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A solid camp with flowing soldiers: heterogeneous

public engagement with science communication on
Twitter
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The science communication community is constantly evolving. However, limited research has
explored the relationship between engagement heterogeneity and fluctuations in science
communication. This study aims to address this issue by examining the dissemination of
scientific research on Twitter using network analysis. The findings reveal the sensitivity of
low-engagement users in two distinct aspects. First, low-engagement users’ dissemination of
scientific information is positively associated with the overall trend of scientific commu-
nication on social media, suggesting their heightened susceptibility to fluctuations and dis-
engagement compared to other users. Second, low-engagement users show decreased
attention to health-related topics during fluctuation periods. In light of these findings, an
analytical model is developed to integrate the heterogeneity of information acceptance
thresholds and external shocks. The simulation results of the model are consistent with
empirical observations, highlighting the heterogeneity of information acceptance thresholds
in science communication. This study contributes to the understanding of fluidity as the
essence of science communication. As the proverb goes, a solid camp is guarded by ever-
changing soldiers. The solid camp stabilizes science communication communities while
flowing soldiers enable the influence of science communication to cross communities.
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Introduction

ublic engagement has become an increasingly critical ele-

ment of science communication (Bubela et al., 2009; Miah,

2017; Powell & Kleinman, 2008; Wynne, 2006; Nisbet &
Scheufele, 2009). Prior research has identified the crucial role of
scientific information dissemination in disease prevention (Funk
et al., 2010; Funk et al., 2009; Wang et al., 2019; Wu et al., 2012;
Yang et al, 2020), especially in promoting self-protective mea-
sures among individuals (Wakefield et al., 2010) and encouraging
people to comply with epidemic prevention policies (Van Bavel
et al,, 2020; Nan et al., 2021). Due to the intricate nature of the
population and communication environment (Van Bavel et al,,
2020), spreading scientific research on social media during a
pandemic outbreak poses significant challenges to policymakers
and science communication experts. However, it is challenging to
engage the public in disseminating scientific information (Nisbet
& Scheufele, 2009) due to a lack of interest (Burns et al., 2003;
Maltese et al, 2014; Baram-Tsabari & Osborne, 2015), trust
(Hyland-Wood et al, 2021; Nisbet & Scheufele, 2009), and
understanding (Burns et al., 2003; Bullock et al., 2019).

This study primarily draws on the Public Engagement with
Science (PES) model (Bucchi & Trench, 2014; Burchell, 2015;
Kessler et al., 2022). According to the PES model, the science
community is only one part of all social actors. Compared to the
deficit model, which emphasizes the public awareness of science
(Bucchi & Trench, 2014), the PES model asserts that the inter-
actions or dialogues among stakeholders play an essential role in
science communication. Thus, the PES model promotes a two-
way dialogue between science and the public. Nevertheless, there
are still research gaps in the PES model. Particularly, the PES
model is criticized for not specifying the outcomes or only using
the dialogic approach to fill perceived knowledge deficits (Kessler
et al,, 2022). Following the tradition of the PES model, we define
public engagement with science as the interaction or dialogues
among different social actors of science communication. Further,
PES is a multidimensional concept, and we primarily focus on
public engagement with science communication on social media.

We claim that the public’s engagement heterogeneity plays a
crucial role in shaping the fluctuation of science communication
on social media (Hyland-Wood et al., 2021). Although the public
can engage in science communication, their level of engagement
significantly varies. Only a few participants can stably engage with
science communication for a long time. Most participants tend to
pursue hot topics and can only engage with science commu-
nication for a short time. This study primarily focuses on the
heterogeneity of participants’ engagement and its potential
impact. Just like the other communities, the science commu-
nication community is constantly flowing. As a Chinese proverb
goes, the solid camp is guarded by soldiers like flowing water.
New soldiers arrive, serve, but eventually leave. However, the
fluctuations in science communication can have unintended
consequences, such as pre-existing systemic inequity and implicit
social biases (Perry et al., 2021; Gray et al., 2020; Bonaccorsi et al.,
2020).

The intricate interplay between heterogeneous engagement and
external shocks requires careful examination. According to the
analytical framework established by Crane and Sornette (2008),
public attention is influenced by individual preference, social
influence, and external shocks. For example, Park et al. (2021)
show that entertainment and human interest frames (e.g., humor
and colloquial language) can effectively attract public attention.
In the light of Crane and Sornette (2008), we define external
shocks as the exogenous impacts outside of individuals and social
networks in this study. Science communication could be influ-
enced by various factors characterizing external shocks, such as
competitive events, conspiracy theories, and misinformation
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(Scheufele & Krause, 2019; West & Bergstrom, 2021; B. Yang
et al, 2023). Although different audiences may have distinct
attitudes to the same external shock (Byrne & Hart, 2009), users
who share similar levels of engagement may demonstrate
homogeneity and uniform responses to external shocks. The
confluence of external shocks and population heterogeneity can
intensify the disparities in science communication (Hart &
Nisbet, 2014). Specifically, certain social groups may experience a
more significant decline in science communication or increase
their implicit biases during external shocks, exacerbating their
vulnerability to infection (Bonaccorsi et al., 2020; Kaim et al,
2021; Gray et al., 2020).

To analyze the relationship between engagement heterogeneity
and macroscopic fluctuations of science communication, we
conduct this study on the spread of scientific research on
COVID-19 on Twitter, using the Altmetric database, which
records Twitter users’ retweets of scientific research. The parti-
cipants were categorized into subgroups based on their levels of
engagement with science communication. We find that users with
different engagement levels exhibit distinct patterns in audience
flow and topic content preferences. Our findings emphasize the
significance of external shocks, which introduce fluctuations and
escalate the existing imbalances and biases in science commu-
nication. Nevertheless, our findings reveal a significant positive
correlation between low-engagement users’ behaviors and the
fluctuations in science communication. On the one hand, low-
engagement individuals are more likely to disengage during the
decline of science communication. On the other hand, they are
more likely to engage in science communication during issue
escalation. This observation contradicts the belief that low-
engagement users are uninterested in scientific information
(Burns et al., 2003; Maltese et al, 2014; Baram-Tsabari &
Osborne, 2015).

To better explain this phenomenon, we developed a theoretical
model incorporating engagement heterogeneity and external
shocks into the SIRS model. The model posits that individual
engagement with science communication depends on whether the
popularity of the information exceeds one’s information accep-
tance threshold. Our model suggests that individuals with low
information acceptance thresholds are more likely to engage with
science communication in the early stage and disengage when the
novelty of science communication decreases. The predictions
generated by our model explain the dissemination of scientific
information among low-engagement individuals.

The remainder of this paper is organized as follows: Section 2
defines parameters for user engagement. Dividing users into
subgroups based on user engagement, we analyzed the evolution
of subgroups’ flow, the importance of user engagement in com-
munication networks, and their propagation preferences in
external shock. In Section 3, we described the details of the model
and conducted simulation experiments on a scale-free network to
test its validity. Finally, we summarize these results in Section 4.

Data analysis

Subgroup mobility analysis. To analyze the dissemination of
COVID-19-related research on Twitter, we filtered Altmetric data
using the keyword “COVID-19” and captured 13,806,356
retweets of COVID-19-related research between March 2020 and
May 2022, 27 months in total. This period covers the relatively
complete spread of the topic, providing a detailed overview of
public engagement. We measure engagement heterogeneity by
dividing users into subgroups based on their degree of engage-
ment—the number of months a user has participated in the sci-
ence communication—within 27 months. Our measurement of

| (2023)10:815 | https://doi.org/10.1057/541599-023-02331-4



ARTICLE

User Engagement 06
w o0
—
How many months has a user been engaged? &
« 0.4
o
=
S
£ 0.2
[ d ® 8
e .
A & ...
0.0_ ® ® " s s ® 8 8 8B O E 0G0 EEEEESE
[ (J
£ %
[
s
o o 5 0.100
) X s
© 0.075 -
c ®
ke .
o o 5 0.050 - .
o
# £ - -
T 0.025 -
——————————————— > T T T T T
5 10 15 20 25
Time User engagement

Fig. 1 Quantifying user engagement by its persistence. User engagement is quantified by the number of months a user has engaged with science
communication (left). The proportion of users in the 27 subgroups (right upper) and the proportion of retweets by users in the 27 subgroups (right bottom)

are shown across the entire time frame.
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Fig. 2 The fluctuation of public engagement. Overall communication trend
of COVID-19-related scientific literature on Twitter (upper) and the
evolution of the retweet proportion of subgroups (bottom). We divide all
users into 27 subgroups based on the months they engaged with science
communication (ranging from 1 month to 27 months). The proportion of
retweets describes the relative information flow of the subgroup.

engagement captures the sustainability of public engagement.
Basic statistical data for these subgroups are shown in Fig. 1.
Our investigation began with exploring the dynamics of
disparate communication flow among different subgroups. As
an initial step, we analyzed the monthly retweet proportion (i.e.,
the number of monthly retweets in each subgroup divided by the
total monthly retweets) across 27 subgroups. We contend that the
evolution of retweet proportions within subgroups constitutes a
vital metric capable of revealing the heterogeneous user flow
within the information system. A pronounced variation in
subgroup retweet proportion indicates considerable irregularities

in science communication, while a relatively stable retweet
proportion suggests a more uniform distribution of information
flow among the subgroups.

As demonstrated in Fig. 2, we observed more considerable
fluctuations among low-engagement users than high-engagement
users, indicating an uneven flow in science communication on
Twitter. Additionally, we noted a rapid decline in the proportion
of retweets of low-engagement users during the initial spreading
phase. This result can be attributed to the decline of low-
engagement users after a faster initial increase. Furthermore, we
detected a plausible association between the overall retweet trend
(represented by the black line in the upper panel of Fig. 2) and the
evolution of subgroup users’ engagement. Specifically, during a
decline in the overall trend, such as in June 2020, December 2020,
March 2021, June 2021, and October 2021, low-engagement users
experience a dip (see the arrows on the purple line in Fig. 2),
while high-engagement users have a minor peak (green line).
These findings suggest a potential association between the overall
retweet trend and the subgroups’ engagement with science
communication.

We employ the Maximum Information Coefficient (MIC)
(Reshef et al.,, 2011) and the Pearson correlation coefficient to
investigate the relationship between engagement heterogeneity
and the overall science communication trends. Pearson correla-
tion coefficient is widely used to quantify the strength of linear
correlation between two variables. In addition to linear correla-
tion, the MIC score can also measure the strength of nonlinear
relationships between two variables. As depicted in Fig. 3, we find
a higher MIC score and significant Pearson correlations for
individuals with either very low or very high engagement. Our
analysis indicated a significant positive correlation in individuals
with low engagement and a significant negative correlation in
individuals with high engagement. We also observed a significant
linear relationship between user engagement and the previously
computed Pearson correlation coefficient (R? = 0.876, p < 0.001).
Our results illustrate the non-uniform movement of scientific
information during the period of instability and the impact of
engagement disparities on subgroup mobility.

In particular, lower-engagement users are more likely to
disengage when science communication is at a low ebb.
Conversely, low-engagement users are more likely to join during
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Fig. 3 The association between the subgroup's engagement proportion
and the overall engagement. MIC scores are depicted using color, while
the statistical significance of the Pearson correlation coefficients is
indicated by markers (circles represent non-significant (p > 0.1) data points.
In contrast, stars and diamonds represent statistically quasi-significant
(p<0.1) and significant (p <0.05) data points, respectively). Two scoring
metrics are employed to quantify the association between the relative
information flow of the subgroup and the overall volatility. The dashed line
represents the OLS linear regression line used to fit the Pearson correlation
coefficients, with R2=0.876 and p <0.001.

periods of increased scientific information spreading. Our
findings indicated a higher MIC score and significant Pearson
correlations for individuals with either very low or very high
engagement. There is a significant positive correlation for
individuals with low engagement and a significant negative
correlation for individuals with high engagement. On the
contrary, low-engagement users are more likely to join during
periods of increasing science communication.

Subgroup user centrality analysis. To further understand the
implications and impact of the uneven flow of subgroup users, we
explore the average centrality of subgroup users in the 27
monthly retweet networks. A higher average centrality score of
subgroup users suggests they play a more crucial role in dis-
seminating information (Berry & Widder, 2014). Since the ori-
ginal Altmetric data lacks retweet information, we acquire the
data from the Altmetric search page. We match the @username in
the tweets with their Twitter user ID, and 85.2% of usernames
could be matched. Based on the monthly retweet data, we con-
struct 27 directed and weighted retweet networks, where the
nodes represent Twitter users, and the edges indicate retweet
relationships. Every edge represents the directed retweet rela-
tionship from user i to user j. The weight of the edge represents
the frequency of retweets.

We investigate the relative average centrality of subgroup users
within the monthly retweet networks. The relative average
centrality is calculated by dividing the average centrality of
subgroup users by the average centrality of all users in the
network. To evaluate the centrality of nodes, we utilize two
measures: degree centrality and closeness centrality, which
capture distinct aspects of node importance (Freeman, 1978).
Degree centrality assesses a node’s number of direct connections,
indicating its local influence. Closeness centrality identifies nodes
that sustain the overall structure by linking different parts of the
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network by measuring the average distance between a node and
all other nodes in the network (Borgatti, 2005).

Furthermore, we consider the differentiation between inward
and outward information. In-degree centrality and closeness
centrality were employed to assess inward information. The
closeness distance function calculates the incoming distance in
directed networks. In comparison, the out-degree centrality and
the reverse network’s closeness centrality were employed to
evaluate outward information. The nodes with higher scores in
in-degree and closeness centrality indicate that these subgroup
users are crucial in providing information, granting them more
significant influence and prominence within the network. In
contrast, the nodes with higher scores in the out-degree centrality
and the reverse network’s closeness centrality imply that
subgroup users are more proactive and demonstrate outstanding
capabilities in disseminating information than the others.

As illustrated in Fig. 4, the analysis of outward information
reveals a significant positive correlation and higher MIC scores
between the relative average centrality of user subgroups, whose
engagement ranges from 6 to 20, and the overall propagation
trend. The association is observed in both the out-degree
centrality (top left panel) and the closeness centrality on the
reverse network (top right panel). In comparison, no significant
correlation was found among other users. These findings suggest
that external shocks affect participants’ mobility and influence
their proactive involvement in propagation, particularly for those
whose engagement ranges from 6 to 20.

Further examination of inward information, as shown in Fig. 4,
reveals that the high-engagement subgroups exhibit a more
pronounced association between their relative average centrality
and the overall communication trend. High-engagement users
usually include vital intermediaries, such as professional science
journalists or science communication experts, dedicated to
enhancing or maintaining the overall communication structure.
Thus, this finding underscores an additional underlying risk
during the decline of science communication. It emphasizes the
potential weakening of the importance of professionals within the
network, thereby posing a challenge to achieve effective science
communication.

Subgroup user bias analysis. The inconsistent changes in sub-
group users could exacerbate disparities in science communica-
tion. This issue became salient amid the COVID-19 pandemic,
which created an unprecedented public health emergency and
economic crisis. A critical concern is the health-economy
dilemma (Kaim et al, 2021), which involves balancing the
impact of epidemic prevention measures (e.g., lockdowns) on the
economy and public health. Therefore, understanding the general
public’s preferences for COVID-19 content is critical to effectively
addressing this multifaceted challenge (Escandon et al., 2021). To
address this issue, we investigate the relationship between sub-
groups’” spreading fluctuations and the evolution of their content
preferences.

We analyze the proportion of retweeted scientific research
within areas classified under the corresponding Field of Research
(FoR) categories. Focusing on the health-economy dilemma, we
explore the fields of “11 Medicine and Health Sciences”
(corresponding to the focus on public health crises), as well as
the fields of “16 Human Social Studies” and “14 Economics”
(corresponding to the focus on socio-economic impacts). As
shown in Fig. 5, scientific research during the early stages of
COVID-19 mainly focused on medical and health research up
until September 2020. Afterward, there is a relatively stable
distribution of scientific research among medical and health
research, human social research, and economics fields. Therefore,
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Fig. 4 The association between the subgroup’'s network centrality and the overall engagement. \We measure the association with the Pearson
correlation coefficient and the MIC scores. MIC scores are depicted using color, while the statistical significance of the Pearson correlation coefficients is
indicated by markers. The average relative centrality of the subgroup is measured by out-degree centrality (upper left), closeness centrality on the reverse
network (upper right), in-degree centrality (bottom left), and closeness centrality (bottom right). The average relative centrality is the subgroup users’
average centrality divided by the average centrality of all nodes in the network. The use of the relative measure enables cross-temporal comparisons of

network measures.

Share of field
0.88 0.07

—— Medical and Health Sciences

—s— Studies in Human Society 0

Economics F0.06 €

»» 0.86 1 5

Q C

o o

c O

O w

S F0.05 »
(%)

£ 0841 3

3 3

£ L0.04 §

Rl c

5 0.82 %

S F0.03 T

5 <
()

= 3

0.80 1 B

0.02 3

)

0.78 T T T T T T T T T 0.01
N S N
v v v U v Qv Qv QU Q)
O M S T M S A

Fig. 5 The evolution of retweet proportion in three research fields. These
three research fields include medical and health sciences (green), studies in
human society (purple), and economics (yellow).

we select a period spanning 22 months from September 2020 to
May 2022 for our data analysis.

Figure 6 shows that low-engagement users have a significant
correlation and high MIC score between their engagement with a
specific topic and their retweet trends across three fields. Thus,
when their overall communication trends fluctuate, their
engagement with three research fields (i.e., medical and health
science, human society, and economics) also changes. Specifically,
low-engagement users show a positive correlation (with a Pearson
correlation coefficient of around 0.5) in medical and health
science. In contrast, negative correlations exist in the human
society and economics fields (with Pearson correlation coeffi-
cients around —0.6 and —0.5, respectively). A decrease in the
spread of low-engagement users results in a shift in their attention
from healthcare to the impact of infectious diseases on society
and the economy and vice versa.

On the contrary, the information preferences of the high-
engagement user were not significantly associated with their
retweet trends. Notably, users with engagement levels of 25 and
27 have a significant positive correlation in the medical and
health science fields. We conjecture that since these high-
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Fig. 6 The association between the subgroup’s engagement in three
fields and the overall engagement. \We measure the association using the
Pearson correlation coefficient and the MIC score. MIC scores are depicted
using color, while the statistical significance of the Pearson correlation
coefficients is indicated by markers. The three fields include medicine and
health sciences (upper), studies in human society (middle), and economics
(lower).

engagement users are deeply embedded in scientific fields, they
will not be easily distracted by the outside world.

The findings highlight the vital need to understand the
mechanisms of public engagement. The results suggest that
low-engagement users are susceptible to the topic of scientific
research. If so, a decrease in low-engagement users’ engagement
with science communication could worsen the issue of inadequate
health information among them, thereby increasing their
vulnerability to infectious diseases. Taken together, it is crucial
to improve public engagement in disseminating scientific research
during the pandemic.

Model description and simulation. Our model draws inspiration
from Twitter users’ engagement and disengagement with science
communication. We find that low-engagement participants dis-
play a high sensitivity compared to their high-engagement
counterparts. On the one hand, low-engagement participants
exhibit faster propagation during information dissemination’s
early and peak phases. On the other hand, when the novelty of
science information diminishes over time, low-engagement par-
ticipants would quickly leave science communication and redirect
their attention to other emerging trending topics. In contrast,
high-engagement participants are characterized by a slower pace
of engagement. They initiate their engagement with science
communication gradually, and their disengagements also unfold
at a slower pace. In a nutshell, the online community of science
communication is like a solid camp guarded by flowing soldiers.

In the context of public engagement, it is commonly argued
that the general public’s passive involvement in scientific matters
is due to a lack of interest in scientific information. Therefore, the
enhancement of public engagement relies on increasing public
interest in scientific information. Nonetheless, our analytical
findings offer evidence that deviates from this prevailing
perspective. Our results suggest that, compared to highly engaged
users, low-engagement users demonstrate greater sensitivity
towards scientific information, characterized by more rapid
acceleration during the initial and peak stages. Consequently,
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Fig. 7 The SIRS model. There are three states: Susceptible (S), Infected (1),
and Recovered (R). Accordingly, there are three parameters in the model:
the transmission rate f determines the probability of transmission from an
infected individual to a susceptible one; the recovery rate u depicts the
frequency with which an infected individual recovers and returns to the
susceptible state; the re-susceptible rate y determines the probability of
individuals returning to the susceptible state after entering the

recovered state.

their attention flows are more bursty and display a pronounced
inclination towards trending topics. These outcomes challenge
the idea that low-participation users are generally disinterested in
science. If a lack of interest were the primary factor, one would
expect to observe a more uniform distribution of attention
allocation instead of the explosive attention demonstrated by low-
engagement users.

To elucidate this phenomenon, we developed a network-based
analytical model that incorporates the concept of engagement
heterogeneity by considering information acceptance thresholds.
In our framework, whether the public decides to share
information depends on their thresholds. Individuals with lower
thresholds are more inclined to share information. Furthermore,
owing to the inherent limitations on individual attention,
individuals tend to disengage with science communication over
time. This intrinsic mechanism naturally results in low-
engagement users’ unsustainable participation.

Model description. We analyze the dissemination of scientific
information through a single-layer network where social con-
nections are represented by links and the audience is represented
by nodes. With the utilization of the generalized SIRS infectious
disease model, individuals within the network are categorized into
three groups: susceptible (S), infected (I), and recovered (R).
These three states indicate individuals who have not received the
information, those who have received the information, and those
who are either not interested or not available to receive the
information. The SIRS model supposes that individuals no longer
interested in the information can regain their interest and move
cyclically between the susceptible and the recovered states. This
process is depicted graphically for better understanding, as shown
in Fig. 7. Our model proposes that each node i in the network has
a fixed information acceptance threshold xi, which determines
their probability of information acceptance.

We first describe the dynamics of the information propagation
process in the absence of external shocks. At each time step, a
susceptible individual (S) that comes into contact with an infected
individual (I) within the propagation network undergoes
information acceptance. The probability of acceptance is given
by the transmission rate f = 8, x (Iy — x;), where 3, represents
the base acceptance probability, and I, stands for the informa-
tion’s popularity (set at 1). Furthermore, x; represents the
individual’s acceptance threshold. A lower acceptance threshold
corresponds to a higher probability of individual information
acceptance.

Simultaneously, an infected (I) individual i has a probability of
leaving the propagation network and entering the recovered state
(R) with recovery rate y. This probability is influenced by the
individual’s information acceptance threshold, x;, and base
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infected nodes was obtained by adding two external shocks to our model
(upper), roughly consistent with the scaled retweets of scientific research
on COVID-19 on Twitter (represented by blue diamond dots). The
evolution of the proportion of infected nodes in 10 subgroups to the overall
population varies (bottom). These two external shocks include a negative
event and a positive event, with an intensity I, of 0.5 and 0.8, and occur
during 15 to 20 time steps and 35 to 50 time steps, respectively. We set the
base disease spreading rate 5, = 0.2, the base recovering rate y, = 0.5, and
the re-susceptible rate y = 0.15. The color band shows the 16 confidence
interval of our prediction.

recovery rate, yp. Specifically, y = p;, x (Ip — x;). Due to limited
attention capacity and the spread of multiple types of informa-
tion, individuals with lower acceptance thresholds are more likely
to leave the scientific information propagation network than
those with higher thresholds.

Individuals in the recovered state (R) tend to lose immunity
with the re-susceptible rate y and return to the susceptible state
(S). For the sake of simplicity, the probability of losing immunity
y is assumed to be constant across individuals.

With external shocks, the probability of information dissemi-
nation 3 for a susceptible individual (S) varies with each time
step, based on the changes. If there is a negative impact of
external shocks on the dissemination of scientific information, the
probability of information dissemination S for a susceptible
individual (S) is given by the equation:

B =Byx (Iy — x; — max(0, I, — x;))

Here, I, represents the popularity of the main topic, assumed to
be 1, while I, represents the popularity of the external shock. The
likelihood of being affected by this event depends on the
individual’s acceptance threshold, x;, and the external shock’s
popularity, L. If the individual’s acceptance threshold x; is greater
than the change event’s popularity, I, their probability of
information dissemination f remains unchanged. Otherwise,
the probability of information dissemination will decrease.
Similarly, when the external shock has a positive impact on
science communication, the probability of information dissemi-
nation f3 for an individual i in the state of ignorance (S) is given

by the equation:
B=pyx (I -

If the individual’s acceptance threshold x; is greater than or
equal to the popularity of the positive external shock, I, the
probability of information dissemination  for that individual i
will remain unchanged. Otherwise, the probability of information
dissemination increases.

Our proposed model explains the dynamics of information
propagation in a network, considering individuals’ varying
information acceptance thresholds. The external shock’s impact
on information dissemination is captured by modifying the
acceptance probability according to the external shock’s popu-
larity and the individual acceptance threshold. All possible state
transitions are shown in Fig. 7.

x; + ma.x(O7 I, - xi))

Simulation. To simulate the information propagation process, we
constructed a static scale-free network model utilizing the Bar-
abdsi-Albert model, which consisted of 5000 nodes with an
average degree < k > of 6. Initially, 5% of nodes were randomly
selected as spreaders in state I, and the remainder were assigned
to state S as ignorant. We varied the threshold for all individuals
from 0 to 0.9, selecting ten threshold values at intervals of 0.1.
The corresponding distribution pattern exhibited power-law
behavior, with an exponent index of 1.5. Consistent with pre-
vious analyses than others, most users had lower thresholds, and
fewer users had higher thresholds than others.

To investigate the impact of external shock on subgroups with
different thresholds, we simulated a simple scenario related to
information propagation involving both positive and negative
external shocks. We selected the timing and intensity of these
events based on trends observed from a real-world dataset
analyzed previously (represented by diamond points in Fig. 8).
Specifically, the negative external shocks occurred during time
steps between 15 and 20 with an intensity of I, = 0.5. In contrast,
the positive external shocks happened during time steps between
35 and 50 with an intensity of I, =0.8. The simulation results
depicted in Fig. 8 showed that individuals with low thresholds
exhibited a rapid downward trend in transmission proportion at
the initial stage, consistent with previously observed real-world
phenomena (as depicted in Fig. 2). Furthermore, users with
varying thresholds responded to external shocks like that
observed in retweets data. During external shocks (at t € [15,
20]), the proportion of retweets by low-threshold users decreases,
while high-threshold users exhibit an increase. Conversely, during
periods of an overall upward trend caused by external shocks (at ¢
€ [35, 50]), the proportion of retweets by low-threshold users
increases, whereas high-threshold users experience a decrease.

In addition, as in the previous analysis, we utilize the MIC score
and Pearson correlation coefficient to quantify the association
between the retweet evolution of individuals (with different
thresholds) and the overall retweet trend. As Fig. 9 illustrates,
individuals with low thresholds have significant positive correla-
tions, while those with high thresholds have significant negative
correlations. Moreover, a significant linear relationship exists
between an individual’s information dissemination threshold and
the correlation coefficient (R? = 0.887, p < 0.001). These findings
are consistent with those of earlier analyses of real-world data (as
demonstrated in Fig. 3), and individuals with low thresholds have
significant positive correlations. In contrast, those with high
thresholds have significant negative correlations. Moreover, a
significant linear relationship exists between an individual’s
information acceptance threshold and the correlation coefficient
(R2=0.887, p<0.001). These results are consistent with our
findings with real-world data (as demonstrated in Fig. 3).
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Fig. 9 The association between the subgroup's infection evolution and
the overall infection. \We measure the association with the Pearson
correlation coefficient and the MIC scores. MIC scores are depicted using
color, while the statistical significance of the Pearson correlation
coefficients is indicated by markers. The subgroup users with a low
information acceptance threshold have a more significant infection rate as
science communication trends fluctuate. The dashed line represents the
OLS linear regression line used to fit the data, with R2 = 0.888 and
p<0.001.

We further explore how engagement heterogeneity influences
the fluctuation of science communication. We manipulated the
power-law exponent of individuals’ threshold distribution and
examined various distributions to investigate these effects. Figure
10 shows that when the population had a uniform distribution
(a = 0), there was less initial spread, and the overall science
communication effectiveness (the cumulative number of infected
individuals within a time step of 50) improved by 23.9%
compared to the previously used long-tailed distribution (« =
1.5). Furthermore, networks with uniform distributions exhibited
greater resilience to external shocks than those with long-tailed
distributions; under negative interference, the decrease in the
number of infected individuals before and after the propagation
was 11% (when « = 0) and 24.3% (when a = 1.5), respectively.

Furthermore, we analyze the relative average centrality of
subgroups within a simulated dissemination network, considering
both outward and inward information propagation (see Fig. 11).
The network was constructed at every time step of the simulation,
resulting in 60 independent diffusion networks. All nodes in the
network are in state I, including inherent state I nodes and newly
entered state I nodes. Edges represent the information propaga-
tion relationships betwen the newly entered nodes and the
inherent nodes.

In the investigation of outward information propagation, we
use measurements of node centrality, such as out-degree centrality
and closeness centrality, in the networks. Our findings reveal
noteworthy patterns: We observe significant negative correlations
between the evolution of relative average centrality (out-degree
centrality and closeness centrality) for nodes with an information
acceptance threshold below 0.4 and the overall propagation trend.
In contrast, nodes with an information acceptance threshold
above 0.4 show a significant positive correlation between the
evolution of their relative average centrality (out-degree centrality
and closeness centrality) and the overall propagation trend. These
results are consistent with our analysis of real-world data (see
Fig. 4), demonstrating a significant positive correlation for
participants with engagement levels ranging from 6 to 20.
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Fig. 10 The evolution of infected nodes in the SIRS model with different
power-law exponents. \We denote the power law exponent with a and
examine the infection evolution with different power-law exponents. When
a =0, it represents the network’s degree distribution following a uniform
distribution. As « increases, the degree distribution of the network becomes
increasingly uneven. The colored band shows the 16 confidence interval of
our prediction.

However, for users with engagements above 20, the Pearson
correlation coefficients showed a declining trend in real-world
data analysis that our model could not fully explained. We
conjecture that this may be attributed to the intricate propagation
mechanisms associated with high-engagement participants.

A plausible explanation for this observed phenomenon can be
outlined as follows: Since the nodes with a high threshold have a
lower probability of leaving, inherent nodes (i.e., the nodes still in
the dissemination network) are more susceptible to these high-
threshold nodes. Consequently, when science communication
declines and decreases the number of newly entered nodes, the
proportion of inherent nodes increases. This shift results in a
decline in the proactivity of high-threshold nodes (e.g., outward
relative average centrality) and an increase in the proactivity of
low-threshold nodes. Conversely, when science communication
surges, the proportion of the network’s inherent nodes decreases.
Consequently, there is an upswing in the proactivity of high-
threshold nodes and a corresponding decrease in the proactivity
of low-threshold nodes.

In investigating inward information propagation, we observe a
positive correlation between the in-degree and closeness centrality
for subgroups with higher thresholds. These findings closely
parallel the results derived from real-world data (see Fig. 4). This
congruence suggests that the diminished influence of users with
high information acceptance thresholds may be related to the
overall decline in propagation. Our model provides a compelling
rationale for this phenomenon: During periods of reduced science
communication, inherent nodes that persist within the network
are more likely to become isolated or receive fewer connections.
Conversely, when science communication escalates, these inher-
ent nodes garner more connections. As mentioned earlier,
because high-threshold nodes are less likely to exit the propaga-
tion, inherent nodes become increasingly dominated by high-
threshold nodes. Our results further highlight the potential
importance of information acceptance thresholds in shaping PES.

Discussions and conclusions
Drawing on the PES model (Bucchi & Trench, 2014; Burchell,
2015; Kessler et al., 2022), we analyze the Altmetric data of the
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Fig. 11 The association between the subgroup's network centrality and the overall infection. The data shown in the figure is generated using the SIRS
model. We measure the association with the Pearson correlation coefficient and the MIC scores. MIC scores are depicted using colors, while the statistical
significance of the Pearson correlation coefficients is indicated by markers. The subgroups’ average relative centrality is measured by out-degree centrality
(upper left), closeness centrality on the reverse network (upper right), in-degree centrality (bottom left), and closeness centrality (bottom right). The average
relative centrality is the average centrality of a subgroup’s users divided by the average centrality of all nodes within the network. The use of the relative

measure allows for cross-temporal comparisons of network measures.

spread of scientific research on COVID-19 on Twitter. We con-
tribute to the PES model by conceptualizing participants’
engagement heterogeneity and investigating its association with
the fluctuation of science communication on social media. First,
our analysis of the empirical data reveals that low-engagement
users demonstrate greater mobility during these periods com-
pared to high-engagement users. Second, the simulation shows
external shocks can significantly influence public engagement
with science communication. Third, we identify synchronous
shifts in the dissemination preferences of low-engagement users,
where their focus moves from medical and healthcare topics
toward the social impact of infectious diseases. Our model based
on users’ engagement threshold and external shocks can well
explain the observed disparity in subgroup dynamics. Moreover,
our model provides a conceptual framework for understanding
the evolution of subgroup centrality in the spreading networks
over time.

This study uncovers the underlying link between PES and the
flow of public attention. We reframe our study within the
research framework of attention flow. In the information age,
there is an excess of information supply while human attention is

increasingly scarce and has become the new currency intertwined
with digital media content production and consumption
(Davenport & Beck, 2001; Falkinger, 2007). Consequently, the
flow of public attention directly determines which information
will spread like a virus and which will sink without a trace. The
limited capacity model provides a theoretical foundation for
understanding public attention (Kahneman, 1973; Norman &
Bobrow, 1975). First, attention and cognitive resources are
strongly correlated; Second, cognitive resources are limited.
Further, researchers propose that public attention follows a zero-
sum game (McCombs & Zhu, 1995; Zhu, 1992). If the public
focuses on one issue, it comes at the expense of attention given to
other issues. PES is contingent upon the flow and allocation of
public attention. Thus, the logic of the zero-sum game of public
attention implies that promoting public engagement with science
communication may be a significant but never-ending
Sisyphean myth.

We emphasize the potential risks of engagement heterogeneity
in science communication. Our study finds that reducing the
proportion of individuals with lower thresholds in the population
can significantly improve the effectiveness of science
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communication, with a 23.9% increase in propagation efficiency
when individuals with different thresholds are evenly distributed.
This finding underscores the critical role of targeted and custo-
mized information in public health information dissemination,
which is more effective in reaching and influencing the audience
than non-targeted large-scale movements (Nan et al., 2021).
Structural differences in acceptance thresholds may lead to
increased polarization when faced with external shocks, further
exacerbating low-engagement users’ risk concentration and
vulnerability.

Our study suggests that the evolution and structure of user
engagement are essential for understanding the overall dynamics
of online communities. Biddix et al. (2023) examine the discourse
about high education on Twitter in the early phases of COVID-
19, drawing on the crisis management theory. Using social net-
work analysis, they shows that the discussion with the hashtag
#highered evolved rapidly (Biddix et al., 2023). Notably, the
prominent influencers also change rapidly (Biddix et al., 2023). In
contrast, our study reveals that highly engaged users remain
relatively stable. The network structure of user engagement also
matters. Through analyzing the Twitter networks across three
periods of COVID-19, Chong and Park (2021) show that the
information carriers on Twitter, including information channels,
sources, and messages, were interconnected. Further, Park et al.
(2021) reveal that Twitter users tend to engage in clustered dis-
cussions about COVID-19 issues without opinion leaders.

Further, institutional actors (e.g., governments) also play a
pivotal role in science communication. Tahira (2022) studies how
the Korean government employs digital techniques for health
diplomacy. Surveying 219 foreigners residing in Korea, Tahira
(2022) finds that most respondents believe the Korean govern-
ment effectively leveraged digital technology during the pan-
demic. Park et al. (2021) identify the institutional actors who cite
COVID-19 research (e.g., the World Health Organization) to
analyze policy engagement with science during the pandemic.
Western countries demonstrate more effective networking prac-
tices in constructing a global scientific network ecology than
developing countries (Park & Yoon, 2023). Hence, developing
countries deserve more attention. In line with this objective,
Vargas Meza & Park, 2023 investigate the spread of scientific
research on social media among Spanish-speaking and Caribbean
communities. Their findings reveal that these communities pre-
dominantly engage with scientific papers on medical and health
sciences, and the top scientific authorships are from China
(Vargas Meza & Park, 2023).

This study has implications for future research in the following
aspects: First, simulation models can effectively help strengthen
our data analysis. Our simulation results align with the dis-
semination outcomes of users with different engagement,
including low-engagement users rising more rapidly in the initial
stage, being more sensitive to external shocks, and the evolution
of subgroup users’ centrality in the network. In this sense,
ongoing discussions regarding scientific literacy and audience
interest often overlook the mechanism of user information
acceptance thresholds. Second, dividing participants into sub-
groups according to their sustainability offers valuable insights for
operationalizing public engagement in future scenarios. Third,
linking engagement heterogeneity with the fluctuation of science
communication also has important implications for future
research. Given that the PES model is being criticized for not
articulating the outcomes (Kessler et al., 2022), we propose that
the fluctuation of science communication as an outcome on the
aggregate level deserves more attention.

In all, our theoretical model and empirical analysis contributes
to the discussion on public engagement in scientific information
dissemination. It offers a novel perspective on how the

10

heterogeneity of users’ information acceptance thresholds gives
rise to varying degrees of engagement. On the one hand, high-
engagement users approach new information with greater cau-
tion. Consequently, they engage in disseminating scientific con-
tent slower but are also less likely to disengage from science
communication. On the other hand, low-engagement users
exhibit faster propagation in the early and peak phases of infor-
mation dissemination but also disengage from science commu-
nication at an accelerated rate when the novelty of scientific
information diminishes. Instead of emphasizing that there is no
country for old members in online communities (Danescu-
Niculescu-Mizil et al., 2013), we acknowledge that such fluidity is
the essence of online communities and science communication.
Our findings are nontrivial in highlighting the role of low-
engagement participants. As the proverb goes, a solid camp as
iron is guarded by ever-changing soldiers who move like flowing
water. The solid camp helps stabilize communities, while flowing
soldiers enable the influence of the camp to cross communities.

Data availability

The simulation code employed in this study is available on the
Open Science Framework (https://osf.io/8p5am/). The data used
in this study can be acquired through Altmetric (https://www.
altmetric.com/).
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