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Differential expression analysis 
identifies a prognostically 
significant extracellular 
matrix–enriched gene signature 
in hyaluronan‑positive clear cell 
renal cell carcinoma
Otto Jokelainen 1,2*, Teemu J. Rintala 3, Vittorio Fortino 3, Sanna Pasonen‑Seppänen 3, 
Reijo Sironen 1,2 & Timo K. Nykopp 4,5

Hyaluronan (HA) accumulation in clear cell renal cell carcinoma (ccRCC) is associated with poor 
prognosis; however, its biology and role in tumorigenesis are unknown. RNA sequencing of 48 
HA‑positive and 48 HA‑negative formalin‑fixed paraffin‑embedded (FFPE) samples was performed 
to identify differentially expressed genes (DEG). The DEGs were subjected to pathway and gene 
enrichment analyses. The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA‑KIRC) data 
and DEGs were used for the cluster analysis. In total, 129 DEGs were identified. HA‑positive tumors 
exhibited enhanced expression of genes related to extracellular matrix (ECM) organization and ECM 
receptor interaction pathways. Gene set enrichment analysis showed that epithelial–mesenchymal 
transition‑associated genes were highly enriched in the HA‑positive phenotype. A protein–protein 
interaction network was constructed, and 17 hub genes were discovered. Heatmap analysis of 
TCGA‑KIRC data identified two prognostic clusters corresponding to HA‑positive and HA‑negative 
phenotypes. These clusters were used to verify the expression levels and conduct survival analysis of 
the hub genes, 11 of which were linked to poor prognosis. These findings enhance our understanding 
of hyaluronan in ccRCC.

Global Cancer Statistics showed that approximately 430,000 new cases of kidney cancer (KC) were diagnosed 
in 2020, accounting for 2.2% of all human malignancies. It contributed to 180,000 deaths worldwide, making it 
the most lethal urological malignancy  worldwide1, and the incidence of KC is  increasing2. Renal cell carcinoma 
(RCC) is the most common type of kidney cancer, accounting for > 90% of primary kidney  tumors3. The three 
most common histological subtypes of RCC are clear cell RCC (ccRCC), papillary RCC, and chromophobe RCC. 
Recently, more entities with molecularly defined pathogenesis have been  identified4. RCC is often diagnosed 
incidentally, and one-third of the patients present with metastatic disease. Twenty percent of patients who 
undergo surgery for a primary tumor later develop metastases. Despite recent advances in systemic therapies, 
the prognosis of metastatic disease remains  dismal5,6. Therefore, it is imperative to identify new biomarkers for 
disease detection, prognostication, and treatment.

Hyaluronan (HA) is a ubiquitous large glycosaminoglycan (GAG) found in the extracellular matrix (ECM), 
where it forms a pericellular coat surrounding cells and functions as a  cushion7. It is composed of a variable 
number of repeating disaccharide units of N-acetyl-glucosamine (GlcNAc) and glucuronic acid (GlcUA), with 
an average molecular mass ranging from 1000 to 8000  kD8. The turnover of hyaluronan is rapid, and one-third of 
the hyaluronan mass undergoes turnover  daily9. Hyaluronan is synthesized by the hyaluronan synthase enzymes 
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HAS1, HAS2, and  HAS310. Degradation is mediated mainly by the family of hyaluronidases (HYAL 1-4, PH20, 
CEMIP, and TMEM2)11–13. In addition to RCC, increased HA content has been associated with worse outcomes 
and more aggressive tumor growth in several human malignancies, including breast cancer, colon carcinoma, 
gastric carcinoma, thyroid cancer, pancreatic cancer, lung adenocarcinoma, lymphoma, hepatocellular carci-
nomas, and  gliomas14–23. It is postulated that HA acts as a barrier that shields tumor cells from insults, such as 
therapeutic agents and the immune system, and could serve as a potential target for anticancer  drugs24. The use 
of PEGylated human hyaluronidase (PEGPH20) has shown promising efficacy in sensitizing pancreatic cancer 
cells to radiotherapy and in improving the efficacy of anti-PD-1  therapy25,26.

In normal human kidneys, most HA is produced in the renal medulla, while the renal cortex, from which renal 
cell carcinomas usually arise, is hyaluronan  poor27. Increased cortical HA content is associated with various non-
neoplastic kidney diseases/conditions such as acute kidney injury, chronic kidney disease, allograft, and diabetic 
 nephropathy28–31. To date, reports on HA in RCCs are limited. In our previous study, we showed that increased 
cellular hyaluronan conveys poor prognosis in patients with ccRCC 14. In addition, a higher hyaluronan content 
was associated with a higher tumor grade. The individual molecules associated with HA have been studied on 
gene expression levels. Chi et al.32 showed that expression of HAS1 was increased in RCC tissue compared with 
adjacent normal tissue while HYAL1 expression was lower in ccRCC than in normal renal  tissue32. Cai et al. found 
that HAS1-3 mRNA expression was higher in human ccRCC tissues than in adjacent normal  tissues33. However, 
only HAS3 protein expression was higher. In conclusion, the results of expression studies are inconsistent, and 
the expression levels of different HA family proteins might not necessarily reflect overall HA levels. Therefore, 
to better understand the biological background of hyaluronan accumulation in ccRCC, we performed RNA 
sequencing of previously found hyaluronan-positive and-negative tumor cohorts. The aim of this study was to 
investigate the differences in RNA expression profiles and to find new potential hyaluronan-associated molecules.

Materials and methods
Patients and sample selection
A research flowchart of this study is shown in Fig. 1. Formalin-fixed and paraffin-embedded (FFPE) tissue sam-
ples from patients who underwent surgery for ccRCC in the period 2000–2013 at Kuopio University Hospital 
were collected from the Biobank of Eastern Finland. The study (Hyaluronan in Renal Cell Carcinoma, HARCC) 
was approved by the Ethics Committee of the Northern Savo Hospital District (379/2016, November 1st, 2016). 
The diagnostic samples were processed and diagnosed according to the routine protocol in the Department of 
Clinical Pathology. Hyaluronan staining and evaluation were performed as described by Jokelainen et al.14. We 
selected 48 hyaluronan-positive and 48 hyaluronan-negative tumor samples for RNA sequencing on the basis of 
tumor grade, sarcomatoid change, sex, survival, and metastasis status (Table 1). Three 1-mm-wide tissue cores 
were punched from each representative tumor block.

Next‑generation sequencing
RNA was isolated by use of an RNeasy FFPE Kit (Qiagen), and deparaffinization was performed using 640–750 
µL deparaffinization solution from the kit with 60–90 min incubation at 56 °C. RNA was eluted with 2′ 14 
µL of RNase-free water. rRNA was removed by use of a QIASeq FastSelect (rRNA HMR, Qiagen), using 1 µg 
RNA or as much as could be handled by the kit (max 10 µL). RNA-sequencing libraries were constructed with 
a TruSeq Stranded mRNA Library Prep kit (Illumina) and 0.3 µL adapters with 30 PCR cycles. Barcodes were 
optimized by use of BARCOSEL software (http:// ekhid na2. bioce nter. helsi nki. fi/ barco sel/)34. Sequencing was 
performed using an Illumina Novaseq 6000 instrument. Adapter sequences, low-quality bases (q = 25), and 
short sequences (m = 30) were first trimmed using cutadapt (v.4.1)35 (https:// cutad apt. readt hedocs. io/ en/ sta-
ble/). The fourteenth (p14) patch release for the GRCh38 reference assembly and annotation was downloaded 
from https:// ftp. ncbi. nlm. nih. gov/ genom es/ all/ GCF/ 000/ 001/ 405/ GCF_ 00000 1405. 40_ GRCh38. p14/. The STAR 
aligner (v2.7.9a_2021-06-25) (https:// code. google. com/ archi ve/p/ rna- star/) with default parameters was used to 
map reads against the reference  sequence36. Sorting and indexing of the alignment files were performed using 
Samtools (v.1.10) (https:// www. htslib. org/)37.

Quality control and differentially expressed gene analysis
A significant portion of the mapped reads was concentrated on only a few genes in each sample, which neces-
sitated an additional filtering step using Samtools (v. 1.16.1) to mark duplicated reads for removal using the 
no-multi-dup option. Gene counts were computed by use of R (v.4.1.1) (https:// www.r- proje ct. org/) and Rsub-
read (v.2.6.4) (https:// bioco nduct or. org/ packa ges/ relea se/ bioc/ html/ Rsubr ead. html) with multi-mapping and 
multi-overlapping reads  removed38,39. In addition to the read-level quality control (QC) detailed in section 
"next-generation sequencing", further QC steps were performed according to the recommendations specified 
by Liu et al.40 for FFPE RNA-seq count  data40. As FFPE samples were used, the total number of mapped reads 
in all samples was generally low, as expected. Therefore, the quality metric used for filtering the samples was 
the median sample-sample Spearman correlation after count normalization. Samples with a median correlation 
below 0.75 were removed, leaving 36 hyaluronan-positive and 41 hyaluronan-negative samples. Differential 
expression analysis was performed using edgeR (v.3.34.1) (https:// bioco nduct or. org/ packa ges/ relea se/ bioc/ html/ 
edgeR. html)41. Only protein-coding genes and genes with mean counts above 1 across all samples were included, 
leaving 10,633 genes for consideration. Count normalization was performed using the trimmed mean M-value 
method in edgeR. The results we plotted using the ggplot2 package (v.3.4.2) (https:// ggplo t2. tidyv erse. org)42.

http://ekhidna2.biocenter.helsinki.fi/barcosel/
https://cutadapt.readthedocs.io/en/stable/
https://cutadapt.readthedocs.io/en/stable/
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/405/GCF_000001405.40_GRCh38.p14/
https://code.google.com/archive/p/rna-star/
https://www.htslib.org/
https://www.r-project.org/
https://bioconductor.org/packages/release/bioc/html/Rsubread.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://ggplot2.tidyverse.org
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Gene Ontology and pathway enrichment analysis
Gene Ontology (GO) is a bioinformatics database established to provide simple annotation of gene  products43,44. 
GO terms include biological processes (BP), cellular components (CC), and molecular functions (MF) of gene 
products. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and REACTOME are free online databases 
containing information on biological pathways, molecular interactions, and  reactions45–48. Database analysis 
was performed to investigate the molecular function of the identified DEGs using ToppGene (https:// toppg 
ene. cchmc. org/ enric hment. jsp)49. ToppGene is a bioinformatics portal for gene-list enrichment analysis. The 
cutoff value for the false discovery rate (FDR) was set at p < 0.05. The Benjamini–Hochberg procedure was used 
to account for multiple testing. Results were plotted by SRplot (https:// www. bioin forma tics. com. cn/ srplot), an 
online platform for data analysis and  visualization50.

Gene set enrichment analysis
Gene Set Enrichment Analysis (GSEA) was performed to examine the gene expression profiles of hyaluronan-
positive and hyaluronan-negative samples which had passed quality control  steps51,52. The hyaluronan-positive 
phenotype was compared with the hyaluronan-negative phenotype. The trimmed mean of M values (TMM)-
normalized count data and phenotype data were uploaded to GSEA software (build v.4.3.2.) (https:// www. 
gsea- msigdb. org/ gsea/ index. jsp) and Human MSigDB h.all.v2023.1.Hs.symbols hallmark gene set was chosen. 
The number of permutations was set to 1000. All other run parameters were maintained at their default values.

Protein‑to‑protein network construction and subnetworks
The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) is a biological database of known and 
predicted protein–protein interactions (PPI) (https:// string- db. org/)53. This includes the interactions derived 
from experiments and computationally predicted interactions. STRING (v.11.5) was used to predict interactions 

Figure 1.  Research flowchart. The dashed line represents in silico analysis using the Cancer Genome Atlas 
Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) data. HA Hyaluronan, ccRCC  clear cell renal cell carcinoma, 
DEG differentially expressed gene, GO Gene Ontology, KEGG Kyoto Encyclopedia of Genes and Genomes, 
GSEA Gene Set Enrichment Analysis, STRING Search Tool for the Retrieval of Interacting Genes/Proteins, 
TRRUST Transcriptional Regulatory Relationships Unraveled by Sentence-based Text mining, NOJAH NOt Just 
Another Heatmap.

https://toppgene.cchmc.org/enrichment.jsp
https://toppgene.cchmc.org/enrichment.jsp
https://www.bioinformatics.com.cn/srplot
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
https://string-db.org/
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between the DEGs. Interactions with a combined score > 0.4 were considered statistically significant. The PPI net-
work provided by STRING was imported into and visualized in Cytoscape (v.3.9.1.) (http:// www. cytos cape. org)54. 
The Cytoscape plug-in MCODE (v.2.0.2) was used to identify highly interconnected regions in the  network55. 
Settings used were as follows: Cluster Finding Haircut, Node Score Cutoff = 0.2, K-Core = 2, Max. Depth = 100.

Hub genes discovery and analysis
Hubgene analysis was performed using the CytoHubba (v.0.1) plug-in in  Cytoscape56. Seven common algo-
rithms (MCC, MNC, Degree, Closeness, Radiality, Stress, and EPC) were used to identify hub genes, and the 
UpSet intersection plot (by SRPlot) was used to identify common genes. The hub genes were then exported to 
GeneMANIA (http:// www. genem ania. org/), a predictor software used to identify other genes related to a set 
of input genes and internal associations in the gene  sets57. Default methods were used to calculate connection 
weights. Lastly, we used Transcriptional Regulatory Relationships Unraveled by Sentence-based Text Mining 
(TRRUST) (v.2) to predict transcription factors (TFs) of hub genes (https:// www. grnpe dia. org/ trrust/)58. TFs 
with adjusted P-value < 0.05 were considered significant. Subsequently, we used the TCGA-KIRC dataset to 
examine the expression of these  TFs59.

In‑silico TCGA heatmap and cluster analysis
To test the gene signature identified by DEG analysis with another dataset, the TCGA-KIRC RNA expression 
dataset was downloaded via the Bioconductor package TCGABiolinks (v.2.26.0) (https:// bioco nduct or. org/ 
packa ges/ relea se/ bioc/ html/ TCGAb iolin ks. html) using R (v.4.2.2) and RStudio (2022.12.0 + 353)38,60,61. Phe-
notype data concerning tumor grade and patient survival were downloaded from the same source. Data from 
537 ccRCC samples were collected after removing duplicates. The count values were TMM-normalized and 
log2(count + 1)-transformed. Genome-Wide Heatmap (GWH) analysis was performed using the NOJAH (NOt 
Just Another Heatmap) (v.1) interactive tool (https:// github. com/ bbisr- shiny apps/ NOJAH/)62. A heatmap was 
plotted, using the set of 129 DEGs. The values selected for hierarchical clustering analysis parameters were the 
Z-score method for data normalization type, Euclidean for the distance method, and ward.D2 for the clustering 
method. Tumor phenotype data were combined into a heatmap, using NOJAH. Furthermore, the methylation 
status of TCGA samples, as described by Ricketts et al.63, was combined with the  heatmap63. The observed dis-
tribution of tumor grade, patient survival, and methylation cluster within each heatmap cluster was tested using 
the chi-square test.

Table 1.  Characteristics of 96 renal cell carcinoma tissue samples.

Hyaluronan-
positive N (%)

Hyaluronan-
negative N (%)

Samples 48 48

Sex

 Male 31 (64.6) 24 (50)

 Female 17 (35.4) 24 (50)

Age (mean, range) 61.8 (41–82) 67.0 (36–86)

WHO/ISUP grade

 1 2 (4.2) 8 (16.7)

 2 22 (45.8) 22 (45.8)

 3 10 (20.8) 9 (18.8)

 4 14 (29.2) 9 (18.8)

Sarcomatoid change

 No 41 (85.4) 43 (89.6)

 Yes 7 (14.6) 5 (10.4)

Disease-related death

 No 28 (58.6) 35 (72.9)

 Yes 20 (41.2) 13 (27.1)

Clinical stage

 I 16 (33.3) 24 (50.0)

 II 9 (18.8) 8 (16.7)

 III 12 (25.0) 7 (14.6)

 IV 11 (22.9) 9 (18.8)

Metastasis at diagnosis

 M0 37 (77.1) 39 (81.3)

 M1 11 (22.9) 9 (18.7)

http://www.cytoscape.org
http://www.genemania.org/
https://www.grnpedia.org/trrust/
https://bioconductor.org/packages/release/bioc/html/TCGAbiolinks.html
https://bioconductor.org/packages/release/bioc/html/TCGAbiolinks.html
https://github.com/bbisr-shinyapps/NOJAH/
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TCGA GSEA analysis
GSEA analysis was performed on TCGA-KIRC data using the newly discovered HA-positive and HA-negative 
phenotypes. TMM-normalized expression and phenotype data were uploaded to GSEA software (build v.4.3.2.) 
and Human MSigDB h.all.v2023.1.Hs.symbols hallmark gene set was chosen. The number of permutations was 
set to 1000. All other run parameters were maintained at their default values.

Hub gene expression analysis in silico
The mRNA expression levels of the identified hub genes were investigated, using the TCGA-KIRC dataset. 
RNA-seq data from 72 healthy renal tissues were downloaded using the TCGAbiolinks package (v.2.26.0) in 
R (v.4.2.2). TCGA samples identified belonging to “HA-negative” and “HA-positive” gene expression clusters 
were compared against each other and to normal renal tissue. The expression levels of the hub genes were TPM-
normalized and log2-transformed for each cohort. The Mann–Whitney U-test was used to compare each group 
with the other two groups, and the expression levels were box-plotted using R package ggpubr (v.0.6.0) (https:// 
rpkgs. datan ovia. com/ ggpubr/)64.

Prognostic value of hub genes
We used the Kaplan–Meier Plotter online database (http:// kmplot. com/ analy sis/) containing TCGA-KIRC data 
from 530 patients to analyze the prognosis of hub  genes65. Kaplan–Meier estimators were plotted, and hazard 
ratios were calculated for overall survival (OS) and disease-free survival (DFS). The samples were stratified into 
low- and high-expression groups based on the median cut-off (50%). Statistical significance was set at p < 0.05 
and HR > 1.0 were considered significant.

Ethical considerations
The study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics Committee 
of the Northern Savo Hospital District (379/2016, November 1st, 2016).

Results
DEG identification
DEG analysis identified 129 differentially expressed genes between the hyaluronan-positive and hyaluronan-
negative groups (Fig. 2). The full DEG list can be found in Supplementary Table S1. Of these genes, 97 were 
upregulated and 32 were downregulated in the hyaluronan-positive group compared with those in the hyalu-
ronan-negative group. Only protein-coding genes were included, and the FDR was set at < 0.05. There were 53 
genes with |log2 fold-change|≥ 1.

Functional analysis of DEGs
The ToppGene portal was used to perform GO, KEGG, and REACTOME enrichment analyses on the biologi-
cal functions and pathways of the 129 DEGs identified. Gene ontology (GO) analysis revealed that these genes 
were enriched in 82 biological processes. Of these “tube development”, “cell adhesion”, and “extracellular matrix 
organization” were the most statistically significant. Of the 31 statistically significant cellular compartments (CC), 
“the external encapsulating structure”, “extracellular matrix”, and “collagen-containing extracellular matrix” were 
the most enriched. The most enriched molecular functions (N = 21) were “signaling receptor binding”, “peptidase 
inhibitor activity”, and “endopeptidase inhibitor activity” (Fig. 3). In terms of KEGG enrichment analysis, three 
pathways, “ECM receptor interaction” (FDR = 3.07E − 4), “glycosaminoglycan biosynthesis chondroitin sulfate” 
(FDR = 1.72E − 3) and “complement and coagulation cascades” (FDR = 4.0E − 2), were statistically significantly 
enriched. In the REACTOME pathway analysis, the top three enriched pathways were “extracellular matrix 
organization” (FDR = 1.36E − 8), “collagen formation” (p = 7.68E − 6), and “regulation of insulin-like growth factor 
transport and uptake by insulin-like growth factor-binding proteins” (7.77E − 6) (Fig. 3).

Gene set enrichment analysis of DEGs
GSEA analysis showed that 8 gene sets were significantly enriched in the hyaluronan-positive phenotype at 
FDR < 0.25 and nominal p-value < 0.05. Four gene sets were significantly enriched at FDR < 0.25 and nominal 
p-value < 0.01. No gene sets were significantly enriched in the hyaluronan-negative phenotype. The pathways 
with the highest normalized enrichment scores (NES) in the hyaluronan-positive phenotype were epithelial-
mesenchymal transition (NES 1.72, FDR = 0.034), coagulation (NES 1.67, FDR = 0.033), P53 pathway (NES 
1.57, FDR = 0.075), apoptosis (NES 1.48, FDR = 0.153), MTORC1 signaling (NES 1.48, FDR = 0.127), apical 
surface (NES 1.46, FDR = 0.126), apical junction (NES 1.45, FDR = 0.125), and KRAS signaling up (NES 1.36, 
FDR = 0.166). The enrichment plots are shown in Fig. 4.

Protein‑to‑protein interaction network and subnetworks
A PPI network was constructed from 129 DEGs, using a minimum interaction score of 0.4. The network con-
tained 127 nodes and 172 edges (PPI enrichment, p < 1.0E − 16). Fifty of the nodes were singletons with no con-
nection to other nodes. The PPI network is shown in Supplementary Figure S1. The MCODE plug-in identified 
five closely connected subnetworks from the PPI network; the highly connected regions are shown in Supplemen-
tary Table S2. These networks contained 27 unique genes. ToppGene GO revealed that these genes were mostly 
associated with the molecular functions “endopeptidase inhibitor activity” and “peptidase inhibitor activity”, 
the biological processes “locomotion and cartilage development”, and the cellular components “extracellular 

https://rpkgs.datanovia.com/ggpubr/
https://rpkgs.datanovia.com/ggpubr/
http://kmplot.com/analysis/
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matrix and external encapsulating structure”. The most enriched REACTOME pathway was “extracellular matrix 
organization” and the most enriched KEGG pathway was “glycosaminoglycan biosynthesis-chondroitin sulfate”.

Hub gene discovery and analysis
Using seven ranking algorithms of Cytoscape’s CytoHubba plug-in, we calculated the top 20 hub genes (Supple-
mentary Table S3). The intersection of these results revealed 17 common hub genes: ANXA2, CD44, COL6A3, 
DCN, ENO2, GAPDH, HSP90B1, LOX, LRP1, MMP7, NCAM1, P4HB, SERPINE1, SERPINH1, SPP1, TGFBI, 
and TIMP1 (Fig. 5A). The full names and functions of the genes are listed in Table 2. All the common hub 
genes were overexpressed in HA-positive tumors compared with HA-negative tumors. The most enriched GO 
ontologies, as well as the KEGG and REACTOME pathways, did not differ significantly from those of the DEGs 
(Supplementary Dataset).

Next, we analyzed the common hub genes using the GeneMANIA database. The input gene list generated 
a composite network, with network weights for individual subnetworks of 51.05% for co-expression, 42.77% 
for physical interactions, 3.51% for colocalization, 2.64% for predicted, and 0.04% for pathways (Fig. 5B). GO 
functional enrichment analysis showed that nine of the 20 co-expressed genes were enriched in the biological 
processes of “extracellular matrix organization”, “extracellular structure organization”, and “external encapsulat-
ing structure organization”. Furthermore, 11/20 genes were involved in the REACTOME “extracellular matrix 
organization” pathway and 8/20 in “collagen formation” (Supplementary Dataset).

Finally, TFs that regulate hub genes were predicted using the TRRUST database. Eleven candidate regula-
tors were identified, including CEBPA, CTNNB1, HDAC1, HIF1A, JUN, NFKB1, RELA, RUNX1, SP1, STAT3 
and TWIST1 (Supplementary Table S4). We used publicly available TCGA-KIRC data to analyze the expression 
levels of these TFs in normal renal tissue as well as in inferred “HA-negative” and “HA-positive” phenotype 
TCGA samples (Supplementary Fig. S2). The analysis showed that TWIST1, RUNX1, CEBPA, and RELA were 
upregulated in carcinoma samples compared with normal renal tissues, whereas HIF1A was downregulated. 
The HA-positive phenotype had statistically higher expression of TWIST1, RUNX1, and CEBPA than did the 

Figure 2.  Volcano plot of differentially expressed gene (DEG) analysis. The red horizontal line represents a 
false discovery rate (FDR) level of 0.05. Genes with a log2 fold-change > 0 were overexpressed, and those with 
values < 0 were under-expressed.
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HA-negative phenotype. Conversely, CTNNB1, HDAC1, RELA1, NFKB1, and STAT3 were downregulated in 
the HA-positive phenotype.

Signatures of differentially expressed genes identify prognostic groups in the TCGA‑KIRC 
cohort
To explore our findings, we subjected TCGA-KIRC data to heatmapping and cluster analysis using the previ-
ously identified DEG set. The NOJAH tool was used for analysis. Heatmap plotting and cluster analysis revealed 
three distinct groups (Fig. 6A). A total of 151 samples had a gene expression profile similar to that of the HA-
positive sequencing group, hereafter referred to as the HA-positive cluster. A total of 221 samples had a gene 
expression profile similar to that of the hyaluronan-negative sequencing group, hereafter referred to as the 

Figure 3.  (A) ToppGene results of Gene Ontology (GO) and pathway analyses. The bars show the top three 
most significantly enriched GO terms from each subontology. (B) Bubble plot showing the 15 most significantly 
enriched pathways in the KEGG and REACTOME pathways. BP biological process, CC cellular compartment, 
MF molecular function, KEGG Kyoto Encyclopedia of Genes and Genomes.
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HA-negative cluster. The remaining samples (n = 165) were unclassifiable, based on our set of DEGs. Informa-
tion about survival status, tumor pathological stage and tumor grade were available for each sample, and the 
hyaluronan-positive cluster was associated with death (Pearson chi-squared test, p < 0.001), higher tumor grade 
(Pearson chi-squared test, p < 0.001), higher stage (Pearson chi-squared test, p < 0.001) and methylation cluster 
1 (Pearson chi-squared test p < 0.001). Grade 4 tumors tended to cluster in the HA-positive cluster. Comparison 
of the clinical characteristics between discovery set and TCGA clusters are shown in Supplementary Table S5. 
The Kaplan–Meier estimator showed worse prognosis for the HA-positive cluster in the TCGA data. There was 
no significant difference between the unclassifiable and HA-negative clusters (Fig. 6B).

TCGA GSEA analysis
GSEA revealed that 7 gene sets were significantly enriched in the HA-positive cluster at FDR < 0.25 and nominal 
p-value < 0.05. Two gene sets with similar confidence scores were enriched in the HA-negative cluster. The path-
ways with the highest positive NES values were IL6 JAK STAT3 signaling (NES 2.01, FDR = 0.066), epithelial-
mesenchymal transition (NES 1.98, FDR = 0.047), inflammatory response (NES 1.97, FDR = 0.036), allograft 
rejection (NES 1.92, FDR 0.045), glycolysis (NES 1.68, FDR = 0.188), coagulation (NES 1.63, FDR = 0.205), 
and estrogen response late (NES 1.57, FDR = 0.177). The pathways with the lowest NES values were fatty acid 
metabolism (NES − 1.72, FDR 0.334) and β-catenin signaling (NES − 1.66, FDR 0.240). All pathways are available 
in the Supplementary Dataset.

Figure 4.  Enrichment plots of Gene Set Enrichment Analysis (GSEA) results of the comparison between 
HA-positive and HA-negative groups, using the hallmark gene set. NES normalized enrichment score, FDR false 
discovery rate.
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Hub gene expression analysis
To analyze the hub gene expression pattern, we examined the relative mRNA expression levels in the TCGA-
KIRC data. We compared the expression levels between the two phenotypes of HA-positive and HA-negative 
clusters that we identified in the heatmapping and cluster analysis. In addition, the mRNA expression levels of 
normal renal tissues were included in the analysis. The results showed that the following genes were significantly 
overexpressed in renal cell carcinomas with respect to normal renal tissue: ANXA2, CD44, COL6A3, ENO2, 

Figure 5.  Overlapping hub genes and co-expression networks of hub genes. (A) UpSet intersection plot 
showing the seven algorithms used to identify 17 overlapping hub genes. (B) Hub genes (inner circles) and 20 
co-expressed genes. Circle diameter correspond to score assigned to each gene (GeneMANIA).
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GAPDH, HSP90B1, LOX, LRP1, NCAM1, P4HB, SERPINE1, SERPINH1, TGFBI and TIMP1. SPP1 and DCN 
were significantly downregulated in carcinomas in comparison with normal renal tissue. All hub genes were 
overexpressed in the HA-positive cluster, consistent with our sequencing results (Supplementary Fig. S3).

Table 2.  17 hub genes.

Gene symbol Gene function References

ANXA2
ANXA2 is a calcium-dependent phospholipid-binding protein expressed mainly on cell membranes, and it 
participates in many cellular functions, such as exocytosis, endocytosis, and redox regulation. ANXA2 has 
been found to promote cell migration and mobility, and its overexpression indicates poorer prognosis in 
RCC 

66,67

CD44

A non-kinase cell surface transmembrane glycoprotein with variant isoforms. It is involved in cell–cell 
interaction and promotes cell adhesion and migration. It binds many ligands, such as hyaluronic acid and 
matrix metalloproteinases and has been widely implicated as a cancer stem cell marker in several cancers. 
Overexpression of CD44 has been associated with stem-like features and epithelial-mesenchymal transition. 
Higher expression predicted poorer prognosis in RCC 

68,69

COL6A3
Collagen type VI alpha 3 chain (COL6A3) encodes one of three chains constituting type 6 collagen (COL6), 
which is an extracellular-matrix protein. In cancer, COL6 is involved in the regulation of apoptosis, 
autophagy, fibrosis, angiogenesis, and inflammation. Higher expression of COL6A3 relates to poor progno-
sis and occurs in metastatic ccRCC 

70,71

DCN
Decorin (DCN) encodes a member of the small leucine-rich proteoglycan family of proteins. Protein 
product is present in extracellular matrix and conveys antitumorigenic properties by binding collagen and 
multiple growth factors. DCN has been identified as a tumor suppressor in RCC 

72,73

ENO2
Enolase2 is a homodimer that regulates glycolysis and is widely involved in other pathophysiological 
processes of different malignancies. ccRCC patients with ENO2 overexpression have worse clinical features 
and prognosis

74,75

GAPDH
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a vital enzyme for energy metabolism as a regula-
tor of the glycolytic cascade, including anaerobic glycolysis. Recent studies have also shown its association 
with tumorigenesis, apoptosis, and cell proliferation. Higher expression levels of GAPDH are associated 
with worse prognosis in ccRCC patients

76,77

HSP90B1
Heat shock protein 90 beta family member 1 (HSP90B1) is a member of the heat-shock protein 90 family. It 
maintains endoplasmic reticulum (ER) stress sensors and preserves ER protein folding capacity. It has been 
linked to immune response and cancer development. Expression of HBP90B1 was found to be higher in and 
to convey poorer prognosis in RCC 

78

LOX
Lysyl oxidase (LOX) is a member of the lysyl oxidase family of proteins. They catalyze oxidative deamina-
tion of lysine and hydroxylysine to form allysine, the first step in the collagen cross-linking reaction. In 
addition, these enzymes act as transcription factors promoting epithelial-mesenchymal transition. LOX has 
been found to be upregulated in ccRCC and to convey poorer prognosis

79–81

LRP1
LDL receptor related protein 1 (LRP1) encodes a member of the low-density lipoprotein receptor family. It 
is involved in endocytosis and the regulation of signaling pathways. Its overexpression has been associated 
with tumor cell migration and invasion. Higher LRP1 expression has been identified in RCC compared with 
normal kidney and higher expression conveys poorer prognosis

82,83

MMP7

Matrix metallopeptidase 7 (MMP7) is a member of the matrix metalloproteinase family, a group of 23 
zinc-dependent endopeptidases. MMP7 degrades various extracellular matrix substrates and plays a role in 
wound healing, bone growth, and inflammation. MMP7 is expressed in many types of cancer cells, and it 
promotes tumor progression by inhibiting apoptosis. Higher expression in ccRCC has been associated with 
worse prognosis

84,85

NCAM1
Neural cell adhesion molecule 1 (NCAM1), also known as CD56, is a member of the immunoglobulin 
superfamily found in cells of neural lineage and hematopoietic cells. The protein product is involved in 
cell-to-cell and well as cell–matrix interactions during development and differentiation. In RCC protein 
expression has been associated with higher metastatic potential and poorer prognosis

86,87

P4HB
The protein product of this gene is the beta subunit of prolyl 4-hydroxylase, which is a multifunctional 
enzyme belonging to protein disulfide isomerase-family. The protein functions as a chaperone and prevents 
protein misfolding. It has been shown to promote progression of malignant tumor, including RCC, where it 
is associated with poor prognosis

88,89

SERPINE1
Serpin family E member 1 (SERPINE1) is an inhibitor of urokinase and tissue plasminogen activator. It has 
been shown to play roles in cell adhesion, migration, invasion, and tumor vascularization. It is associated 
with poorer prognosis in various cancers, including ccRCC 

86,90

SERPINH1
Serpin family H member 1 (SERPINH1) encodes protein HSP47, which is an important chaperone required 
for the correct folding and secretion of collagen. HSP47 promotes tumor growth and invasion in many 
malignancies, such as cervical, pancreatic, and breast cancers, probably by modifying ECM. Increased 
SERPINH1 expression has been associated with worse prognosis in RCC 

91,92

SPP1

Secreted phosphoprotein 1 (SSP1) is a member of the small integrin-binding ligand N-linked glycoprotein 
family of proteins, which bind and activate matrix metalloproteinases in cancer. It functions in immune 
response, biomineralization, and tissue remodeling. It has been proven to be overexpressed in various 
cancers, such as ovarian cancer, glioblastoma, hepatocellular carcinoma, and prostate cancer. In renal cell 
carcinoma, SPP1 indicated poor prognosis

93,94

TIMP1
TIMP metallopeptidase inhibitor 1 (TIMP1) is a natural inhibitor of matrix metalloproteinases. TIMPs par-
ticipate in biological processes of anti-apoptosis, anti-angiogenesis, cell cycle regulation, and differentiation. 
TIMP1 is significantly upregulated in cell lines and RCC tissues. Higher expression of TIMP1 indicated a 
poor prognosis

95

TGFBI
Transforming growth factor beta induced (TGFBI) localizes in extracellular matrix and contributes to 
cell-collagen interactions and bone formation. TGFBI has been reported to have both tumor promoting 
and suppressing roles. Higher TGFBI expression levels have been shown to predispose to worse survival in 
ccRCC 

96,97
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Prognostic value of hub genes
Hub genes were subjected to survival analysis by KMplotter using the TCGA-KIRC data. This indicated that 
high expression levels of ANXA2, CD44, COL6A3, DCN, ENO2, GAPDH, MMP7, P4HB, SERPINH1, TGFBI, 
and TIMP1 were associated with unfavorable overall survival. No statistical difference in overall survival was 
observed with different expression levels of HSP90B1, LOX, LRP1, NCAM1, SERPINE1, and SPP1 (Supplementary 

Figure 6.  (A) Heatmap and cluster analysis of TCGA data using a set of 129 differentially expressed genes (NOt 
Just Another Heatmap). The color key denotes log2 fold-change. (B) Survival plot of TCGA heatmap clusters. 
Log-rank test is used to calculate p-value.
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Fig. S4 and S5). However, when subjected to disease-free survival (DFS) analysis, only the high expression levels 
of TGFBI and P4HB were statistically significant (Supplementary Fig. S6 and S7).

Discussion
In this study, we examined RNA expression levels in hyaluronan-positive and-negative tumors. To the best of 
our knowledge, this is the first study where tumoral hyaluronan accumulation has been studied through RNA 
sequencing. To date, hyaluronan has been studied in renal cell carcinoma in terms of individual protein and 
mRNA levels. However, the molecular pathways associated with hyaluronan accumulation have remained unclear.

DEG analysis revealed 129 genes with expression profiles that differed between the HA-positive and HA-
negative cohorts. In total, 97 genes were up-regulated in the HA-positive group. These DEGs appeared to regulate 
pathways involved in the extracellular matrix, collagen formation, carbohydrate metabolism, and cellular adhe-
sion. The most enriched gene ontology terms were related to “peptidase inhibitor activity”, “cell adhesion”, and 
“collagen-containing extracellular matrix”. GSEA revealed that the DEGs were enriched in similar pathways, such 
as the extracellular matrix, apical surface, and apical junction. These results are in line with previous findings that 
hyaluronan accumulation is associated with epithelial-mesenchymal transition, cell adhesion, and extracellular 
matrix  organization7,98–101.

Among the DEGs, the hyaluronan-associated molecules CD44 and HABP2 were identified. CD44 is a hyalad-
herin, and HA-CD44 interaction has been shown to promote tumor cell survival and  chemoresistance102. HABP2, 
on the other hand, is a serine protease that promotes migration, extravasation, tumor growth, and metastasis in 
lung  cancer103. This protein also has a peculiar feature in that its expression is increased by low-molecular-weight 
HA (LMW-HA) and decreased by high-molecular-weight HA (HMW-HA)104. The absence of other hyaluronan-
binding proteins from the DEG list, as well as hyaluronan-synthesizing and hyaluronan-degrading enzymes, is 
an interesting finding. This might reflect the previous observations that transcriptional regulation may not be the 
main driver of altered HA levels in RCC 105. Therefore, alternative mechanisms (e.g., those related to the supply 
of HA substrates or regulation of translational and enzymatic activity) may explain HA accumulation in these 
tumors. RCC is a metabolically active disease, and tumors have been shown to increase the uptake and utilization 
of glucose and produce increased amount of pentose phosphate pathway (PPP)  intermediates106. UDP-sugars, a 
type of PPP intermediate necessary for HA synthesis, have been shown to accumulate in breast carcinomas and 
strongly correlate with tumor HA levels independent of the mRNA levels of HA  synthases107.

KEGG pathway “glycosaminoglycan biosynthesis chondroitin sulfate” and REACTOME pathway “glycosa-
minoglycan metabolism” were enriched in HA-positive tumors. This was mainly due to the overexpression of 
CHST11, DCN, CHPF, and CHST3, which are common to both pathways. These genes participate in the sulfation 
and biosynthesis of chondroitin sulfate (CS) as well as its organization in extracellular  matrix108,109. CS has been 
observed to be elevated in breast cancer stroma, and increased CS levels are associated with poor differentiation 
status in hepatocellular carcinoma and in advanced stage and recurrent ovarian  cancer110–112. Furthermore, there 
is significantly more CS in RCC tissues, and the CS biosynthesis pathway is upregulated in RCC compared with 
non-neoplastic kidney  tissues113,114. The relationship between CS biosynthesis and HA accumulation in ccRCC 
remains unclear.

Gene set enrichment analysis showed that the mTORC1 signaling gene set was enriched in HA-positive 
tumors. Mechanistic target of rapamycin (mTOR) is a serine/threonine kinase involved in cellular growth, pro-
liferation, and autophagy. mTOR activation plays a major role in RCC, and mTOR inhibitors have been used to 
treat metastatic RCC. Regrettably, mTOR inhibitors have low objective response rates, and tumors rapidly develop 
 resistance115. Nevertheless, some patients with mTOR signaling-activating genomic alterations show long-lasting 
 responses116. Therefore, tumors with HA accumulation may respond more favorably to mTOR inhibition.

Hub gene analysis identified 17 highly connected genes. These genes were involved in the same molecular 
pathways as DEGs, and 11 of them (ANXA2, CD44, COL6A3, DCN, ENO2, GAPDH, MMP7, P4HB, SERPINH1, 
TGFBI, and TIMP1) were correlated with poor prognosis in renal cell carcinoma at the mRNA level when the 
median cut-off was used. Many of the proteins encoded by these genes function in cell adhesion (CD44, TGFBI, 
COL6A3, SPP1, and NCAM1), participate in glycolysis (GAPDH and ENO2), exhibit protease activity (P4HB, 
HSP90B1, and TIMP1), and act as chaperones (SERPINE1 and SERPINH1) (Table 2). These proteins, besides 
CD44, have little to no known interaction with hyaluronan. However, LRP1 (a low-density lipoprotein recep-
tor involved in endocytosis and regulation of signaling pathways) has been shown to interact with artificial 
sulfated hyaluronan in bone regeneration  studies117. The protein expression of CD44 has been studied in renal 
cell carcinoma, and higher expression is associated with poor  prognosis118. In addition, high protein expres-
sion of ANXA2, ENO2, P4HB, SERPINH1, TGFBI, and LRP1 is associated with poor prognosis in renal cell 
 carcinoma67,89,92,119–121. Patraki and  Cardille122 showed that MMP7 was more strongly expressed in high-grade 
RCC. However, no survival analysis was conducted. Furthermore, COL6A3 expression was shown to be higher in 
ccRCC metastases than in primary  tumors70. Not surprisingly, the top 20 related genes identified by co-expression 
analysis were associated with the same biological processes as the hub genes. Hub genes and their co-expressing 
genes act as potential targets for downstream analyses.

Transcription factor analysis revealed that 11 genes were associated with our set of hub genes. Of notable 
interest is RUNX1, which is highly expressed in renal cell carcinoma compared with normal kidney tissue. 
Furthermore, RUNX1 expression was higher in the HA-positive cluster. RUNX1 has been shown to affect mul-
tiple biological processes, such as proliferation, apoptosis and differentiation, and lineage determination. In 
addition, its involvement as a fusion partner in acute myeloid leukemia (AML) is well-known123. Recently, it 
has been associated with other malignancies, such as promoting EMT in colorectal carcinoma by activating the 
Wnt/β-catenin signaling  pathway124. RUNX1 has previously been associated with poor prognosis in renal cell 
 carcinoma125. Moreover, Rooney et al.126 showed that deletion of RUNX1 in ccRCC cell lines reduced tumor cell 
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growth and viability. RUNX1 deletion caused many alterations to biological pathways, notably cell adhesion and 
ECM modelling. Interestingly, the second most altered gene ontology observed was “eph and ephrin signaling”, 
which is a downstream target of the WNT signaling pathway. One of the genes with the most significantly altered 
expression was SERPINH1, one of the hub genes identified. Deletion of RUNX1 caused a significant reduction in 
SERPINH1 levels, indicating that RUNX1 is a positive regulator of SERPINH1. Interestingly, SERPINH1 has been 
shown to regulate EMT through Wnt/β-catenin signaling in gastric  cancer127. The interplay between RUNX1, 
SERPINH1, and hyaluronan could offer insights into the molecular mechanisms underlying the hyaluronan-
induced migratory phenotype and EMT.

To investigate our previous and present findings, we performed in silico heatmap clustering using the list 
of DEGs and TCGA-KIRC  data14. Heatmap clustering identified two prognostically divergent clusters whose 
gene expression patterns corresponded to those of our cohorts. A gene expression pattern similar to that of our 
HA-positive sequencing group conveyed a poorer prognosis in the TCGA data. This cluster was enriched in 
tumors with a higher tumor grade and pathological stage. Additionally, it exhibited a methylation cluster that 
has previously been shown to be associated with the CpG island methylator (CIMP) phenotype and increased 
Wnt signaling pathway  activity63. Motzer er al.128 molecularly categorized ccRCC into seven subtypes, using an 
integrated multi-omics approach. Two subtypes (clusters 1 and 6) were enriched with stromal transcriptional sig-
natures, and cluster 6 contained a substantial proportion of sarcomatoid ccRCCs. Interestingly, cluster 1 showed 
enrichment of WNT signaling genes, in addition to high expression of genes related to the TGF-β, Hedgehog, 
and NOTCH signaling pathways. Regrettably, TCGA clinical data did not contain information regarding pos-
sible sarcomatoid changes. However, it could be deduced that since most of the grade 4 tumors were clustered 
in the HA-positive cluster, some of these were sarcomatoid. This is in line with our previous finding that HA 
accumulates in sarcomatoid  carcinomas14.

In silico GSEA analysis of TCGA data revealed that genes in the HA-positive cluster were enriched in path-
ways associated with inflammation. These included “IL6/JAK/STAT3-signaling”, “inflammatory response”, 
and “allograft rejection”. It has been previously shown that hyaluronan-rich stroma and low-molecular-weight 
hyaluronan (LMW-HA) promote inflammation and cytokine  production129,130. Kainulainen et al.131 showed 
that upregulation of proinflammatory genes in MV3 melanoma cells stimulated synthesis of a peritumoral HA 
coat. In addition, an increased number of HA-containing  HYAL2+PD-L1+ myeloid-derived suppressor cells 
(MDSCs) have been observed in ccRCC, promoting HA degradation to LMW-HA, cancer-related inflammation, 
and  immunosuppression132. Furthermore,  HYAL2+ myeloid cells have been associated with HA degradation 
and angiogenesis in bladder  cancer133. There is evidence that HA can modulate immune cell infiltration in the 
tumor microenvironment by binding to, polarizing, and recruiting macrophages. It is also well appreciated that 
immunity and angiogenesis are closely  interlinked134,135. As RCC is one of the most immune-infiltrated tumors, 
it may be possible to improve the efficacy of cancer treatments, such as immunotherapy, by targeting  HA25,136,137.

Our study had some limitations. The study design involving samples collected in the period 2000–2013 
and their FFPE nature likely diminished the sensitivity and increased the variation. However, analyzing three 
punch cores from each tumor should compensate for the random scatter. Due to the inherent degradation of 
RNA, the count values were generally low, as expected. This phenomenon may have led to limited coverage of 
the full transcriptomic differences between the groups and posed limitation to the effective cross-validation of 
the dataset. In addition, the lack of independent known-label datasets with respect to hyaluronan status posed 
a hindrance, preventing us from leveraging such datasets to validate our results. Finally, owing to the relatively 
low number of underexpressed genes, GSEA analyses did not necessarily have sufficient statistical power to 
identify underexpressed gene sets.

Conclusions
Our study demonstrates that hyaluronan accumulation is associated with biological pathways related to the extra-
cellular matrix, EMT, and cell–stroma interactions. The gene expression signature we discovered was associated 
with poor prognosis and a higher tumor grade in ccRCC. Whether the pathways identified in this study lead to 
hyaluronan accumulation or whether HA accumulation induces certain genes remains unclear. Identification 
of these pathways may open new avenues for hyaluronan research in renal cell carcinomas and other human 
malignancies. Further studies involving independent in silico and wet lab validation sets are required to validate 
these results.

Data availability
The data that support the findings of this study are available from the Biobank of Eastern Finland, but restrictions 
apply to the availability of these data, which were used under license for the current study and so are not publicly 
available. However, the data are available from the authors upon reasonable request and with permission from 
the Biobank of Eastern Finland. Please contact info@ita-suomenbiopankki.fi for access inquiries.
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