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An effective method for small 
objects detection based 
on MDFFAM and LKSPP
Zhoutian Xu , Yadong Xu * & Manyi Wang 

Object detection is one of the research hotspots in computer vision. However, most existing object 
detectors struggle with the identification of small targets. Therefore, the paper proposes two 
modules: the MDFFAM (Multi-Directional Feature Fusion Attention Mechanism) and the LKSPP (Large 
Kernel Spatial Pyramid Pooling), to enhance the detector’s effectiveness in identifying subtle faults on 
the surface of mechanical equipment. LKSPP aims to expand the receptive field to capture high-level 
semantic features through large kernels. Meanwhile, the MDFFAM allows the network to efficiently 
utilize spatial location information and adaptively recognize detection priorities. In the detection 
task, MDFFAM effectively captures feature information in three spatial directions: width, height, and 
channel, with the location information fully utilized to establish stable long-range dependencies. 
Moreover, LKSPP boasts a larger receptive field and imposes less computational burden compared 
to the SPPCSPC by YOLOv7. Finally, experiments demonstrate that the proposed module effectively 
improves the detection accuracy for small targets, surpassing the state-of-the-art object detector, 
YOLOv7. Remarkably, MDFFAM incurs almost negligible computational overhead.
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Nowadays, fault diagnosis systems are indispensable components of modern industry. Thanks to the develop-
ment of AI, intelligent monitoring and real-time decision-making are poised to be major features of future fault 
diagnosis systems. While most existing mechanical fault diagnoses are based on sensor signals, uncertainties 
such as complex operating conditions, huge diagnostic systems, and human errors in data processing make it 
difficult to make real-time decisions through sensor-transmitted fault information. Object detection technol-
ogy for monitoring key mechanical components can not only reduce the reliance on sensors and simplify the 
structure of the diagnostic system but also greatly improve the monitoring efficiency and mitigate potential 
issues caused by human errors.

Defect detection differs from tasks like pedestrian detection and face recognition tasks. Firstly, the difference 
lies in the feature size; defects on mechanical surfaces are generally subtle and complex, such as fine cracks and 
densely distributed pitting. Even with a sufficient sample number, it is difficult for the network to fully learn the 
local information of defects. Secondly, the high similarity between defect types, such as pitting and corrosion, 
can easily trigger false alarms from the detector. Therefore, it remains an extremely challenging task to improve 
the recognition accuracy of defect detection.

The mainstream real-time object detectors are divided into two classes, namely the YOLO series1–6 and the 
FCOS7,8 series. It is well known that the detection effectiveness of FCOS decreases dramatically when the number 
of detected targets increases and the size is small. From the success of YOLOv35, YOLOv42, and now YOLOv79, 
the YOLO series real-time object detector has become the benchmark detection algorithm for computer vision 
tasks. Nevertheless, the overall framework of most detectors uses small kernels. Although the network can be 
deepened by continuously stacking the number of layers, this will undoubtedly increase the complexity of the 
network, and the detection area due to the small receptive field is too small, which can easily trigger global 
information loss and reduce the recognition rate of the detector. Current researches on small object detection 
focus on feature fusion10,11 and feature enhancement12, ignoring the essential location information. Most fusion 
methods simply connect features at different stages, which tend to add redundant information and fail to establish 
solid long-range dependencies. Other vision-based approaches are exposed to the following issues: simple clas-
sification of defects13–15, insufficient use of the positional information in the features16,17 and inadequate atten-
tion to high-level semantic features. As a consequence, in the context of the great fire of attention mechanism, 
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the paper explores the inherent potential of large kernels and tries to incorporate the attention mechanism in 
the detector structure, hoping to improve the performance of the detector for small objects by integrating the 
advantages of both.

The impact of ViTs18 (Vision Transformers), which borrows transformer19 from the NLP (Natural Language 
Processing) domain, on computer vision tasks has been tremendous, and many scholars believe that this is 
mainly attributed to the self-attention mechanism in transformer20–23. In vision tasks, MHSA (Multi-Head Self-
Attention) divides the input images into multiple patches and takes parallel computation, meaning the data 
has a global receptive field for each layer after its processing. The kernels in CNNs24,25 (Convolutional Neural 
Networks) are small, and the convolutional layer with kernel 3 × 3 is used as the main component of the model 
for its few parameters. At the same time, stacking the small kernels can enhance the nonlinear representation of 
the model. Despite the common use of small kernels, the small receptive field caused by small kernels makes the 
detection area of the model too small to obtain rich global information, which also reduces the generalization 
ability of the model. Ding X26 innovatively uses 31 × 31 super-large kernels in traditional convolutional neural 
networks and achieves 87.8% accuracy on ImageNet. Liu Z27 frontloads the large 7 × 7 depthwise conv in the 
ConvNeXt module to obtain a rich global receptive field. The large window employed by swin transformer28 in the 
attention mechanism can also be seen as a variant of the large receptive field. Han Q29 replaces the MHSA in the 
swin transformer with 7 × 7 depthwise conv and obtains a comparable performance with the original structure. 
ConvMixer30 uses a 9 × 9 conv to replace the mixing step in ViTs and outperformed ViTs in terms of performance.

The simple yet effective paradigm of large kernel design can significantly improve model performance, derived 
from reconsideration of the structure itself. The exploration of a potential connection between the large kernel 
and the attention mechanism also presents a promising research direction. It should be noted that the attention 
mechanism is different from the design paradigm of the large kernel. While the attention mechanism is based on 
the up-down connection between the input tensors and employs a weighted average operation to dynamically 
calculate attention weights for each pixel, it facilitates the flexibility of the module to focus on different regions 
and capture more effective information features. Commonly used attention mechanisms are SENet31, CBAM32, 
and CA33. Among them, SENet and CBAM employ the attention mechanism as an expansion mechanism of 
the convolution module. Conversely, SAN34 and BoTNet35 believe the attention module can replace the tradi-
tional convolution. On the other hand, the attention mechanism imposes a substantial computational overhead 
compared to traditional convolution, often leading to computational bottlenecks. AA-ResNet36 and Container37 
integrate the attention mechanism and convolution into a unified module, but the architecture is not conducive 
to the design of separate paths for each module. SCNet38, NLNet39, and GSoP-Net40, which utilize non-local 
self-attention networks to capture different types of spatial features, tend to overlook the resource-intensive 
computational burden of the self-attention mechanism. Therefore, existing studies mainly treat the attention 
mechanism as a separate part or expansion module and fail to fully utilize the advantages of both the large kernel 
and the attention mechanism.

To solve the limitations observed in the aforementioned works, this paper introduces an attention mechanism 
and a large kernel module in the object detector to enhance the model performance. Large kernels directly aug-
ment the effective receptive field while partially avoiding the optimization problem caused by increasing model 
depth. It is widely recognized that large kernels are susceptible to transition smoothing, and the parameters 
and computation of large kernels are significantly higher than those of smaller counterparts, which potentially 
leads to gradient explosion. To maximize the effective use of large kernels, the paper proposes LKSPP (Large 
Kernel Spatial Pyramid Pooling) and summarizes four design principles: (1) introduce reverse bottlenecks, (2) 
implement front large kernels, (3) establish serial connections, and (4) emphasize the importance of shortcut. 
In addition, since large kernels struggle to account for local features, they are coupled with small convolutional 
layers to enhance the model’s capacity to capture features at a local scale.

Furthermore, the paper proposes a new attention mechanism, namely MDFFAM (Multi-Directional Feature 
Fusion Attention Mechanism). To avoid the loss of location information induced by 2D global pooling, channel 
attention is decomposed into three spatially oriented feature codes for the efficient convergence of spatial loca-
tion information into the attention map. Specifically, 3D global pooling layers are employed to break the input 
into three feature-aware maps with different spatial directions (height, width, and channel), each aggregating 
the input features in its corresponding direction. The resulting feature maps with location-specific information 
are then encoded into three attention maps. These maps undergo convolution and pooling along their respec-
tive directions to further capture the directional feature information. Each feature map independently captures 
long-range dependencies within the input feature maps along its corresponding direction.

MDFFAM (multi‑directional feature fusion attention mechanism)
Multi‑directional information embedding
In the channel attention mechanism, global pooling is commonly used to encode spatial information. How-
ever, this approach tends to pass global spatial information into the channel information, making it difficult 
to consistently provide the positional information necessary to capture the spatial structure. MDFFAM uses 
precise positional information to encode features along the three spatial directions: channel, height, and width. 
Assuming the input is denoted as X ∈ R

C×H×W , the features along the three spatial directions are encoded using 
three-dimensional adaptive pooling layers with pooling kernels of (C, 1, 1), (1, H, 1), and (1, 1, W), respectively. 
Specifically, in the width and height directions, where the number of channels is 1, the resulting output can be 
formulated as (Fig. 1):
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where yhc=1(h) is the output at height h, ywc=1(w) is the output at width w. The convolutional layer with a fixed 
kernel size provides the input X directly; hence, it can be considered a collection of local descriptors. Similarly, 
the result in the C × 1 × 1 channel direction can be expressed as:

The above three formulas enable the decomposition of input X into three feature encodings along different 
spatial directions, forming a set of spatial direction-sensitive quantities and aggregating feature information along 
C, H, and W spatial directions. Compared with the SE block that generates individual feature vector, MDFFAM 
retains precise location information and establishes more robust long-range dependencies.

Attention generation
In the second step, features are captured along the three spatial directions and generate multi-directional atten-
tion. The details are as follows: the three spatial directional features derived from Eqs. (1), (2), and (3) are suc-
cessively convolved. After applying the Sigmoid activation function, the feature aggregation maps gh , gw , and 
gc serve as the attention weights for the different spatial directions, expressed as:

where Conv () is a convolutional layer with a 1 × 1 kernel and output channel c, δ() is the Sigmoid activation 
function. gh ∈ R

C×H×1, gw ∈ R
C×1×W , and gc ∈ R

C×1×1 are the attention weights after feature extraction and 
mapping along the three directions of height, width, and channel.  Next, the three attention weights are fused 
to obtain f :

After conversion by Eq. (7), the feature attention weight f ∈ R
C×H×W for the three directions of fusion is 

obtained. BatchNorm  is subsequently applied to f  to prevent the network from overfitting while simplifying 
the structure. The normalization result is divided into feature maps with the same number of channels by two 
convolutional layers, i.e., f h ∈ R

C
r ×H×1 , f w ∈ R

C
r ×1×w . The parameter r is the reduction ratio used to control 

the module size. Then, the Sigmoid activation function is applied to each of the two feature maps and the results 
are concatenated.
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Figure 1.   Structure of the MDFFAM.
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where δ() is the Sigmoid activation function and G is the result after concatenation. A convolution operation on 
G adjusts the number of channels and adds it to the input X to obtain the final output of the entire mechanism:

MDFFAM distinguishes itself from channel attention by considering the importance of different channels 
and encoding the information in both high and wide spatial directions. This allows the detector to capture the 
features along different directions and effectively use the location information to establish solid long-range 
dependencies that assist the model in object identification.

LKSPP (large kernel spatial pyramid pooling)
In CNNs, the requirement of fixed input size is usually met by cropping and stretching, which can bring about 
image distortion and decreased detection accuracy of the model for images. SPP41 is an effective solution. Regard-
less of the input size, the output size after the SPP layer remains fixed, which reduces the risk of overfitting. The 
feature of multi-size feature fusion enhances network robustness. Figure 2 illustrates three spatial pyramid pool-
ing structures: SPP in Yolov542, SPPCSPC in Yolov7, and LKSPP. SPP, the simplest of the three, uses three max 
pooling layers to compute the input in parallel. The pooling layers are chosen with large kernels to expand the 
receptive field. Finally, the original input is stitched with the three pooled results using shortcuts. The SPPCSPC 
used in Yolov7 follows the same pooling layer design as SPP, with three pooling layers connected in parallel and 
kernel sizes of 5, 9, and 13. However, before the pooling operation, three convolutional layers are introduced, 
in which the convolutional kernel of 3 expands the receptive field, making the receptive field obtained by the 
pooling part of SPPCSPC larger than that of SPP. Moreover, stacking multiple CBG modules effectively increases 
the depth of the model.

Both SPP and SPPCSPC use large-kernel pooling layers to further illustrate the importance of large recep-
tive fields. However, they have limitations in their structures. SPP simply designs three large kernels in parallel, 
which increases the computational load in exchange for an extended receptive field and impacts inference speed. 
SPPCSPC adds many elements to SPP, such as convolutional layers, normalizations, and activation functions, to 
effectively increase the module depth and reduce the risk of overfitting. The convolutional layer before the pooling 
operation also helps the module to expand the receptive field. However, SPPCSPC does not take into account the 
design idea of reverse bottleneck, and the computational burden brought by simply using convolutional layers 
to expand the receptive field is relatively heavy.

To address the above issues, LKSPP is proposed, with the following design principles: (1) Introduce a reverse 
bottleneck: the hidden dimension of the module is larger than the input dimension. The design, similar to 

(10)G = Concat
(

δ

(

f h
)

, δ
(

f w
)

)

,

(11)Output = X + Conv(G).

Figure 2.   Schematic comparison of the proposed LKSPP with SPCSPC and SPP.
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Transformer’s MLP module and ConvNets, effectively reduces module computation. For instance, ConvNeXt 
uses reverse bottlenecks and gives the task of changing the channel dimension to 1 × 1 convolutions, which 
significantly cuts down network FLOPs while enhancing accuracy. In LKSPP, this reverse bottleneck design is 
reflected in the three convolutional layers after the pooling operation, all employing 1 × 1 kernels. This ensures 
parameter reduction while expanding channel numbers. All convolutional layers maintain the input feature 
map’s size and only modify the channel dimension. (2) Implement a front large kernel pooling layer. In the 
network, pooling layers with large kernels should steer clear of channel number increase calculation. Hence, 
the reverse bottleneck is positioned at the end of the module while the pooling part is front-loaded. Most of the 
computational tasks are still handled by 1 × 1 convolutional kernels with output channels halved compared to 
input channels. This design can further reduce the parameters and computations for the large kernel pooling 
layer. (3) Establish a serial connection method. Both SPP and SPPCSPC use parallelism to connect large kernel 
pooling layers. In this way, direct use of large kernels incurs a substantial computational burden, especially for 
a pooling layer with a 13 × 13 kernel size. In contrast, a serial approach is more reasonable compared to the 
design paradigm of direct use of multiple large kernels in parallel. SPPF42 sequentially connects three pooling 
layers with 5 × 5 kernels, resulting in a significant speedup with improved performance. LKSPP concatenates 
three pooling layers with large kernels in serial, each employing the same kernel of 7 × 7. Obviously, the pooling 
part of the LKSPP boasts the greatest receptive field. 4) Incorporate a global receptive field path. In the design 
principles for large kernels, shortcuts remain crucial. Similarly, LKSPP introduces a shortcut and adds a global 
receptive field to this shortcut path. Specifically, input feature maps for each channel are compressed to a 1 × 1 
size through an adaptive average pooling layer to facilitate global feature extraction for each channel. Then, a 1 × 1 
convolution layer captures information from the extracted global features in a deeper step. Finally, the convolved 
output restores the feature size of each channel from 1 × 1 to the original size through the Upsampling module. 
Given the four points, LKSPP experiences a significant reduction in parameters and computations compared to 
SPPCSPC with a larger receptive field.

Slim‑YOLO
To demonstrate the effectiveness of LKSPP and MDFFAM in improving the performance of the object detector, 
these two modules serve as the cores in constructing the model, which is referred to as Slim-YOLO. The overall 
framework of Slim-YOLO is depicted in Fig. 3 and comprises three major components: backbone, neck, and head.

Backbone: The role of the backbone part is mainly to extract features from the input. It is divided into 
five stages, each generating feature maps with varying sizes and channel dimensions. As the network deepens, 
the size of the feature map decreases and the channel dimension increases. Specifically, to obtain rich feature 
information early in the extraction process, several CBG modules are applied at each stage, i.e., Convolution 
Layer + BatchNorm + Activation Function Gelu. After CBG, two MDFFAM modules are introduced to enhance 
the utilization of location information. MDFFAM extracts features from the input along three spatial direc-
tions and fuses the resulting feature maps, which effectively boosts the robustness of the network. Given that 
the detector obtains rich local features in the initial part, four CBGs are used in stage 1, gradually decreasing to 
two in the last three stages. The backbone continues to pass the extracted feature maps to the neck for further 
feature fusion and reprocessing.

Neck: First, LKSPP performs a pooling operation on the feature maps extracted by the backbone. A serial large 
kernel pooling layer is designed to filter out redundant features, accurately retain critical information, reduce 
network parameters, and enhance the fused feature information. Then, two Upsampling modules are utilized to 
augment the resolution of the feature maps. The feature map (P4) generated in stage 4 is fused with the output 
feature map of the Upsampling module in stage 6. Similarly, the output feature map of the Upsampling module 
in stage 7 is fused with the feature map (P3) generated in stage 3. Stage 8 and stage 9 share a similar architecture, 
where a CBG module with 3 × 3 kernel is added before and after the Concat layer to enhance the ability to capture 
local features. MDFFAM makes full use of the spatial location information of the CBG-processed feature maps 
and establishes solid long-range dependencies between the modules.

Head: This part is mainly responsible for the localization and classification of the previously processed feature 
maps. The processing means usually focus on non-maximal value suppression methods and other versions, such 
as soft NMS43 and weighted NMS44. In the head, RepConv is used to expedite model inference during deploy-
ment. During training, RepConv consists of three branches: 1 × 1 convolution, 3 × 3 convolution, and BatchNorm 
layer. During deployment, the model fuses the convolutional layers and BatchNorm layers of the three RepConv 
branches with a reparameterization technique, equivalently into a VGG-like structure. RepConv is subsequently 
used behind each of the three feature maps in the final output to further accelerate the inference. Eventually, the 
detection head calculates the bounding box loss and classification loss for localization.

Experiment
Experiment preparation
This paper uses the NEU-DET45 surface defect detection dataset, which contains six typical mechanical surface 
defects, i.e., Rolled-in scale (Rs), Patches (Pa), Crazing (Cr), Pitted surface (Ps), Inclusion (In), and Scratches 
(Sc). Each defect type comprises 300 images, for a total of 1800 images. The dataset is divided into three subsets: 
a test set with 1134 images, a validation set with 126 images, and a training set with 540 images.

All experiments are based on the Pytorch environment and are executed from scratch without pre-trained 
models. In the comparative and ablation experiments, only the module is changed, with the parameter settings 
consistent with the baseline YOLOv7. All models undergo training for 200 epochs with an input image size of 
320 × 320.
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The hardware configuration for the experiments includes an Nvidia GeForce RTX3060 graphics card, an AMD 
Ryzen 7 5800H with a Radeon Graphics processor operating at speeds of up to 3.2 GHz, and 16 GB of RAM.

Baseline
To verify the superiority of the proposed module, the previous versions of the YOLO series and the most 
advanced object detector, YOLOR, are selected as baselines. Slim-YOLO is compared with baselines, and the 
experimental results are shown in Table 1.

Figure 3.   Structure of the Slim-YOLO.
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In comparison with the YOLO series, Slim-YOLO exhibits the highest mAP50 , with a 4.8% improvement over 
the least accuracy YOLOv4-CSP, and even a 0.5% enhancement over YOLOv7, the most advanced real-time 
object detector currently available. While Slim-YOLO demonstrates an absolute advantage in terms of accuracy, 
it does impose a slight computational burden on the hardware. First of all, the parameters of Slim-YOLO are 
only 34.6 M, which is 5.5% less than YOLOv7 and even 80.9% less than YOLOv3-SPP. Furthermore, in terms of 
computation, although YOLOv7 is undoubtedly the smallest in the YOLO series with only 103.2G, Slim-YOLO 
places a much smaller computational burden, 34.4% less than YOLOv7, which fully illustrates that Slim-YOLO’s 
core modules, MDFFAM and LKSPP, are lightweight.

Similarly, in comparison with the detectors of the YOLOR series, Slim-YOLO outperforms the top three 
indicators. In terms of the parameters, it is 6.4% fewer than YOLOR-P6, the lowest in the YOLOR series. In 
Flops, it is 4.4% less than YOLOR-P6 and even only one-third of YOLOR-CSP-X. Slim-YOLO also demonstrates 
superior accuracy performance, with an 11.1% improvement over YOLOR-CSP, which has the highest accuracy 
in the YOLOR series.

How to effectively improve the model accuracy and mitigate the increase in computational burden has been 
the key to measuring the effectiveness of the module. By comparing with the baselines, it is evident that Slim-
YOLO has successfully balanced both accuracy and computational cost, which further demonstrates that the 
core components of Slim-YOLO, MDFFAM, and LKSPP, markedly enhance model accuracy.

Figure 4 illustrates the P-R curves of YOLOv7, the most advanced of the YOLO series, and the proposed 
Slim-YOLO. In the category accuracy, Slim-YOLO exceeds YOLOv7 in four categories, with the most significant 
improvement seen in ‘Crazing’ at 8.8%. It is worth noting that the computational burden of Slim-YOLO is much 
smaller than that of YOLOv7. Slim-YOLO outperforms YOLOv7 in terms of detection accuracy for all categories, 
and its computational burden is notably lighter than that of YOLOv7.

To visualize the detection performance of Slim-YOLO on defect features, six defect types in the dataset are 
randomly selected for experiments. YOLOv7 and YOLOR-CSP, the top performers in the YOLO and YOLOR 
series, function as the baselines, and the results are shown in Fig. 5. The distribution complexity of each defect 
type varies, with ‘Rolled in scale’ and ‘Crazing’ exhibiting the highest distribution complexity, which leads to 
a lower detection accuracy for these two types of defects using the baselines. Slim-YOLO achieves the highest 

Table 1.   Slim-YOLO vs. baseline.

Models Param. (M) FLOPs (G) mAP50 (%)

Slim-YOLO 34.6 76.8 71.7

YOLOv3 61.5 154.6 70.4

YOLOv3-SPP5 62.6 155.5 69.4

YOLOv4-CSP6 52.5 119 66.9

YOLOv7 36.5 103.2 71.2

YOLOv5L42 46.1 107.7 69.9

YOLOR-CSP-X46 96.4 224.9 57.9

YOLOR-CSP46 52.5 119.0 60.6

YOLOR-D646 150.9 232.0 29.4

YOLOR-P646 36.8 80.2 24.6

YOLOR-W646 79.3 111.9 58.9

YOLOR-E646 115.1 168.9 38.1

Figure 4.   P-R curves of the Slim-YOLO and YOLOv7.
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detection accuracy in ‘Rolled in scale’, 28% and 13% higher than YOLOv7 and YOLOR-CSP, respectively. It also 
demonstrates the optimal detection accuracy in ‘Crazing’, a surface defect type highly similar to ‘Inclusion’. In 
‘Scratches’, Slim-YOLO displays slightly lower accuracy than YOLOv7, while YOLOR-CSP exhibits the lowest 
accuracy and overlapping detection frames. In the remaining three defects, Slim-YOLO outperforms the bench-
mark model and achieves 91% detection accuracy for ‘Patches’. These results demonstrate that Slim-YOLO, with 
the introduction of MDFFAM, is better equipped to capture the positional information of the features and realize 
the precise defect localization, with minimal overlap in detection frames. In addition, the LKSPP module can 

Figure 5.   Effectiveness of different detectors in detecting defects.
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effectively help the detector mine richer high-level semantics, capture sufficient global information, and take 
into account local information, even for the most difficult defect.

Figure 6 shows the accuracies of the detectors for each defect in the test set, with mAP@.50 as the criterion. 
Slim-YOLO exhibits the highest accuracy in ‘Crazing’ and ‘Rolled in scale’ defect detection, while YOLOR-D6 
performs the poorest. YOLOv7 and YOLOv5L perform the best for ‘Scratches’ and ‘Inclusion’, respectively. In the 
remaining  types of defect detection, Slim-YOLO maintains a high level of accuracy. In summary, Slim-YOLO 
holds an absolute advantage in the defect detection task.

Ablation study
In this paper, ablation experiments are conducted to demonstrate the significant performance enhancement 
of the object detector by the proposed module. The specific results are shown in Table 2. With YOLOv7 as the 
baseline, modules are incrementally added.

Firstly, in terms of the parameters and computation, adding MDFFAM to YOLOv7 only induces a marginal 
increase of 0.82% and 0.67%, respectively, more than the original. This indicates that MDFFAM is lightweight 
enough to disregard the computational overhead it introduces to the detector, while yielding a notable improve-
ment in the detector’s accuracy. In the individual module comparison, YOLOv7 with MDFFAM achieves the 
highest mAP50 , exhibiting a 1.8% enhancement over the baseline, along with 1.9% and 1.5% improvements in 
the accuracy metrics mAP50:75 and mAP50:95 , respectively. Next, testing LKSPP, it is important to note that only 
the SPPCSPC in YOLOv7 is replaced with LKSPP, while the remainder of the architecture remains unchanged. 
It is found that the parameters are reduced by 13.7% compared to the baseline. This fully illustrates that the 
proposed large kernel design principle can maximize the reduction of the parameters and computation. In addi-
tion, a series of large kernels in the design improves the effective receptive field of the module and captures more 
comprehensive features than the paradigm of directly paralleling multiple large kernels. LKSPP demonstrates 
improvements of 1.3%, 0.4%, and 0.3% over SPPCSPC for mAP50 , mAP50:75 and mAP50:95 , respectively. Finally, 
two modules are added to the baseline to achieve the optimal results in three accuracy metrics: mAP50 , mAP50:75 , 
and mAP50:95 , with an improvement of 2.2%, 1.7%, and 1.3%, respectively. The complexity of the model is further 
optimized with a 4.6% reduction in the parameters.

Figure 8a illustrates the comparison of classification loss before and after the addition of the module to the 
baseline model YOLOv7. The incorporation of both modules simultaneously results in a consistent minimization 
of loss values throughout the entire training process. In particular, with the addition of the modules, the clas-
sification performance of YOLOv7 is significantly improved and the loss pattern is smoother. This observation 
underscores the synergistic effect engendered by the conjoined operation of LKSPP and MDFFAM, attributed 

Figure 6.   Detection accuracy of the detector for each defect.

Table 2.   Compare the impact of different proposed modules on the baseline.

MDFFAM LKSPP Param. (M) FLOPs (G) mAP50 (%) mAP50:75 (%) mAP50:95 (%)

Baseline 36.5 103.2 71.2 53.7 37.1

√  ×  36.8 103.9 73.0 55.6 38.6

 ×  √ 32.1 99.7 72.5 54.1 37.4

√ √ 34.9 103.1 73.4 55.4 38.4
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to their disparate functional focuses. LKSPP is adept at harnessing rich high-level semantic features owing to 
its expansive receptive field, while MDFFAM excels in ascertaining precise feature location information. The 
detector, fortified with the merits of both modules, exhibits a marked enhancement in classification efficacy.

The importance of MDFFAM
To demonstrate the effectiveness of the proposed MDFFAM in improving the detection performance of the model 
for small targets, YOLOv7 is used as the baseline and different attention modules are added separately, with 
results shown in Table 3. The test involves four attention mechanisms: CA, CBAM, SE, and MDFFAM. In terms 
of the parameters, CBAM, CA, and MDFFAM all operate at the same level, while SE increases the parameters 
by 3.2% compared to the baseline. Regarding computation load, MDFFAM imposes a relatively small burden, 
with 14% less computational effort than SE. The difference between MDFFAM and CA, which incurs the least 
computational overhead, is almost negligible, as MDFFAM is only 0.58% higher compared to CA. Meanwhile, 
MDFFAM achieves the highest mAP50 of 73.0, which is 4.7% better than the second-ranked CA, outperforming 
the baseline by 1.9% and 1.5% in the metrics mAP50:75 and mAP50:95 , respectively.

To better observe the association regulation of Precision, Recall, and mAP50 for the four attention mechanisms 
throughout the training phase, a three-dimensional scatter plot is chosen for display, as shown in Fig. 7. At the 
beginning of the training phase, the results exhibit a scattered distribution. However, as the epoch keeps increas-
ing, the three indicators converge in the same direction, and the scores improve. The figure demonstrates that 
MDFFAM rapidly enters the convergence state compared with the other three attention mechanisms, with the 
most minor dispersion fluctuation of the results of MDFFAM in the early training phase. The above experimental 
results highlight MDFFAM’s capacity to facilitate model convergence and maintain stability. From the perspec-
tives of both computational loss and accuracy, MDFFAM exhibits excellent performance.

Except for MDFFAM, the remaining three attention mechanisms all reduce the accuracy of the baseline. 
This fully illustrates that among the four attention mechanisms, MDFFAM introduces a small computational 
overhead to the model and also effectively improves detection accuracy. Compared with the other three attention 
mechanisms, the use of MDFFAM provides greater flexibility to the model.

The impact of hyperparameter r
To further observe the effect of hyperparameter ‘r’ in the MDFFAM on the model performance, experiments 
are conducted with YOLOv7 as the baseline. Five sets of experiments are performed to increase the reduction 
rate ‘r’ from 2 to 32 sequentially to observe the change in performance, and the experimental results are shown 
in Table 4. The experiments reveal that the maximum number of parameters and computation occurs when the 
reduction rate is set to the smallest 2. Conversely, the computational burden of the model is the smallest when 
‘r’ is set to 32. This indicates that the hyperparameter ‘r’ can flexibly modulate the capacity and computational 
overhead of the module in the model. Moreover, it is observed that as ’r’ increases, the computational overhead 
diminishes. However, the only goal is not to achieve a lightweight model, accuracy remains of great importance.

Figure 8b illustrates the variations in classification loss of the baseline model throughout the training phase 
under the influence of different hyperparameters r. A pronounced elevation and frequent oscillations in loss value 
are observed with r set to 32. Conversely, an assignment of 16 to r yields the most stable and reduced loss value, 
as evidenced by the smoothest trajectory of the curve. The remaining loss curves exhibit comparable magnitudes 
and trends, indicating a lesser dependency on the specific value of r within those ranges. Therefore, based on the 
results, the optimal balance between accuracy and model complexity is obtained when the reduction rate is set to 
16, and the reduction rate of 16 is also employed by MDFFAM in the attention mechanism ablation experiment.

Discussion and conclusion
Much research has been conducted on object detection. CNNs47,48 are employed to extract object features for the 
detection task. The enhancement of network depth49 is a chosen strategy to improve the detection accuracy. The 
relation network50 can boost detectors’ effective integration of the extracted feature information. YOLOv7, as a 
state-of-the-art single-stage detection algorithm, is capable of quick and comprehensive detection tasks. Under 
unfavorable conditions such as insufficient light and shadows, GAFF51 can fuse the visible and thermal features 
of the target to further weaken external interference. CPFM52 mines the precise features across different modes 
and fuses them in a complementary way to enhance the robustness of the detection.

This paper proposes two new components: the MDFFAM and the LKSPPF. MDFFAM can make full use of 
spatial location information to assist the model in the accurate identification of the detection focus while ensur-
ing the establishment of stable long-range dependencies. On the other hand, LKSPP not only flexibly handles 

Table 3.   Compare the impact of different attention mechanisms on the baseline.

Models Param. (M) FLOPs (G) mAP50 (%) mAP50:75 (%) mAP50:95 (%)

YOLOv7 36.5 103.2 71.2 53.7 37.1

Add CBAM 36.8 106.7 66.1 45.9 30.7

Add SE 37.7 118.4 67.2 48.4 32.9

Add CA 36.7 103.3 68.3 50.7 34.8

Add MDFFAM 36.8 103.9 73.0 55.6 38.6
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inputs of varying scales and sizes but also obtains richer and more advanced semantic features, which is mainly 
attributed to the effective receptive field expansion enabled by large kernels. Furthermore, the serial connection 
of several large kernels in LKSPP further suppresses the redundancy in the computational burden associated 
with large kernels. The obtained effective receptive field is larger for series than for parallel. Experimental results 
empirically validate that the detector assembled with MDFFAM and LKSPP as the core achieves highly competi-
tive performance in small object detection tasks. Additionally, when testing the MDFFAM and LKSPP modules 
in isolation, both demonstrate a decent performance in their respective comparative experiments. This shows 
that the incorporation of MDFFAM or LKSPP into the baseline independently induces obvious improvement 
in model performance.

The complexity of mechanical structures can result in surface defects not readily discernible under normal 
lighting conditions or partially visible in shadow. Therefore, there is a great interest in future research regarding 

Figure 7.   Three-dimensional display of four attention mechanisms.

Table 4.   The impact of MDFFAM on the baseline under different settings. Here, r is the reduction rate.

Ratio r Param. (M) FLOPs (G) mAP50 (%) mAP50:75 (%) mAP50:95 (%)

2 37.1 106.8 70.8 52.2 36.2

4 36.9 105.2 73.2 56.0 38.4

8 36.8 104.3 71.8 53.0 36.1

16 36.8 103.9 73.0 55.6 38.6

32 36.8 103.7 69.7 51.9 35.7
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data enhancement tools based on the fusion of thermal and visible imaging features. The next work will focus 
on an effective combination of the feature fusion methods from the two different imaging with large kernel and 
attention mechanisms. The approach aims to enhance the robustness of the detector and its accuracy.

Data availability
The paper contains all research data.
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