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A stochastic approach 
for co‑evolution process of virus 
and human immune system
Qura Tul Ain 1,2, Jiahao Shen 2, Peng Xu 2, Xiaoli Qiang 3 & Zheng Kou 2*

Infectious diseases have long been a shaping force in human history, necessitating a comprehensive 
understanding of their dynamics. This study introduces a co‑evolution model that integrates both 
epidemiological and evolutionary dynamics. Utilizing a system of differential equations, the model 
represents the interactions among susceptible, infected, and recovered populations for both 
ancestral and evolved viral strains. Methodologically rigorous, the model’s existence and uniqueness 
have been verified, and it accommodates both deterministic and stochastic cases. A myriad of 
graphical techniques have been employed to elucidate the model’s dynamics. Beyond its theoretical 
contributions, this model serves as a critical instrument for public health strategy, particularly 
predicting future outbreaks in scenarios where viral mutations compromise existing interventions.
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Infectious diseases have shaped human history, leading to profound societal and cultural impacts. As our under-
standing of epidemiology has evolved, so too has the complexity of the models we use to predict and understand 
disease dynamics. The interplay between pathogens and hosts is a continuous arms race; while pathogens mutate 
to become more virulent or avoid host immunity, hosts evolve to develop improved resistance or immunity 
against these pathogens. This cyclical nature of adaptation and counter-adaptation (Fig. 1) has been a crucial 
element in the evolutionary history of many species, including humans.

In recent years, with the rise of diseases caused by rapidly mutating viruses, there is a heightened interest in 
understanding not just the dynamics of disease spread, but also how evolution plays a role in these dynamics. 
Traditional epidemiological models, such as the SIR (Susceptible-Infectious-Recovered) model, focus primarily 
on disease transmission without accounting for evolutionary changes in the virus or the host. In the landscape 
of infectious disease modeling, several pivotal works have laid the groundwork for comprehensive understand-
ing. Authors  in1 discussed a mathematical model accounting for the dynamics of multiple SARS-CoV-2 strains 
focused on the impact of variants on pandemic trajectories and vaccine response. The study emphasizes the 
utility of the model in predicting variant rises and informing vaccination strategies.2 took a generic approach to 
mathematical modeling of multi-strain pandemics,  while3 presented a model that focused on leveraging multiple 
strains with mutations in the context of COVID-19. Contributions  from4 incorporated vaccination dynamics 
into a two-strain model of COVID-19, whereas the work  in5 emphasized the diverse outcomes among COVID-
19 patients. Study  in6 discussed the impact of reproduction numbers on multiwave spreading dynamics,  while7 
focused on the interplay between innate and adaptive immune responses.8 analyzed the host immunological 
response to adenovirus-based COVID-19 vaccines. Evidences  from9 brought forth a model assessing the level 
of cross-immunity between influenza strains.

A research develops a two-strain COVID-19 transmission model addressing the emergence of variants with 
different transmission dynamics and analyzing the impact of vaccination on one of the strains. It provides a theo-
retical framework with sufficient conditions for equilibrium stability, calculating the basic reproduction numbers 
and exploring scenarios for dominant strain  establishment10. The competition between different SARS-CoV-2 
variants in France using a mathematical model to estimate the impact of three variants on the spread of COVID-
19, employing data from Geodes and a particle swarm optimization algorithm to estimate the basic reproduction 
number can be seen  in11. A fractional model of two-strains covid disease was discussed  by12.
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Collectively, these references provide a rich tapestry of insights into the evolving dynamics of infectious 
diseases. However, to truly grasp the progression and potential future trajectories of such diseases, one must 
consider the evolutionary dynamics in tandem with epidemiological ones.

Motivation
Our study advances the understanding of multiple infection dynamics, building on significant previous research 
in disease modeling. We resonate with and expand upon the work of researchers like those cited  in13,14,  and15, 
who explored transmission dynamics and sensitivity analysis using fractal-fractional differential operators. Our 
methodology also draws  from16,17, who developed fractional models for diseases such as malaria and typhoid 
fever, underscoring the critical role of analyzing multiple pathogens in epidemiological studies and the impor-
tance of understanding their reproduction numbers.

Furthermore, we recognize the impact of stochastic components in modeling diseases, as highlighted  in18. The 
incorporation of time delays in stochastic epidemic models introduces complex system behaviors. The research 
 in19,20,  and21 demonstrates how mathematical and statistical approaches can be employed to tackle questions of 
stochasticity and stability in epidemic models. Additionally,22’s work on modeling COVID-19 with fractional 
order calculus emphasizes the effect of policy measures like isolation and vaccination on disease control, com-
plementing our discussions on the efficacy of public health interventions.

Li and colleagues’  contributions23,24,25 shed light on the dynamic behavior of epidemic models, especially 
regarding bifurcations and chaotic phenomena, offering a valuable backdrop to our findings on oscillatory 
behaviors near endemic equilibrium.

Contribution
This work introduces a co-evolution model that seeks to capture this intricate balace between evolving viruses and 
the evolving human immune response. This model, built upon differential equations, represents the interaction 
dynamics of susceptible, infected, and recovered populations with both the original and evolved virus strains. 
By integrating evolutionary considerations into traditional epidemiological models, we aim to provide a more 
nuanced and comprehensive understanding of disease dynamics in the face of viral mutations and changing 
host immunities.

Novelty
Stochastic modeling plays a crucial role in epidemiology for several reasons. It allows researchers to account for 
the inherent randomness and variability in disease transmission among individuals and communities, reflecting 
the real-world unpredictability of outbreaks. This is vital for accurately simulating the spread of diseases and 
assessing potential outcomes under different scenarios. Stochastic models help in estimating the probabilities of 
different epidemiological events, enabling public health officials to make informed decisions regarding interven-
tion strategies and resource allocation. Through stochastic modeling, epidemiologists can better understand the 
dynamics of infectious diseases, including the impact of factors like vaccination rates, population density, and 
social behaviors, thereby improving the effectiveness of disease control and prevention measures.

Beyond its theoretical significance, this model serves as a tool to guide public health interventions, and predict 
potential future outbreaks, especially in scenarios where rapid viral mutations might render existing treatments 
or vaccines less effective over time. In the subsequent sections, we will delve into the assumptions underlying 
the model, the mathematical formulations representing the co-evolution dynamics, and potential applications 
and implications of the findings derived from this model.

Figure 1.  Virus and immune system’s co-evolution process.
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Model explanation
The model captures the interplay between human immunity and viral evolution. As the virus spreads, the human 
immune response evolves, leading to a changing transmission rate for the virus. The model can be used to analyze 
the impact of various interventions.

with

• S̆1 and S̆2 represent two subpopulations of the host species that are susceptible to infection by the virus strains 
Ĭ1 and Ĭ2 , respectively.

• R̆ represents the recovered individuals.
• β1 and β2 are the transmission rates of the two virus strains
• r influences the rate at which the transmission rates ( β1 and β2 ) change in response to changes in the total 

number of infected individuals.
• The parameter r significantly influences the transmission rates β1 and β2 for the two virus strains. Specifi-

cally, the transmission rates are defined as β1 = β2 = β0 ×
(

1+ α × r × I ×
(

1− I
K

))

 , indicating that the 
value of r directly affects how the total number of infected individuals I influences β1 and β2 . An increase in 
r amplifies the effect of changes in I on the transmission rates, due to the term α × r × I ×

(

1− I
K

)

 . Thus, 
r acts as a modulator of the transmission rates’ sensitivity to the infected population size, playing a crucial 
role in the disease’s spread dynamics within the host population.

• The parameter α plays a crucial role in the model, acting as a factor within the feedback mechanism that 
influences the transmission rates β1 and β2 . Its primary function is to modulate the effect of the infected 
population size on the transmission rates, enabling the model to incorporate dynamic changes in transmis-
sion potential that occur as the prevalence of infection within the population changes. The model considers 
a moderate level of feedback, wherein increases in the infected population proportionally adjust the trans-
mission rates, but not to an extreme degree. This adjustment is critical for accurately modeling the spread 
of infectious diseases, as it reflects the complex interactions between host behavior, population density, and 
pathogen transmissibility that can affect the rate at which an infection spreads through a community.

• δ represents the death rate, µ is birth rate.
• ρ represents the rate at which recovered individuals lose immunity and move back into the susceptible cat-

egory.

This models a loss of immunity over time. This work took motivation from recent work on stochastic modeling 
and infectious diseases models as discussed  by26–32. The stochastic model is given by

The model includes several σ parameters representing variability and stochastic effects:

• σ1 : Represents the variability in the susceptible population S̆1 , which arise from fluctuating contact rates or 
changes in population behavior that affect exposure to the first virus strain.

• σ2 : Captures the randomness in the second susceptible population S̆2 , which is due to similar factors as σ1 , 
but with different underlying causes or magnitudes, given that S2 represent a different risk group.

• σ3 : Reflects the random fluctuations in the number of individuals infected with the first virus strain Ĭ1 , due 
to variations in the disease’s infectiousness, reporting rates, or response to treatment.

• σ4 : Pertains to the variability in the infection rate of the second virus strain Ĭ2 , which differ from σ3 as the 
new strain has distinct characteristics, that is, higher transmissibility.

(1)

dS̆1

dt
= µ− β1S̆1 Ĭ1 − β2S̆1 Ĭ2 + ρR̆ − δS̆1,

dS̆2

dt
= −β2S̆2 Ĭ2 − β1S̆2 Ĭ1 − δS̆2,

dĬ1

dt
= β1S̆2 Ĭ1 − γ Ĭ1 − σ Ĭ1 − δĬ1,

dĬ2

dt
= β2S̆1 Ĭ2 − γ Ĭ2 − σ Ĭ2 − δĬ2,

dR̆

dt
= γ Ĭ1 + γ Ĭ2 − ρR̆ − δR̆.

β1 = β2 = β0 ×
(

1+ α × r × I ×
(

1− I

K

))

.

(2)

dS̆1(t) =
[

µ− β1S̆1 Ĭ1 − β2S̆1 Ĭ2 + ρR̆ − δS̆1
]

dt + σ1S̆1(t)dD1(t),

dS̆2(t) =
[

−β2S̆2 Ĭ2 − β1S̆2 Ĭ1 − δS̆2
]

dt + σ2S̆2(t)dD2(t),

dĬ1(t) =
[

β1S̆2 Ĭ1 − γ Ĭ1 − σ Ĭ1 − δĬ1
]

dt + σ3 Ĭ1(t)dD3(t),

dĬ2(t) =
[

β2S̆1 Ĭ2 − γ Ĭ2 − σ Ĭ2 − δĬ2
]

dt + σ4 Ĭ2(t)dD4(t),

dR̆(t) =
[

γ Ĭ1 + γ Ĭ2 − ρR̆ − δR̆
]

dt + σ5R̆(t)dD5(t).
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• σ5 : Represents stochastic factors affecting the recovered population R̆ , such as differential rates of loss of 
immunity or the impact of interventions that are not consistent across the entire population.

Each σ parameter is paired with a corresponding Brownian motion term, which mathematically represents the 
random ’noise’ contributing to the fluctuations in each compartment over time. By including these stochastic 
terms, the model becomes a set of stochastic differential equations (SDEs), providing a more nuanced and realistic 
simulation of the epidemiological process, which can now capture both the average trends and the variability 
around those averages. The following assumptions underlie the model:

• Every parameter within the system is a nonnegative, positive real number.
• The transmission rate of the virus can change based on the proportion of the infected population.
• Immunity to one strain does not confer immunity to the evolved strain.

Qualitative analysis

Definition 1 A system of differential equations is said to be Lipschitz continuous with respect to a variable x if 
there exists a constant L such that for any state variables x and y in a domain D , then

Lemma 1 Consider two solutions, (S̆1, S̆2, Ĭ1, Ĭ2, R̃) and (S̆1
′
, S̆2

′
, Ĭ1

′
, Ĭ2

′
, R̃′) , of the stochastic system. Then, for each 

equation in the system, the difference between the rates of change for the two solutions is bounded by a constant 
times the difference between the solutions.

Proof Taking equation for S̆1,

We can set,

as an upper bound.
Repeating this process for the other equations, we can identify similar constants for each one. The largest of 

these constants then serves as the Lipschitz constant L for the whole system.   �

Definition 2 A system is considered bounded if, for all solutions x(t) of the system and some positive constant 
M , the inequality ||x(t)|| ≤ M holds for all t.

Theorem 1 The stochastic system, given appropriate initial conditions, exhibits bounded behavior.

Proof Consider the first equation for S̆1:

Given that populations cannot be negative, the loss terms ( β1S̆1 Ĭ1 , β2S̆1 Ĭ2 , δS̆1 ) ensure that S̆1 does not grow 
unbounded. Therefore, the deterministic part of the system is bounded.   �

Theorem 2 Given boundedness and Lipschitz continuity, there exists a unique solution to the stochastic model for 
all time.

Proof For a system of stochastic differential equations (SDEs) of the form:

where dW(t) represents the Wiener process, the existence and uniqueness of its solution is ensured if:

||f (x)− f (y)|| ≤ L||x − y||.

∣

∣

∣

∣

(

µ− β1S̆1 Ĭ1 − β2S̆1 Ĭ2 + ρR̃ − δS̆1

)

−
(

µ− β1S̆1
′
Ĭ1
′ − β2S̆1

′
Ĭ2
′ + ρR̃′ − δS̆1

′
)∣

∣

∣

∣

,

≤
∣

∣

∣

∣

β1(S̆1 Ĭ1 − S̆1
′
Ĭ1
′
)+ β2(S̆1 Ĭ2 − S̆1

′
Ĭ2
′
)+ ρ(R̃ − R̃′)+ δ(S̆1 − S̆1

′
)

∣

∣

∣

∣

,

≤ β1(|S̆1 − S̆1
′| · |Ĭ1| + |S̆1| · |Ĭ1 − Ĭ1

′|)
+ β2(|S̆1 − S̆1

′| · |Ĭ2| + |S̆1| · |Ĭ2 − Ĭ2
′|)

+ ρ|R̃ − R̃′| + δ|S̆1 − S̆1
′|.

L = β1
(

|Ĭ1| + |S̆1|
)

+ β2
(

|Ĭ2| + |S̆1|
)

+ ρ + δ.

dS1

dt
= µ− β1S̆1 Ĭ1 − β2S̆1 Ĭ2 + ρR̃ − δS̆1 + ξ1(t).

dX(t) = f (X(t))dt + g(X(t))dW(t).
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• The coefficients f  and g are bounded.
• The system is Lipschitz continuous.

We’ve shown that the system is Lipschitz continuous and bounded. Hence, we conclude that there exists a unique 
solution to the SDEs of our stochastic model for all time.   �

Equilibrium analysis
The variational matrix is obtained by linearizing the system of differential equations around the equilibrium. If we 
denote the equilibria as ( ˘S1e , ˘S2e , ˘I1e , ˘I2e , R̃e) , the variational matrix V at this equilibrium is given by the Jacobian:

E1(0, 0, 0, 0, 0)
Given the variational matrix at the equilibrium E1(0, 0, 0, 0) , we have ˘I1e = ˘I2e = ˘S1e = ˘S2e = R̆e = 0.

The eigenvalues of the variational matrix V at the equilibrium point E1(0, 0, 0, 0, 0) are −δ , 0 , −γ − σ − δ
,−γ − σ − δ,−δ . Therefore, the equilibrium E1(0, 0, 0, 0, 0) is semi-stable based on the eigenvalues of the vari-
ational matrix.

Theorem 3 The stability point E1(0, 0, 0, 0, 0) exhibits local asymptotic stability provided that δ > 0 , γ + σ + δ > 0.

E2(1, 0, 0, 0, 0)
Given the equilibrium E1(1, 0, 0, 0, 0) where ˘I1e = 1 , ˘I2e = ˘S1e = ˘S2e = R̆e = 0 , substituting in the values for the 
equilibrium, we get,

The eigenvalues are −β1 − δ,0,−γ − σ − δ,−γ − σ − δ,−δ.

Theorem  4 The stability point E2(1, 0, 0, 0, 0) exhibits local asymptotic stability provided that β1 + δ > 0 , 
γ + σ + δ > 0 , δ > 0.

The remaining part of equilibrium analysis can be found in  Appendix section 12.1.
Endemic equilibrium
The asymptotic solution relies heavily on the basic reproduction number R0 of the disease, which is the expected 
number of cases directly generated by one case in a population where all individuals are susceptible to  infection33. 
The presence of an endemic equilibrium depends on various factors, including the basic reproduction number 
R0 . The Jacobian matrix J of the system at the DFE (disease free equilibrium) is given by:

The next-generation matrix, K , is given by the product of two matrices, F and V−1 , For our system, the matrix F is

The matrix V  is

V =













−β1 ˘I1e − β2 ˘I2e − δ − β1 ˘S1e − β2 ˘S1e µ− β1 ˘S1e µ− β2 ˘S1e ρ

−β2 ˘I2e − β1 ˘I1e − β2 ˘S2e − β1 ˘S2e β1 ˘S2e β2 ˘S2e 0

β1 ˘S2e β1 ˘I1e − γ − σ − δ 0 0

β2 ˘S1e β2 ˘I2e 0 − γ − σ − δ 0
γ γ − ρ − ρ − δ













.

V =











−δ 0 µ µ ρ
0 0 0 0 0
0 0 − γ − σ − δ 0 0
0 0 0 − γ − σ − δ 0
γ γ − ρ − ρ − δ











.

VE1 =











−β1 − δ 0 µ µ ρ
−β1 0 0 0 0
0 β1 − γ − σ − δ 0 0
0 0 0 − γ − σ − δ 0
γ γ − ρ − ρ − δ











.

J =











µ− δ 0 − β1S̆1 − β2S̆1 ρ

0 − δ − β2S̆2 − β1S̆2 0
0 0 − γ − σ − δ 0 0
0 0 0 − γ − σ − δ 0
0 0 γ γ − ρ − δ











.

F =
[

β1S̆2 0

0 β2S̆1

]

.



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10337  | https://doi.org/10.1038/s41598-024-60911-z

www.nature.com/scientificreports/

The inverse is

The next-generation matrix K is

Thus, R0 is the maximum of the two diagonal entries.

For R01 for Ĭ1 is β2 S̆1
γ+σ+δ

 , For R02 for Ĭ2 is β1 S̆2
γ+σ+δ

 . To determine the endemic equilibrium, we will evaluate the fol-
lowing basic reproduction numbers,

• RI1 represents the mean count of recent infection cases attributed to I1.
• RI2 symbolizes the average count of new infection cases ascribed to I2.

The system’s critical parameter can be expressed as,

Beyond the equilibria highlighted earlier, the model’s endemic equilibrium is realized when,

Theorem 5 There exists a unique endemic equilibrium whenever R0 > 1.

Proof can be found in Appendix section 12.2.

Stochastic analysis
Suppose a probability domain represented as (�,G,Q) containing a Wiener process (or Brownian motion) rep-
resented as W =

{

Wπ ,G
W
π ,π > 0

}

 . The associated filtration is given by (Gπ ,π > 0) . Let

as the governing stochastic differential equation. The function v(π ,Z(π)) maps from [0,∞)× Re to Re . 
y(π ,Z(π)) is considered to be an p× q matrix. In this scenario, both y and v satisfy Lipschitz conditions.

Let’s introduce K as the differential operator for the system described in equation 5 ,

Applying operator K on a function � , where � ∈ C2,1(Re × [s0,∞);R+) , we obtain,

Lemma 2 34 Suppose v ∈ D[[0,∞] ×�, (0,∞)] . Our aim is to determine κ0 and κ > 0 such that,

Given t ≥ 0 and V ∈ (D[[0,∞] ×�, (0,∞)]) satisfying limt→∞
V(t)
t = 0 a.s., we obtain,

V =
[

γ + σ + δ 0
0 γ + σ + δ

]

.

V−1 =
[

1
γ+σ+δ

0

0 1
γ+σ+δ

]

.

K = F × V−1 =





β1 S̆2
γ+σ+δ

0

0 β2 S̆1
γ+σ+δ



 .

R0 = max

(

β1S̆2

γ + σ + δ
,

β2S̆1

γ + σ + δ

)

.

(3)R0 = max
(

RI1 ,RI2

)

.

(4)min
(

RI1 ,RI2

)

> 1.

(5)dZ(π) = y(π ,Z(π))dW(π)+ v(π ,Z(π))dπ ,

K =
e

∑

k=1

vk(π)
∂

∂wk
+ ∂

∂π
+ 1

2

e
∑

k,l∗=1

[

yT (w,π)y(w,π)
]

kl

∂2

∂wk∂wl∗
.

(6)K�(w,π) = �π(w,π)+�w(w,π)v(w,π)+
1

2
trace

[

f T (w,π)y(w,π)
]

.

log v(t) ≥ κt − κ0

∫ t

0
v(s)ds+ V(t) a.s..

lim
t→∞

�v(t)� ≥ κ

κ0
a.s..
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Global existence

Theorem 6 The system has a bounded solution.
For the stochastic system with S̆1, S̆2, Ĭ1, Ĭ2,R , we define � as,

where Xi is the corresponding compartment. It remains to prove that � adheres to the a.s., invariance principle.
Proof can be found in   Appendix section 12.3.

Theorem 7 � adheres to the almost sure invariance principle for model (1).

Proof can be found in Appendix section 12.4.

Theorem 8 For 
(

S̆1(0), S̆2(0), Ĭ1(0), Ĭ2(0), R̆(0)
)

∈ � , the system (1) has unique and positive solution almost surely.

Proof can be found in Appendix section 12.5.

Extinction

Lemma 3 Consider (S̆1(t), S̆2(t), Ĭ1((t), Ĭ2(t), R̆(t)) as the solutions of the model (1) provided initial values 
(S̆1(0), S̆2(0), Ĭ1(0), Ĭ2(0), R̆(0)) ∈ � , then

We take

Theorem 9 Let S̆1(t), S̆2(t), Ĭ1(t), Ĭ2(t), R̆(t) be the solution of the model with initial values

(S̆1(0), S̆2(0), Ĭ1(0), Ĭ2(0), R̆(0)) ∈ � . The disease go extinct almost surely, if Rs
1 < 1 .

and

Proof See appendix section.

� =
{

(S̆1(t), S̆2(t), Ĭ1(t), Ĭ2(t),R(t)) ∈ R5
+

∣

∣

∣

∣

5
∑

i=1

Xi(t) ≤
ν

ǫ

}

,

lim
t→∞

S̆1(t)+ S̆2(t)+ Ĭ1(t)+ Ĭ2(t)+ R̆(t)

t
= 0 a.s,

lim
t→∞

∫ t

0

S̆1(r)dD1(r)

t
= 0 a.s,

lim
t→∞

∫ t

0

S̆2(r)dD2(r)

t
= 0 a.s,

lim
t→∞

∫ t

0

Ĭ1(r)dD3(r)

t
= 0 a.s,

lim
t→∞

∫ t

0

Ĭ2(r)dD4(r)

t
= 0 a.s.

lim
t→∞

∫ t

0

R̆(r)dD4(r)

t
= 0 a.s.

R
s
1 = R1 −

1

2

̺23

(b1)
,

R
s
2 = R2 −

1

2

̺34

(b2)
.

lim
t→+∞

Ĭ1(t) = 0,

lim
t→+∞

Ĭ2(t) = 0.
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Analysis of the population dynamics
The following values in Table 1 has been used for numerical simulation. These values are based on theoretical 
studies and empirical  findings35–38

Time series
The Euler-Maruyama method for a stochastic differential equation (SDE) of the form

is given by the following recursive formula,

where a(Xt , t) is the drift coefficient, b(Xt , t) is the diffusion coefficient, and �Wn is the Wiener process incre-
ment approximated by 

√
�t · N(0, 1) . The Euler-Maruyama approximation of the given stochastic model is,

• The susceptible populations, represented by S̆1 and S̆2 , manifest a declining trend in Fig. 3. This reduction is 
indicative of the individuals transitioning to the infected categories, depleting the pool of individuals that 
can potentially be infected.

• The infected categories, represented by Ĭ1 and Ĭ2 , show a typical infectious disease trajectory, an initial rise 
as the disease spreads through the susceptible population, a peak representing the maximum number of 
concurrent infections, and a subsequent decline as individuals recover or die.

• The R̆ category, which denotes recovered individuals, exhibits an increasing trend, reflecting the accumula-
tion of individuals who have gained immunity post-infection.

In Fig. 2, the deterministic lines depict an expected trajectory of populations, revealing trends of decline in 
susceptible classes, a peak in infections, and a rise in recoveries. In contrast, the stochastic lines mirror these 
general trends but with evident fluctuations, representing real-world variability due to unpredictable factors. 
Specifically, while susceptibles for both ancestral and evolved strains decrease over time, the evolved strain 
depletes the susceptible pool more rapidly. The number of infections shows varied dynamics, with the ancestral 
strain presenting a rapid rise and decline and the evolved strain maintaining a more consistent infection rate.

The recovered population steadily increases over time. The disparities between deterministic and stochastic 
representations underscore the importance of factoring in real-world randomness alongside average predictions 
in infectious disease modeling.

dXt = a(Xt , t)dt + b(Xt , t)dWt ,

Xn+1 = Xn + a(Xn, tn)�t + b(Xn, tn)�Wn,
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Table 1.  Initial and parametric values.

Parameter Definition Value Source

S̆10
Initial Susceptible Population 1 0.475 Estimated

S̆20
Initial Susceptible Population 2 0.475 Estimated

Ĭ10
Initial Infected Population 1 0.01 Estimated

Ĭ20
Initial Infected Population 2 0.05 Estimated

R̆0 Initial Recovered Population 0.0 Estimated

β0 Baseline Transmission Rate 0.5 Estimated

α Modulation Factor for Transmission Rate 0.1 Estimated

r Modulation Rate for β1 and β2 1.0 Estimated

K Carrying Capacity for Infected Population 1.0 Estimated

γ Recovery Rate 0.1 Estimated

µ Birth Rate 0.02 Estimated

δ Death Rate 0.01 Estimated

σ Waning Immunity 0.01 Estimated

ρ Reinfection rate 0.005 Estimated
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Ĭ1 is less virulent or less successful at sustaining its spread compared to Ĭ2 given that Ĭ1 dies out, while Ĭ2 reaches 
a steady state. S̆1 and S̆2 both experience significant drops, but S̆1 has a slight recovery, showing resistance in the 
population against Ĭ1 . The R̆ compartment’s steady rise and plateau suggest that recovery is the primary outcome 
for infected individuals, which is a positive sign in terms of public health.

Figure 2.  Stochastic VS deterministic time series.
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Real data
In Fig. 3, real data has been utilized to calibrate the model parameters for the alpha and beta variants of the 
SARS-CoV-2 virus given by Table 2, drawing on extensive datasets described in contemporary  literature11,35,39–43. 
We have employed the nonlinear least square method for the estimation process. The Ordinary Least Square 
(OLS) solution was implemented to minimize the error terms as delineated in Eq. (7), and the related relative 
error was employed to assess the goodness of fit. Figure 3 illustrates the infected population as predicted by our 
proposed system with the real represented by stars.

Table 2.  Adjusted parametric values.

Parameter Value Source

S̆10
0.475 Estimated

S̆20
0.475 Estimated

Ĭ10
0.01 Estimated

Ĭ20
0.03 Estimated

R̆0 0.0 43

β0 0.6 40

α 0.2 40

r 1.2 Estimated

K 1.2 Estimated

γ 0.08 Estimated

µ 0.02 Estimated

δ 0.01 36,39

σ 0.02 Estimated

ρ 0.01 36,39

Figure 3.  Real data analysis of COVID-19.
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Here the notion Ii is the reported cumulative infected cases and Îi is the cumulative infected cases obtained from 
simulating the model.

Phase plane plot
The trajectories in Fig. 4 reveal the cyclical nature of the interactions between susceptibility and infection, illu-
minating the ebb and flow of the epidemic. As susceptibles are depleted, the number of new infections decreases, 
leading to a decline in the infected populations. While Ĭ1 have a cyclical pattern with S̆1 , indicating periods of 
outbreak and control, Ĭ2 shows a more direct path to depletion of susceptibles, suggesting a more virulent or 
transmissible strain. This underlines the importance of strain-specific public health interventions.

Time series with moving average
While the raw data for Ĭ1 and Ĭ2 captures the actual number of infections, the moving average smoothens out 
short-term fluctuations, thereby highlighting broader trends. Both the actual infection data and the moving aver-
age exhibit a prominent peak, representing the height of the epidemic before a decline sets in. This underscores 
the transient nature of outbreaks and the eventual return to equilibrium as shown by Fig. 5.

Quiver plot
The quiver plot in Fig. 6 suggests complex interactions between the Ĭ1 and Ĭ2 strains. The arrows elucidate the 
direction and magnitude of change, providing a snapshot of the evolution in infection rates. The looping trajec-
tory show oscillations in the infected populations, suggesting periodic outbreaks or potential for repeated waves 
of infections. This cyclic pattern arises from various factors, such as loss of immunity, seasonal variations, or 
reintroduction of infections.

Population distribution
This bar graph gives an overview of the distribution of different populations at a specific time, t = 100 in Fig. 7. 
By this time, a significant portion of the initial susceptible population have transitioned to the recovered cat-
egory. The number of infected individuals ( Ĭ1 and Ĭ2 ) is notably less than the susceptible and recovered groups, 
indicating that the epidemic is waning.

(7)min

{

∑n
i=1

(

Ii − Îi

)2

∑n
i=1 I

2
i

}

.

Figure 4.  Phase plane plot.
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Conclusion
The introduced epidemiological model represents a significant enhancement in the mathematical study of infec-
tious diseases, especially those with multiple circulating strains such as SARS-CoV-2. Authenticated by real data 
analysis, the model’s equations provide a precise depiction of the disease dynamics, offering authenticity and 
bolstering its credibility within the scientific community.

The analysis of Ĭ1 and Ĭ2 through this model showcases a comprehensive mathematical characterization of 
the spread and potential control of multiple viral strains. The incorporation of empirical data not only under-
scores the model’s accuracy but also fortifies its predictive capacity regarding disease progression and potential 

Figure 5.  Time series with moving average.

Figure 6.  Quiver plot.
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extinction scenarios. The model’s robustness is affirmed through rigorous exploration of disease extinction con-
ditions, laying a foundation for understanding the critical thresholds that govern the eradication of the disease.

The research  by10 models COVID-19’s transmission with a focus on variant dynamics and vaccine impact, 
 while11 assesses the influence of variants in France using optimization for parameter estimation. The study 
 in12 introduces a fractional model for two COVID-19 strains,  and1 explores the impact of multiple strains on 
pandemic trajectories and vaccine efficacy. These studies contribute valuable insights into pandemic modeling; 
however, our work extends these efforts by offering a more intricate examination of disease dynamics, specially;

• Integrates a wider range of epidemiological and evolutionary dynamics.
• Provides a deeper analytical approach including a comprehensive equilibrium analysis, and disease extinction 

conditions.
• Offers a more detailed exploration of both deterministic and stochastic scenarios.
• Utilizes advanced graphical techniques for a clearer understanding of disease progression.
• Addresses practical applications for real-world outbreaks, especially in the context of evolving viral strains 

impacting public health measures.

Remarks and future recommendations
Our in-depth examination of the co-evolution model of host and human immune response highlights the intri-
cate dynamics between infectious strains Ĭ1 and Ĭ2 . The stark differences in the trajectories of these strains 
underscore the complex challenges posed in managing multi-strain infectious diseases. While our model offers a 
comprehensive understanding, the continually evolving nature of infectious diseases calls for adaptive strategies 
and persistent refinement in modeling approaches.

For future studies, it is recommended to incorporate factors like varying mutation rates, potential cross-
immunity effects, and the impact of external interventions such as vaccination campaigns. Additionally, inte-
grating real-world data can augment the model’s predictive accuracy. As global communities grapple with the 
multifaceted challenges posed by infectious diseases, models such as ours serve as foundational tools, and their 
continuous refinement remains pivotal for informed public health decision-making.

Data availibility
All data generated or analysed during this study are included in this published article.
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