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Deep learning for high‑resolution 
seismic imaging
Liyun Ma , Liguo Han * & Qiang Feng 

Seismic imaging techniques play a crucial role in interpreting subsurface geological structures by 
analyzing the propagation and reflection of seismic waves. However, traditional methods face 
challenges in achieving high resolution due to theoretical constraints and computational costs. 
Leveraging recent advancements in deep learning, this study introduces a neural network framework 
that integrates Transformer and Convolutional Neural Network (CNN) architectures, enhanced 
through Adaptive Spatial Feature Fusion (ASFF), to achieve high-resolution seismic imaging. Our 
approach directly maps seismic data to reflection models, eliminating the need for post-processing 
low-resolution results. Through extensive numerical experiments, we demonstrate the outstanding 
ability of this method to accurately infer subsurface structures. Evaluation metrics including Root 
Mean Square Error (RMSE), Correlation Coefficient (CC), and Structural Similarity Index (SSIM) 
emphasize the model’s capacity to faithfully reconstruct subsurface features. Furthermore, noise 
injection experiments showcase the reliability of this efficient seismic imaging method, further 
underscoring the potential of deep learning in seismic imaging.

Seismic imaging technology, as a method to obtain information about underground geological structures by 
analyzing the propagation and reflection of seismic waves, plays a crucial role in geological exploration1–3, 
resource development4–6, underground water detection7,8, and other fields. This technology records the vibration 
signals of seismic waves propagating underground using seismic instruments and processes and interprets these 
data through mathematical algorithms and signal processing techniques to obtain the physical properties and 
structural characteristics of underground media. The imaging goal is to visualize underground layer boundaries, 
structural features, etc., to assist geologists in further analyzing and interpreting underground structures.

Despite the critical position of seismic imaging technology in geological exploration and resource develop-
ment, traditional methods have theoretical and practical limitations in resolution. These limitations stem from 
theoretical constraints in underground wave propagation physics and the computational costs associated with 
high-frequency imaging. Resolution limitations make it difficult to accurately depict details of underground 
structures, especially in areas with geological complexity and media heterogeneity. In recent years, the increas-
ing demand for seismic exploration accuracy has driven researchers to improve the resolution of seismic images 
through various means9. For example, high-density acquisition can enhance horizontal resolution, while record-
ing wide-band seismic data can improve vertical resolution10,11.

The rise of deep learning technology has opened up new possibilities in the field of seismic exploration12–19, 
encompassing various aspects such as data processing, imaging, and inversion. The application of deep learning 
in seismic imaging mainly focuses on processing seismic images, improving the quality of seismic imaging results 
by establishing mappings between low-resolution and high-resolution versions20,21. Specifically, researchers have 
used deep learning techniques to compensate for absorption and correct dispersion, achieving the goal of accel-
erating high-resolution seismic imaging22. Additionally, some studies have introduced structural constraints into 
neural network frameworks to perform seismic high-resolution reconstruction, achieving significant results23.

However, the aforementioned high-resolution imaging methods mainly focus on post-processing of low-
resolution results. In contrast, our research endeavors to achieve high-resolution imaging directly through the 
synergistic combination of Transformer and Convolutional Neural Network (CNN). The network takes seismic 
data as input and the desired output is reflection model. This integration capitalizes on the strengths of both 
models: Transformers excel in capturing long-range dependencies and global contextual information24, while 
CNNs are adept at capturing local spatial features and patterns. By harnessing the complementary capabilities 
of Transformer and CNN, our proposed neural network architecture aims to enhance the resolution and fidel-
ity of seismic imaging. Additionally, the incorporation of the Adaptively Spatial Feature Fusion (ASFF) method 
further enriches the model’s ability to extract and integrate spatial features adaptively, contributing to the accurate 
mapping of seismic data onto reflection models.
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Methods
Review of seismic imaging
The goal of seismic imaging is to infer subsurface structures based on observed seismic data. This can be 
achieved by solving inverse problems. Reverse Time Migration (RTM) is an imaging technique based on the 
wave equation25, which utilizes the cross-correlation of the underground forward and backward wavefields, 
demonstrating excellent adaptability, especially in areas with complex structures and high velocity variations. 
The formula for the cross-correlation imaging condition is expressed as:

Here, I(x, z) represents the RTM result, uf (x, z, t) denotes the forward wavefield, and ub (x, z, t) is the back-
ward wavefield.

However, RTM suffers from low-frequency noise and inaccurate amplitudes, limiting its application in seismic 
imaging. To address the shortcomings of RTM, Least Squares Reverse Time Migration (LSRTM) associates the 
migration imaging result with seismic data26, constructing the least squares objective function:

Here, dobs represents the observed data, L is the forward operator, and m is the subsurface structural 
parameter.

LSRTM involves key steps such as forward simulation, backpropagation, gradient computation, and optimi-
zation algorithms. Through iterative optimization to minimize the error between observed and simulated data, 
LSRTM enhances the quality of seismic imaging.

Deep neural network for seismic imaging
In this study, we introduce a hybrid architecture (Fig. 1) that integrates Transformer and CNN to address seismic 
imaging tasks. Within the Transformer framework, the need for a one-dimensional sequence as input necessitates 
an initial transformation of the input image. The Image Patching phase involves partitioning the input image into 
a series of equally sized image patches, each with a size of P2 . This transforms the original H ×W image into 
an N × P × P sequence, where N represents the sequence length, encompassing H×W

P2
 image patches. Conse-

quently, the input image is reshaped into a one-dimensional sequence, with each image patch corresponding to 
a vector. The adoption of a smaller patch size enables enhanced capture of intricate details within the image, thus 
elevating the model’s accuracy, albeit at the expense of increased computational overhead27. In view of balancing 
between model efficacy and computational efficiency, we establish P = 16 . In the Input Embedding stage, a linear 
transformation is applied to each segmented image patch, mapping it to a continuous vector representation. 
As the Transformer model abstains from utilizing recurrent or convolutional layers for sequence processing, 
positional encoding is incorporated into the input embedding vector to discern the positional information of 
each image patch.

The proposed model employs a Transformer Encoder comprising L = 12 layers to process the image sequence, 
with each encoder layer composed of Multi-Head Self-Attention (MSA) and Multi-Layer Perceptron (MLP).
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Figure 1.   Network architecture diagram.
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Here, LN(·) denotes layer normalization, l  is the identifier for intermediate blocks, and L is the number of 
Transformer layers.

These stacked Transformer layers facilitate capturing the complexity of the data from a multiscale perspec-
tive. To prevent the loss of primary features by solely relying on the last layer output, we employ a multi-level 
feature extraction strategy. In addition to the final layer (12th layer), features are extracted from the 6th and 9th 
layers, representing deep, intermediate, and shallow features, providing a rich and multiscale feature space. These 
three layers of features are adjusted to different resolutions of feature maps and fused through ASFF, resulting 
in adaptive aggregation at each scale.

ASFF constitutes an attention-based spatial feature integration strategy devised to amalgamate feature maps 
originating from diverse spatial resolutions within deep neural networks28. Its principal objective is to augment 
the model’s perceptual acuity concerning targets across varying scales. ASFF dynamically weights and fuses 
features from distinct spatial resolutions by learning task-specific attention weights.

We represent features at resolution level ℓ (where ℓ ∈ {1, 2, 3} ) as xl . For level ℓ , we resize features from other 
levels n ( n  = ℓ ) to the same shape as xl . Let xn→ℓ

ij  denote the feature vector at position (i, j) on the feature map, 
adjusted from level n to level ℓ . We perform the following fusion of corresponding level ℓ features:

Here, yℓij signifies the vector at position (i, j) in the output feature map yℓ across channels. The spatial impor-
tance weights αℓ

ij , β
ℓ
ij , and γ ℓ

ij for features from three different levels to level ℓ are adaptively learned by the network. 
To ensure the effectiveness of weights, constraints αℓ

ij + βℓ
ij + γ ℓ

ij = 1 and αℓ
ij ,β

ℓ
ij , γ

ℓ
ij ∈ [0, 1] are enforced. These 

constraints ensure the validity and range of the weights. The weights are computed using softmax functions with 
control parameters as follows:

The calculation of control parameters �ℓαij,�
ℓ
βij

 , and �ℓγij is performed through 1x1 convolution layers from x1→ℓ
ij

,x2→ℓ
ij  , and x3→ℓ

ij  , respectively. These parameters are learned through standard backpropagation during network 
training.

Overall, this approach furnishes the model with a rich and multiscale feature space, thereby contributing to 
its performance in complex seismic imaging tasks.

Results
Dataset and training
The research process is clearly shown in Fig. 2. The dataset utilized in this study derives from the 3-D Over-
thrust Model (Fig. 2a). Synthetic data is generated through simulations on multiple diverse 2-D models (Fig. 2b) 
extracted from the 3-D Model. Finite-difference modeling is employed to solve the 2-D acoustic wave equation 
in the time domain, with a Ricker wavelet of 30 Hz serving as the source signal. Three perfectly matched layers 
(PML) are placed respectively at the bottom, left, and right sides of the model, with free boundary conditions 
applied at the models’ top to produce seismic records as input data (Fig. 2c). By calculating velocity differences 
between adjacent layers and subsequently deriving reflection coefficients based on these disparities, a multitude 
of reflection models serve as labeled data (Fig. 2d). The deep neural network is trained to establish a direct map-
ping from the seismic record to the reflection model.

The dataset was partitioned into training, validation, and test sets in an 8:1:1 ratio. During the training pro-
cess, we employed the ADAM optimizer with a batch size of 32, and the learning rate decayed with iterations. 
Mean Squared Error (MSE) was utilized as the loss function to measure the disparity between predicted out-
comes and the true reflectivity models. By minimizing MSE, we facilitated the neural network in learning a more 
precise mapping relationship from seismic records to reflectivity models. To evaluate the model’s performance, 
R-squared was chosen as the primary assessment metric. R-squared, a statistical indicator ranging from 0 to 1, 
quantifies the goodness of fit of the model to the data. A value closer to 1 indicates a stronger explanatory power 
of the model. Our objective was to maximize R-squared, ensuring the model accurately predicts reflectivity 
models corresponding to seismic records. The loss curves and evaluation metrics of the training and validation 
sets over 500 epochs are presented in Fig. 3.
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Figure 2.   Schematic of research procedures. (a) 3D overthrust model. (b) 2-D velocity models extracted from 
(a). (c) Seismic record, representing input data. (d) Reflectivity model, representing label data.

Figure 3.   (a) Loss curves and (b) evaluation metrics for training and validation sets across 500 epochs.
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Test results
Upon completion of neural network training, we conduct a comprehensive analysis of the training results to 
evaluate the method’s ability to accurately infer underground structures from seismic records. The data types used 
in the testing are synthetic data. Initially, three sets of test data are selected for comparison, each comprising input 
data, neural network-generated reflectivity models, and ground truth reflectivity models (Fig. 4). We observe 
excellent performance of the neural network model in high-amplitude (strong reflection) areas, demonstrating 
its effectiveness in capturing key geological features and exhibiting consistent morphology with the real model. 
Subsequently, a subset of test results is chosen for detailed comparison (Fig. 5). We magnify local regions of 
predicted results and actual reflectivity models for detailed comparison. Amplification of imaging results in weak 
reflection areas, indicated by black rectangular boxes, shows the model’s effectiveness in reproducing small-scale 
geological features. However, performance in extremely weak reflection areas requires further enhancement.

To quantify the predictive performance of the model, we employ the following metrics for evaluation: Root 
Mean Square Error (RMSE), Correlation Coefficient (CC), and Structural Similarity Index (SSIM). RMSE is 
widely used to assess model prediction errors, measuring the square root of the mean squared differences between 
predicted and observed values. CC evaluates the linear correlation between model predictions and actual obser-
vations, with values ranging from -1 to 1, where values closer to 1 indicate stronger linear relationships between 
predictions and observations. SSIM, a measure of structural similarity, compares the similarity between two 
images, considering differences in brightness, contrast, and structure. A comprehensive summary of the evalua-
tion results is provided in Table 1. The aforementioned comparisons collectively reflect the ability of the proposed 
method to accurately infer underground structures from seismic records.

We conduct a comparative analysis between the proposed method and the conventional RTM approach, 
with the results displayed in Fig. 6. The subplots (a), (b), and (c) respectively depict the RTM imaging result, the 
neural network’s prediction result, and the actual reflectivity model used as a reference. It is observed that this 
method significantly improves imaging accuracy and resolution. Through end-to-end processing using deep 
learning model, we achieve better capture of subtle underground structural features, thereby achieving higher 
resolution in seismic imaging.

Figure 4.   Three sets of test data, each including input data (a–c), neural network-generated reflectivity models 
(d–f), and ground truth reflectivity models (g–i).
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Noise injection experiment
In seismic data processing, Gaussian noise is regarded as a significant interference factor characterized by its 
ubiquitous presence in the natural environment and its probability density function following a normal distri-
bution. To more accurately simulate the observational conditions of seismic data in the real world, Gaussian 
noise is incorporated into the dataset. This process entails generating random noise conforming to a Gaussian 
distribution and adding it to the original dataset. The signal-to-noise ratio (SNR) of the added noise is randomly 
distributed between 5 to 15 decibels, as per the following formula:

Here, Ps refers to the power of the effective signal, while Pn refers to the power of the noise.
Figure 7 illustrates three sets of test data, each comprising input data with added noise (a–c), reflectivity 

models generated by the neural network (d–f), and ground truth reflectivity models (g–i). The presence of 
Gaussian noise significantly obscures the effective reflection signals in seismic data, particularly making phase 
identification extremely challenging under higher noise levels. Despite the presence of noise, the reflectivity 
models generated by the neural network still accurately capture underground structural features to a certain 
extent, especially demonstrating more reliable performance at lower noise levels. This suggests that the proposed 

(10)SNR = 10log10
Ps

Pn

Figure 5.   Magnified comparison between (a) predicted result and (b) true reflectivity model. Black dashed-line 
rectangles indicate areas to be magnified, while black solid-line rectangles represent the magnified regions.

Table 1.   Comparison of evaluation metrics between test results and label data.

Comparative scope SSIM CC RMSE

Single 0.9954 0.9929 0.0024

Average 0.9831 0.9914 0.0189

Figure 6.   Comparison of imaging results. (a) Result of RTM. (b) Result of neural network. (c) Real reflectivity 
model.
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seismic imaging method exhibits a degree of noise tolerance and remains effective in revealing underground 
structural features across varying noise levels.

Discussion
The proposed deep learning model delineates a direct mapping from seismic recordings to subsurface reflectiv-
ity models, thereby circumventing the intermediate step of velocity inversion typically associated with inverse 
problems in seismic exploration. This approach directly addresses the fundamental objective of characterizing 
subsurface reflectivity, thereby potentially simplifying the seismic imaging process and facilitating a deeper 
understanding of subsurface structures with heightened precision and efficiency.

Looking forward, the trajectory of future improvements is poised towards fortifying seismic imaging meth-
odologies to accommodate heightened levels of noise within datasets. As technological advancements continue 
to push the boundaries of data acquisition, seismic datasets are increasingly susceptible to noise from various 
sources, including environmental factors and instrumentation limitations. Addressing this challenge is crucial 
for ensuring the reliability and accuracy of seismic imaging across diverse geological contexts.

However, practical application of the proposed method to real seismic datasets remains a challenge. Deploy-
ment in field scenarios may require utilizing extensive synthetic datasets for training. Subsequent work will focus 
on enhancing the model’s ability to generalize from synthetic to field data, representing a key direction for our 
future research efforts.

Furthermore, employing deep learning techniques for seismic data processing inevitably confronts inherent 
limitations and challenges associated with the technology. It necessitates ample training data for achieving opti-
mal performance, and predictions may exhibit unreliability in scenarios where training datasets are insufficient. 
Moreover, the interpretability of neural network models in terms of their learning and prediction mechanisms 
remains elusive.

Conclusion
In this study, we propose a seismic imaging approach based on deep learning. Specifically, we establish a neural 
network that combines Transformer and CNN architectures, augmented with the ASFF modules, enabling direct 
transformation of seismic data into underground reflectivity models. Numerical experiments demonstrate the 

Figure 7.   Three sets of test data, each including input data with noise (a–c), neural network-generated 
reflectivity models (d–f), and ground truth reflectivity models (g–i).
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efficacy of the approach in enhancing seismic imaging resolution. Additionally, the robustness of the model to 
noise is demonstrated.

Data availability
The datasets generated during and analysed during the current study are available from the corresponding author 
on reasonable request.
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