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Threatening levels of cumulative stress due to hydroclimatic
extremes in the 21st century
Filippo Giorgi1, Erika Coppola1 and Francesca Raffaele1

Hydroclimatic extremes, such as very intense precipitation and drought, are expected to increase with global warming, with their
cumulative effects potentially posing severe threats for human and natural systems. We introduce a new metric of potential
cumulative stress due to hydroclimatic extremes, the Cumulative Hydroclimatic Stress index (CHS), expressed in “equivalent
reference stress years (ERSY)” (i.e., the mean annual stress during a present day reference period). The CHS is calculated for wet and
dry extremes in an ensemble of 21st century Global Climate Model projections under the RCP8.5 and RCP2.6 greenhouse gas
scenarios. Under the high-end RCP8.5 scenario, by 2100, increases in wet and dry extremes add ~155 ERSY averaged over global
land areas (~125 for wet and ~30 for dry extremes), with wet hotspots (>250 added ERSY) throughout regions of Asia, Eastern Africa
and the Americas, and dry hotspots (>100 added ERSY) throughout Central and South America, Europe, West Africa, and coastal
Australia. Inclusion of population exposure in the stress index definition generates a maximum total (dry+wet) potential stress
level exceeding 400 added ERSY over Africa, North America, and Australia, which are thus projected to be extremely vulnerable to
increases in hydroclimatic extremes. Under the RCP2.6 scenario, which is close to the 2 °C global warming stabilization target set in
the Paris agreement, the total hydroclimatic stress is considerably reduced.
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INTRODUCTION
Hydroclimatic extremes can have severe impacts on different
socio-economic sectors, such as agriculture, water resources,
health, ecosystem services, urban infrastructure, etc.1,2 This issue is
especially important within the global change context because
different generations of twenty-first century global and regional
climate model projections have consistently indicated a predo-
minant increase of precipitation intensity and wet extremes, along
with a decrease in the frequency of precipitation events, and thus
a lengthening of dry periods.3–11

While the occurrence of individual extremes can have
devastating impacts at a given time, the cumulative effect of
events over time may be a dominant factor in determining the
overall stress for a natural or socio-economic system, thereby
challenging its resilience.1,2 For example, there might be thresh-
olds of cumulative stress leading to the collapse of the system or
to impacts that are beyond sustainable adaptation options. Also,
the cumulative stress is an integrator over time and, since it
accounts for the temporal trajectory of changes in extremes, it can
be an optimal measure of related risks.
Here we introduce a new metric of the cumulative potential

stress due to hydroclimatic extremes, the Cumulative Hydrocli-
matic Stress index (CHS), which is described in the Methods
section. We calculate the CHS for two types of events that can be
expected to produce damage to economic activities and
infrastructure:1,2 extreme daily precipitation (the 99.9 percentile
of the daily precipitation intensity distribution, or R99.9) and
severe precipitation deficits (defined as a sequence of at least
three consecutive months with negative precipitation anomalies,
or precipitation deficits, greater than 25%, or D25). The CHS is

expressed in units of “Equivalent Reference Stress Year (ERSY)”,
where the ERSY is a measure of the average annual potential
stress due to extreme wet or dry events for a reference period
representing present day conditions (see Methods). If for a certain
period in the future the cumulative number of ERSY is larger than
the value that would be obtained by cumulating the ERSY found
for the reference period, then the excess number of ERSY is a
measure of the additional potential stress induced by climate
change.
We emphasize that here the CHS is calculated from a physical

quantity, namely precipitation, assuming that the stress itself is
proportional to the amount of extreme or deficit precipitation. As
such, it is a measure of potential stress, or risk, and not of actual
damage associated with the events, because clearly not all events
described by the R99 and D25 metrics will necessarily result in
damaging flood or drought. The index could however be
generalized to become an Integrated Cumulative Hydroclimatic
Stress index (ICHS) by including socio-economic information, for
example population exposed to, and/or cost and damage
associated with, the event. As an illustration of this point, here
we calculate the ICHS by including population information as a
measure of exposure (see Methods), which again results in a
metric of potential stress rather than actual impact.
The values of the CHS and ICHS are calculated for an ensemble

of 9 Global Climate Model (GCM) projections from the Coupled
Model Intercomparison Project, Phase 5 (CMIP5,12 supplementary
Table S1), covering the period 1981–2100, where 1981–2010 is our
reference period. Two greenhouse gas (GHG) concentration
pathways are considered, the high-end RCP8.5 and the low end
RCP2.6, which cover the overall CMIP5 range.13 Population data
are from the set of IIASA Shared Socioeconomic Pathways (SSPs,14)
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where we use the SSP1 and SSP5 for the RCP2.6 and RCP8.5,
respectively.14 The GCM and population data are interpolated
onto a common grid, here taken as the grid of the HadGEM2-ES
model15 (1.875° longitude × 1.25° latitude), which also defines the
continental coastlines. Observations from the Unified Gauge-
Based Analysis of Global Daily Precipitation (UGDP) gridded
dataset16 are used for model validation after interpolation on the
same grid. The Methods section provides more details on the
procedures used.
In the next section, we first provide a brief validation of our

GCM ensemble in the simulation of the extremes considered in
this work. We then calculate values of the CHS and ICHS for each
year throughout the 21st century projections, both globally and
over the different regions of Supplementary Figure S1, to
investigate whether climate change due to increases in GHG
concentration may enhance the stress associated with hydrocli-
matic extremes. The results are intercompared across the RCP2.6
and RCP8.5 scenarios to assess the gain achieved by reaching the
2 °C global warming stabilization target (compared to pre-
industrial temperatures) set in the Paris agreement, which is in
fact close to the RCP2.6 scenario. A discussion of the results and
final considerations are then presented in the concluding section.

RESULTS
Our ensemble of CMIP5 GCMs was selected because of the
availability of daily precipitation data for both the RCP8.5 and

RCP2.6 scenarios, but it has already been shown to produce an
ensemble-mean precipitation change signal in line with the full
CMIP5 ensemble.12 Here we assess the performance of the model
ensemble in simulating the R99.9 and D25 metrics by comparing
simulated and observed cumulative values for the reference
period 1981–2010 (Fig. 1). It can be seen that the ensemble shows
a generally good agreement with observations in the simulation
of the spatial patterns of both cumulative R99.9 and D25. The
main model deficiency is a tendency to underestimate the
observed magnitudes of these two metrics over some areas with
large cumulative values, such as sub-continental Africa for D25, or
central North America and Central-Northern Asia for R99.9. This
tendency for understimation of extremes appears consistent with
previous analyses of GCMs, being related to the relatively coarse
resolution of the models as well as inadequacies of the model
representation of precipitation processes.17–20 Despite this pro-
blem, however, the simulated values of cumulative R99.9 and D25
are in line with observations over the majority of land areas. We
thus assess that the ensemble selected is suitable for the study of
changes in cumulative extremes in 21st century climate
projections.
In addition, even though, as we stressed above, our metrics are

only based on precipitation amounts and are not intended to be
measures of impact or actual damage, we tested their representa-
tiveness of available flood and drought records over Europe.
Supplementary Figures S2a,b compare the number of events
above the R99.9 threshold (threshold calculated from the full

Fig. 1 a Observed cumulative R99.9. b Ensemble average simulated cumulative R99.9. c Observed cumulative D25. d Ensemble average
simulated cumulative D25. Data are cumulated over the period 1980–2010 and units are fraction of total precipitation above the R99.9 or
within the D25 anomalies
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reference period 1986–2005) in our UGDP observational dataset
with reported numbers of river floods by the European Environ-
mental Agency (EEA) for the period 1998–2008 (http://www.eea.
europa.eu/legal/copyright). In the observed flood report, 5 flood
events or more occurred over southeastern Europe, southern
England and areas of southern Germany, southeastern France,
northeastern Italy and southern Georgia. By and large, taking into
account the uncertainty in spatial placement due to the resolution
of the data, the metric captures these areas of high flood numbers.
We can also see however, that over some other areas, e.g.,
Scandinavia, the UGDP observations place the occurrence of R99.9
events that do not correspond to reported river floods. Figure S2c,
d show a similar comparison between reported drought events
over Europe in the period 2000–2009 and the corresponding value
of the D25 metric for the years when the droughts were reported.
Although in this case the comparison is necessarily qualitative due
to the nature of the drought report information, we can still see
that the metric generally captures the reported droughts.
Supplementary Figure S2 thus illustrates how the R99.9 and D25
metrics are generally representative of the potential of flood and
drought to occur, although they are not strict measures of the
actual impact of flood and drought, since in some cases the
climate based metrics do not correspond to observed reported
events.
We can now turn our attention to the future projections. Figure 2

shows the additional number of ERSY due to global warming

from 2011 to 2100 (i.e., the total number of ERSY at 2100 minus 90,
where 90 is the ERSY number that would be obtained if there was
no climate change) as projected by the model ensemble for the
R99.9 and D25 metrics and the RCP8.5 and RCP2.6 scenarios. Note
that both the R99.9 and D25 show positive additional stress due to
climate change over the majority of land areas, which implies a
prevailing projected increase in both the wet and dry extremes
considered. Figure 2a shows that the increase in R99.9 adds more
than 100 ERSY over most land areas in RCP8.5. Among the most
sensitive regions (>250 additional ERSY) are parts of western North
and South America, East and Central Africa, India, the Tibetan
Plateau and South-east Asia. For the RCP2.6, the increase in stress
due to R99.9 is much reduced, exceeding 100 ERSY only in small
regions scattered across different continents.
For D25, the hotspots of increased stress (>100 additional ERSY)

occur in areas of Central and South America, the Mediterranean
basin and Central Europe, West and Central Africa, South-East Asia,
and coastal Australia. Conversely, over the northern hemisphere
high latitude regions, where mean precipitation is projected to
increase,12 the stress due to precipitation deficits actually
decreases. Other areas where the stress due to D25 decreases
are parts of eastern Africa, the Indian and Indochina peninsulas
and northern China. Also for the D25, the areas of large changes of
stress are much reduced in the RCP2.6, although still present in
parts of South America, Africa, South-east Asia, and Australia.
Figure 2 thus shows that the stress associated with both wet and

Fig. 2 a Ensemble average total cumulative additional stress index (CHS) due to changes in R99.9 for the period 2011–2100 in the
RCP8.5 scenario. b Same as a but for RCP2.6; c Same as a but for changes in D25. d Same as c but for RCP2.6. Units are ERSY (see text) and the
additional stress is calculated as the difference of the total value of ERSY for the period 2011–2100 minus 90 (number of ERSY without climate
change)
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dry hydroclimatic extremes markedly increases due to climate
change under the high-end RCP8.5 scenario, with pronounced
spatial variability and a considerable avoided stress in the case of
the RCP2.6.

Figure 3 shows the time evolution throughout the 21st century
of the ensemble averaged projected CHS (additional ERSY) due to
changes in R99.9 and D25 over the 9 regions of Figure S1, as well
as over global land areas. On average, globally the R99.9 adds

Fig. 3 Regionally averaged cumulative additional stress index (CHS) for the 9 selected regions of Figure S1 and global land throughout the
period 2011–2100 due to a R99.9, RCP8.5; b R99.9, RCP2.6; c D25, RCP8.5; d D25, RCP2.6. Units are ERSY (see text) and the additional stress at a
given year N is calculated as the total number of ERSY cumulated from 2011 to N minus the value (N—2011) (number of ERSY without climate
change)

Table 1. Ensemble average number of additional ERSY by 2100 (AVE), ratio of ensemble average and inter-model standard deviation of additional
ERSY by 2100 (AVE/Sigma), and number of models producing changes in additional ERSY by 2100 of the same sign as the ensemble average (N) for
the different regions of Figure S1 and global land areas, the R99.9 and D25 metrics, and the RCP8.5 and RCP2.6 scenarios

REGION R99.9, RCP8.5 R99.9, RCP2.6 D25, RCP8.5 D25, RCP2.6

AVE AVE/Sigma N AVE AVE/Sigma N AVE AVE/Sigma N AVE AVE/Sigma N

South America 121.2 1.8 9 43.3 2.1 9 86.5 1.4 9 28.9 0.75 6

Europe 95.5 3.2 9 45.3 2.7 9 50.3 1.5 8 11.2 0.9 8

North America 115.2 3.7 9 51.9 2.1 9 12.0 0.5 6 2.0 0.1 4

East Asia 139.2 2.9 9 53.7 2.8 9 1.9 0.1 5 −4.0 −0.3 5

Africa 101.3 3.2 9 42.2 3.8 9 45.3 1.1 8 13.2 0.6 6

Australia 56.8 2.3 9 24.0 1.8 9 59.0 1.1 7 31.7 0.9 9

Central America 83.7 1.2 9 46.1 1.6 9 90.6 1.3 9 13.3 0.5 6

South-East Asia 172.4 1.3 8 58.5 1.7 8 54.6 0.6 6 29.1 0.4 5

India 157.6 3.3 9 59.8 1.7 9 4.0 0.1 4 −9.8 −1.0 7

Global Land 124.2 5.8 9 50.8 3.9 9 30.5 1.8 9 7.4 0.6 7
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Fig. 4 a Ensemble average total additional cumulative stress index (CHS) due to R99.9 for the period 2011–2100 (colors, units of ERSY, RCP8.5)
overlaid to the ratio between population in 2100 and in 2010 at each grid box (SSP5). The units of the CHS are ERSY and the length of the
vertical rods are proportional to the population ratio, with the longest rod being a ratio of 3. b Same as a but for the D25. c Regionally
averaged population-weighted additional integrated cumulative stress index (ICHS) for the 9 selected regions of Figure S1 and global land
throughout the period 2011–2100 due to R99.9 for the RCP8.5/SSP5 scenarios. d Same as c but for the D25. Units in c and d are ERSY (see text)
and the additional stress at a given year N is calculated as the total number of ERSY cumulated from 2011 to N minus the value (N—2011)
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~125 ERSY by 2100 in RCP8.5. The regions with the strongest
response are India, South-east and East Asia (~140–180 additional
ERSY by 2100), where evidently the increase in extreme
precipitation events is most pronounced. Conversely, Australia is
the least responsive region in terms of R99.9 (~60 additional ERSY
by 2100). In RCP2.6 the increase in R99.9 CHS is drastically
reduced, ~50 ERSY by 2100 globally and ~60 ERSY in the most
responsive regions. Concerning D25 (Fig. 3c, d), the regions with
the largest increase of stress are Central and South America, up to
85–90 additional ERSY by 2100. India and East Asia experience
little change in the regionally averaged D25 stress, which is
however a compensation between areas of positive and negative
changes (see Fig. 2). In RCP2.6 only South-east Asia, South
America, and Australia show increases of D25 CHS (>25 ERSY by
2100), with decreases over India and East Asia.
Given the relatively small sample of GCMs utilized here, it is

important to assess the robustness of the signals we find. Towards
this goal, Table 1 shows for each region of Fig. 3, the number of
models in which the simulated regionally averaged change signal
by 2100 has the same sign as the ensemble average, along with
the ratio of the ensemble-mean change signal by 2100 over the
corresponding inter-model standard deviation. The latter can be
considered as a measure of signal-to-noise ratio, and thus a value
greater than 1 indicates more robustness in the result.
Table 1 shows that, for the R99-based index, in all regions

(except south-east Asia for one model), all models agree on the
sign of the change (increase) and the signal-to-noise ratio is
always >1. Therefore, we conclude that the signal based on the

R99 metric is robust. More conflicting results are found for the D25
metric. For the RCP8.5 scenario, there is agreement across at least
6 out of 9 models on the sign of the signal (positive) over 7 out of
9 regions and globally, with the signal-to-noise ratio being greater
than 1 over 5 regions and over global land. Therefore, although
the projected change is less robust than for the R99.9 metric, we
still find a prevalence of inter-model agreement. Conversely, for
the RCP2.6 case the signal-to-noise ratio is mostly lower than 1,
but this is associated to the fact that the change signal is generally
small, and therefore this result could be interpreted by stating that
for the low end RCP2.6 scenario there is little change in the D25
metric.
While Figs. 2 and 3 are only based on climate information, from

the socio-economic point of view the potential stress also
depends on the exposure of population, which is here included
in the ICHS by weighting at each grid box the climate-derived
variables by the corresponding time-varying population amounts
(see Methods). Figure 4a and b overlay the R99.9 and D25 CHS by
2100 (additional ERSY, RCP8.5) to the population change in the
SSP5 to illustrate how the two metrics interact. In the figure, the
height of the vertical rod at each grid box is proportional to the
ratio of population at year 2100 and that at year 2000, with the
longest rod being a ratio of 3. The largest population increases
occur over Australia, Africa, and North America. The latter two
cases also show large increases in R99.9, while Australia and
portions of Africa exhibit large increases in D25. Central America,
Europe, and to a lesser extent South America also show relatively
pronounced increases in both population and climate stress, while

Fig. 5 Different total (R99.9+D25) stress alarm thresholds (SAT) reached over each of the 9 regions of Figure S1 at year 2100. The SAT are:
SAT1: 0–60 ERSY, yellow; SAT2: 60–120 ERSY, orange; SAT3: 120–180 ERSY, red; SAT4: 180–300 ERSY, purple; SAT5: >300 ERSY, black. For each
region, the SAT is calculated for the CHS (climate only, top row) and the ICHS (including population weighting, bottom row), RCP2.5 (left
column) and RCP8.5 (right column). The SAT thresholds are identified based on the clustering of the individual regional cases shown in the
bottom bar, whose actual values are given in Table 1. The regional averages include only grid boxes with population in the reference period.
The additional stress at year 2100 is calculated as the total number of ERSY cumulated from 2011 to 2100 minus 90 (number of ERSY without
climate change)
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the Asian regions exhibit large increases in R99.9 stress but small
population growth (in fact for China even a reduction). This
information combines to yield the regionally averaged ICHS stress
(additional ERSY) for RCP8.5 presented in Fig. 4c and d (the
corresponding information for RCP2.6 is provided in supplemen-
tary Figure S4).
Comparison of Fig. 4c and d with Fig. 2a and c, respectively,

shows that the inclusion of population considerably modifies the
picture of increased potential hydroclimatic stress. North America,
Africa, and Australia emerge now as the primary stress hotspots,
with increases in ICHS exceeding 270 ERSY for R99.9 and 120 ERSY
for D25. Conversely, the East Asia region shows the smallest
increases in R99.9-based potential stress and even a decrease in
the D25-based one due to a projected decrease in population.
Europe, Central and South America, India, and South-East Asia are
characterized by the intermediate values of increased stress. A
similar regional modulation of the potential hydroclimatic stress
by population is found for the RCP2.6 scenario (Supplementary
Figure S3), however with considerably smaller values in each
region.
Our results are finally summarized in Fig. 5. Here we add

together the additional ERSY due to R99.9 and D25 by the end of
2100 in order to measure the total additional potential stress due
to extremes, although we recognize that in principle the risk
associated with flood-prone and drought-prone events should be
weighted differently. Also, in the calculation of the regional mean
ERSY of Fig. 5, we only use populated grid boxes, assuming that
the stress is only relevant in the presence of population. Results
are presented for RCP8.5 and RCP2.6, both without (CHS) and with
(ICHS) inclusion of population weighting. We define 5 “Stress
Alarm Thresholds (SAT)” based on the additional ERSY by 2100,
SAT1: 0–60, SAT2: 60–120, SAT3: 120–180, SAT4: 180–300, SAT5 >
300. These thresholds were identified from the clustering of the
different cases shown on the bottom bar of Fig. 5, for which the
actual values are reported in Table 2.
When only climate is considered (CHS), in RCP8.5 the SAT3 is

reached in all regions except Australia, which is at the SAT2/SAT3
transition point, while South America and South-East Asia even
reach the SAT4 level. In other words, on average all regions
experience more than one equivalent century of additional
potential stress due to increases in climate extremes. The
population weighting (ICHS) produces a maximum SAT5 alarm
level over North America, Africa, and Australia, with more than 400
ERSY of additional stress. Europe reaches the SAT4 level (203

additional ESRY), while all the other regions except South America
and East Asia reach the SAT3 level. In RCP2.6, only North America,
Africa, and Australia reach the SAT3 or SAT4 levels when
population weighting is included, while East Asia shows even a
decrease in stress (see Table 2) due to the reduction of population
projected in that region.

DISCUSSION AND CONCLUSIONS
In this paper, we have analyzed the change in potential stress due
to hydroclimatic extremes by introducing a new integrated
cumulative stress index based on precipitation and population
information. The flexibility of this index allows the implementation
of more refined measures of socio-economic stress than used
here. For example the actual cost estimated for the damage due
to hydroclimatic extremes could be used as a metric of actual
stress. In addition, the stress calculated for future periods could
include metrics of adaptation policies or adaptive capacity. From
the physical point of view, other types of extremes or climatic
processes could be added, such as heat waves or storm surge
events. Therefore, more accurate integrated measures of stress are
certainly possible within our conceptual framework and the use of
the ERSY as a metric of change in stress allows one to derive an
easily understandable measure of added stress due to climate
change.
An important assumption underlying our definition of the stress

index is that the stress itself is linearly proportional to the excess
or deficit precipitation amount. This is clearly a simplistic
assumption, since the damage associated with an event could
have a non-linear dependence on the event’s intensity, and in fact
not all R99.9 and D25 events might lead to significant damage.
The availability of damage information for observed events could
in principle enable the construction of better calibrated, and likely
more realistic, stress-intensity functions. In addition, we do not
include in our definition of cumulative stress the temporal
succession of events, whereby events taking place for example
on consecutive years could have a higher cumulative impact than
events spaced by several years. This could however be easily
implemented within our framework.
Notwithstanding these caveats, our calculations clearly indicate

that for the high-end RCP8.5 scenario the increase of both wet and
dry extremes can pose a significant risk for the sustainable
development of societies throughout the 21st century in regions
across all continents. This is particularly the case for North
America, Africa, and Australia, where climate change, along with
increased exposure based on population scenarios, produces a
>400% increase in hydroclimatic stress. When population weight-
ing is not included, South-east Asia and South America show the
strongest responses, with over two equivalent centuries of
hydroclimatic stress being added by climate change only.
Although more comprehensive calculations are needed to

quantitatively refine our results, it is evident from our calculations
that under the RCP2.6 scenario, which is close to the 2 °C
stabilization target set in the Paris agreement,21 the stress
associated with increases of extreme events is considerably
reduced throughout the globe, even if still substantial over some
regions.

METHODS
The CHS is calculated as follows. For the case of extreme precipitation
events, at each grid point of the common model grid, and for each model
separately, we first calculate the value of the 99.9 percentile of daily
precipitation events (R99.9) in the 30-year reference period 1981–2010,
where a precipitation event is defined as having a daily precipitation
amount greater than 1mm/day. This procedure essentially identifies the
threshold above which an event is expected to be “stressful” for a system,
and the use of the 99.9 percentile implies the selection of the most

Table 2. Total number of additional stress years (units of EMSY, R99.9
+D25) for the period 2011–2100 over the different regions of Figure
S1 for the cases without (CHS) and with (ICHS) population weighting
and the RCP2.6 and RCP8.5 scenarios

REGIONS CHS,
RCP2.6

CHS,
RCP8.5

ICHS,
RCP2.6

ICHS,
RCP8.5

South America 76 210 16 104

Nort America 58 132 155 495

Central
America

59 176 39 138

Africa 49 160 258 460

Europe 57 149 29 203

East Asia 46 142 −48 8

Australia 56 120 216 627

India 53 165 48 142

South-east Asia 76 223 49 172

The averages include only grid boxes with population during the reference
period 1981–2010
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extreme events. We then calculate the cumulative precipitation in excess
of the R99.9 threshold for all events identified in the 30-year reference
period (1981–2010) and divide it by the number of years considered (in
this case 30). This gives us the equivalent mean stress during one year due
to extreme intensity events for the reference period, or PR99.9-ref, defined as

PR99:9�ref ¼ Σ1981�2010PR99:9=30

where PR99.9 is the precipitation in excess of the R99.9 threshold for daily
events above the 99.9 percentile during each year of the reference period.
The units of PR99.9-ref are thus mm/(day × yr) and the assumption here is
that the stress is proportional to the amount of precipitation above the
R99.9. To calculate the CHS due to R99.9 in the future period 2011–2100,
CHSR99.9, we accumulate the precipitation of daily events in excess of the
99.9 percentile threshold identified in the reference period, starting from
2011 until 2100 and normalize it by PR99.9-ref. Therefore, for example, by the
end of the century,

CHSR99:9�2100¼Σ2011�2100PR99:9=PR99:9�ref

By way of this normalization, the units of CHSR99.9 are years, and
conceptually CHSR99.9, which is calculated for each year of the twenty-first
century, is a measure of the cumulative stress due to extreme events above
the reference R99.9 threshold in units of Equivalent Reference Stress Years
(ERSY). If we remove from the ERSY calculated at future year N (say 2050 or
2100), the number of years from the beginning of the accumulation period
(i.e., 40 or 90 in the examples above) we remove the mean stress if climate
was the same as in the reference period, and thus we obtain the additional
number of ERSY due to climate change (or “additional ERSY”). For example,
if for the period 2011–2100 we find 180 ERSY, we have 90 additional ERSY,
meaning that climate change has doubled the amount of hydroclimatic
stress with respect to the case in which climate would have been the same
as during the reference period. In all the figures of the paper, we show the
additional number of ERSY due to climate change.
To calculate the stress due to the precipitation deficit (D25) CHSD25, we

follow exactly the same procedure as for CHSR99.9 with the difference that
in place of PR99.9 we use, for a given year, the precipitation deficit
cumulated over sequences of at least 3 months in which the precipitation
amount for that month (e.g., June) has a negative anomaly >25% of the
mean climatology for the month (i.e., mean June precipitation) during the
reference period 1981–2010. Thus, CHSD25 is also measured in ERSY but for
stress due to precipitation deficits, where the assumption here is that the
stress is proportional to the amount of the precipitation deficit itself.
A few caveats need to be taken into account concerning these

definitions. First, because of the use of precipitation deficits in mm/day for
the calculation of CHSD25, this index is dominated by deficits during the
rainy season. Second, while the use of R99.9 makes the CHSR99.9 index
always computable, it is possible that at a grid box no month during the
reference period has a negative anomaly greater then 25%, particularly in
models with low interannual variability. These cases, which would lead to a
division by 0 in the calculation of CHSD25, are discarded from the analysis.
This procedure also effectively removes desert areas from the calculation.
The CHS is computed only based on precipitation information, however

socio-economic information such as population exposure or damage cost,
could be included to refine the definition of stress, leading to the
Integrated Cumulative Hydroclimatic Stress index (or ICHS). Here we
calculate the ICHS by incorporating population as a metric of exposure.
Specifically, we follow exactly the same procedure as for the CHS, but at
each grid box the precipitation extreme or deficit values are multiplied by
the population estimate at that grid box which, for the reference period
and the RCP8.5 and RCP2.6 scenarios are taken from the IIASA Shared
Socioeconomic Pathways (SSPs) and related Integrated Assessment
scenarios.14 The SSPs are part of a new framework that the climate
change research community has adopted to facilitate the integrated
analysis of future climate impacts, vulnerabilities, adaptation, and
mitigation. Specifically, the SSP1 and SSP5 are used here as population
scenarios for RCP2.6 and RCP8.5,14 respectively. The population data are
updated every 10 years, which yields the “steps” shown by the curves of
Fig. 4 and S2. By this definition, grid boxes with no population in the
reference period are automatically removed from the calculations of the
ICHS.
Finally, the ensemble of CMIP5 models used in the analysis is reported in

supplementary Table S1.22–29

Data availability
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are available in the CMIP5 archive, https://cmip.llnl.gov/cmip5/data_portal.
html.
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