSEEN
trends, we have 100 times more values for each year and thus increase
confidence in the regression analysis (see Fig. 7a, b for illustration). As for
the stationary method, we use MLE to estimate the parameters of the
distributions. For numerical reasons, we vary time (t) over 1:35 rather than
1981:2015, e.g., we have set μ0 ¼ μ 1980ð Þ.
Instead of the parametric bootstrap for the stationary method, we apply

the normal approximation to find the 95% confidence intervals of return
values. Implementing a parametric bootstrap for the non-stationary
analysis (the uncertainty intervals for Fig. 7) is complicated because we
have 35 regression points (each year in 1981–2015). For each of the
regression points, a parametric bootstrap would have to be performed,
which is computationally expensive. For the UNSEEN confidence intervals,

we do not expect much difference between the two methods (Fig. 8 and
Supplementary Fig 6), so we applied a normal approximation for the non-
stationary analysis.
We focus on the changes in the 100-year quantiles, because these are

associated with the design-levels most widely used in flood defence78. The
trend in the 100-year return value is defined as the percent change
between 1981 and 2015:

ΔxT ¼ 100 � xT μð2015Þ; ln σð2015Þ; ξð Þ � xT μð1981Þ; ln σð1981Þ; ξð Þ
xT μð1981Þ; ln σð1981Þ; ξð Þ

� �
;

(8)

where xT is defined by Eq. (5).
The robustness of the trends to experimental decisions such as block

size, event duration and regression method can be further investigated but
are beyond the scope of this research. For example, 6-month blocks can be
selected at the expense of the ensemble size. This would result in 25
realisations, in comparison with 3-month blocks, which contain 100
realisations. A block size of three months (September-November) and
three-day precipitation extremes were used in this study to represent
flood-inducing events (see the data section above). A sensitivity test to
different event durations could be performed to check the max-stable
property of the GEV distribution54. A linear trend in time is assumed. With
the large amount of data, more complex regression methods can be
explored. The ECMWF SEAS5 seasonal prediction system is used, but other
seasonal prediction systems with available hindcasts could also be
assessed to test the sensitivity of the return value and trend estimation
to the model.

DATA AVAILABILITY
SEAS5 re-forecast data was accessed through the MARS Catalogue. This catalogue
has restricted access, it is available for National meteorological services of ECMWF
Member and Co-operating States. Other users can request access here: https://www.
ecmwf.int/en/about/contact-us?subject=Gain%20access%20to%20archive%20data.
Alternatively, SEAS5 re-forecast data on 1-degree resolution, as well as ERA5 data, are
openly available from the Copernicus Climate Change Service (C3S) Climate
DataStore (https://cds.climate.copernicus.eu/). The SeNorge daily total precipitation
data are available at https://doi.org/10.5281/zenodo.2082320. The extracted SON-
3DP UNSEEN ensembles as well as the extracted SON-3DP observations are available
on GitHub: https://github.com/timokelder/UNSEEN-trends.
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