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A support vector machine based 
drought index for regional drought 
analysis
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Uzma Yasmeen 3 & Muhammad Nabi 4*

The increased global warming has increased the likelihood of recurrent drought hazards. Potential 
links between the frequency of extreme weather events and global warming have been suggested 
by earlier research. The spatial variability of meteorological factors over short distances can cause 
distortions in conclusions or limit the scope of drought analysis in a particular region when extreme 
values predominate. Therefore, it is challenging to make trustworthy judgments regarding the 
spatiotemporal characteristics of regional drought. This study aims to improve the quality and 
accuracy of regional drought characterization and the process of continuous monitoring. The new 
drought indicator presented in this study is called the Support Vector Machine based drought index 
(SVM-DI). It is created by adding different weights to an SVM-based X-bar chart that is displayed with 
regional precipitation aggregate data. The SVM-DI application site is located in Pakistan’s northern 
area. Using the Pearson correlation coefficient for pairwise comparison, the study compares the 
SVM-DI and the Regional Standard Precipitation Index (RSPI). Interestingly, compared to RSPI, 
SVM-DI shows more pronounced regional characteristics in its correlations with other meteorological 
stations, with a significantly lower Coefficient of Variation. These results confirm that SVM-DI is a 
useful tool for regional drought analysis. The SVM-DI methodology offers a unique way to reduce the 
impact of extreme values and outliers when aggregating regional precipitation data.
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A natural phenomenon that occurs all over the world is drought. In many regions of the world droughts are 
becoming increasingly frequent and severe as mentioned by1. Coles and Tawn 2 define drought as a decrease 
in the amount of water available over a specific period and area. Precipitation stands out as the most crucial 
climatological factor influencing both droughts and floods. The variability in precipitation can give rise to either 
of these natural hazards. Wilhite 3 analyzed precipitation and drought climatologist offers valuable insights for 
enhancing water management strategies, environmental protection, agricultural production, and socioeconomic 
development in specific regions. Drought stemming from insufficient precipitation in a particular area is both a 
disaster and a naturally occurring hazard. Hirabayashi  et al. 4 highlights that understanding precipitation and 
drought patterns can significantly contribute to the effective management of water resources, environmental 
preservation, agricultural practices and socioeconomic progress. Paulo  et al. 5 discussed the frequency, severity 
and duration of drought exhibit variations across diverse climatic zones. Cai  et al. 6 recognized that drought is 
one of the most impactful climatic extremes affecting a larger population than any other type of natural disaster.

Mohamadi et al.7 discussed that drought indices play a crucial role as tools for monitoring and assessing 
different types of droughts, including: (a) meteorological drought, denoting a period with insufficient precipita-
tion over a region; (b) hydrological drought, linked to insufficient surface and subsurface water during a specific 
timeframe; (c) agricultural drought, typically associated with reduced soil moisture leading to crop failure; and 
(d) socio-economic drought, which is linked to a time when water resource systems are unable to meet demand 
for water. However, the meanings of drought are always changing to take into account its effects on society and 
the ecosystem. Kaur et al.8 presented that multitude of indices utilizing different variables have been devised to 
detect and measure occurrences of drought. Included in these are the Surface Water Supply Index (SWSI), the 
Rainfall Anomaly Index (RAI), the Streamflow Drought Index (SDI), the Palmer Drought Severity Index (PDSI), 
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the Reconnaissance Drought Index (RDI), the Standardized Precipitation Index (SPI), the Standardized Precipita-
tion Evapotranspiration Index (SPEI), and the Standardized Runoff Index (SRI). McKee et al.9 introduce the SPI 
which stands out as the most commonly employed indicator for evaluating meteorological drought, characterized 
by a brief decline in precipitation leading to reduced water resources availability and ecosystem carrying capacity. 
Vicente-Serrano10 mentioned exclusive consideration of precipitation simplifies the calculation process as com-
pared to more intricate indices, enabling the comparison of diverse drought conditions across various temporal 
and geographical dimensions. Capra and Scicolone11 discussed that SPI is particularly robust and practical as it 
allows assessment over diverse time spans, facilitating the exploration of various drought categories.

Barker et al.12 discussed SPI is a non-linear method relies on conventional statistical approaches for drought 
prediction introducing a considerable level of uncertainty. The application of machine learning (ML) algorithms 
has been employed for SPI estimation. Support Vector Regression (SVR) has been employed by Borji et al.13 
to use support vector machines for regression tasks, demonstrating effectiveness in estimating drought. Liu 
et al.14 utilize a single-layer feedforward neural network for swift and efficient learning, successfully applied in 
modeling drought. Deo et al.15 adopts regression splines to capture non-linear relationships, proving effective in 
estimating drought. Rhee and Im16 leverage extremely randomized decision trees for precise and robust drought 
modeling. Nguyen et al.17 integrate fuzzy logic and neural networks for adaptive modeling, achieving success 
in drought estimation. Banadkooki et al.18 use interconnected nodes to emulate the human brain’s learning 
process, applying it to drought modeling with promising outcomes. Elbeltagi et al.19 employe an ensemble of 
multiple decision trees to enhance accuracy and reduce overfitting, demonstrating efficacy in drought estima-
tion. Kushwaha et al.20 discussed that the Super Vector Machine (SVM) is a novel machine-learning algorithm 
has been recognized as a reliable approach for addressing complex data related issues. Achirul Nanda21 discuss 
the implementation of SVM boasts essential features such as advanced validation, geometric explanation, and 
precise statistical tracking all achieved with a relatively low number of training data sets. Sihag et al.22 utilizes 
the kernel functions play a crucial role in SVM model serving as a valuable tool in optimizing the dataset for a 
more accurate classification method. The prediction of drought is imperative for understanding future drought 
intensity, enabling effective planning to mitigate the impact of drought conditions and climate changes. Sakaa 
et al.23 discussed various models have been developed to forecast drought in semi-arid regions. These machine 
learning models exhibit the ability to predict information accurately by utilizing the correct input variables. This 
research clearly reveals a research gap concerning the application of machine learning algorithms in semi-arid 
environments and drought predictions, in contrast to earlier studies. The results of this work effectively address 
and overcome a sizable gap in the field of machine learning models for agricultural and meteorological drought 
prediction as well as drought forecasting.

This study aims to establish a statistical framework that improves the regionality and representativeness of 
diverse scattered observations within a specific area. As a result, the research introduces a novel tool for monitor-
ing regional drought, grounded in an unequal weighting scheme based on the X-bar chart and SVM regression. 
This study specifically does: (1) It creates a new way to combine precipitation data from different stations in 
the region, called the SVM-DI, (2) It calculates the Standardized Precipitation Index (SPI) for each station and 
compares it to the new SVM-DI for the entire region, (3) It checks how well the SVM-DI compares to the regional 
SPI by looking at their correlations with each other. In simple terms, the study tries to make a better system for 
understanding drought in a specific area. It creates a new index called SVM-DI, compares it to existing methods, 
and checks how accurate it is by comparing it to the RSPI.

Methodology
In the proposed methodology for the SVM-based X-bar control chart the first step involves the comprehensive 
collection of relevant data pertaining to the targeted process variable. Support Vector Machines (SVM) are 
employed to train the model, requiring the definition of input features and corresponding target values based 
on historical process data. In the following subsections, the SVM and the statistical control chart for the mean 
have been discussed.

Support vector machine
The Support Vector Machines (SVM) for drought prediction/classification involves adapting the SVM framework 
to the specifics of monthly precipitation data. The mathematical equations would be similar to the general SVM 
equations, but with considerations for the features and labels related to drought.

The linear equation of the hyperplane for drought prediction is:

where, w is the weights of the vector, X is the feature matrix and b is the bias.
The objective function for SVM optimization to maximize the margin while ensuring correct classification 

would include the term:

Subject to the constraints:
xi(w.x + b) for all i.
The input features for SVM include historical meteorological data. Using the monthly precipitation data, 

we split the data into train and test. The featured variable is considered as time and the target variables is 

(1)w.X + b = 0

(2)minimizw

(

1

2
||w||2
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precipitation. By using the errors of SVM we make the X-bar control charts and detect the out-of-control points. 
The X-bar control chart is explained in the next section.

Shewhart X‑bar control chart
In statistics, the Statistical Quality Control (SQC) presents the many of control charts for the surveillance of both 
industrial processes and environmental processes24. In 1924, Shewhart introduced the first control chart, and 
since then various chart types have evolved to monitor diverse processes. Shewhart control charts are acknowl-
edged as memory-less, signifying their lack of consideration for past information. These charts are particularly 
adept at identifying significant process shifts, prompting numerous studies aimed at enhancing their efficacy.

The x-bar control chart has the following mathematical structure:

The UCL, CL and LCL are shown in equations as:

Proposed drought index based on support vector machine
This section provides the description of support vector machine-based drought index SVM-DI. As labeled in 
Sect. 1, SVM has important role in drought monitoring. In SVM-DI, we predict the values of standard error 
using the SVM. Next, we use the standard error of SVM to create the X-bar control chart. To do this we find the 
Out-of-Control Point (OCP) using the X-bar control chart. Additionally, the weights for the aggregation of region 
data are integrated using the cumulative count of OCP (COCP). The incorporation of SVM in the X-bar control 
chart is pivotal for the overall effectiveness of SVM-DI. It introduces machine learning adaptability, enhances 
drought prediction, and contributes to the identification of OCPs. This integration enables SVM-DI to capture 
unique regional drought patterns with improved accuracy and reliability.

Let M ∈ M1,M2,M3, . . . ,Mk represent the precipitation time series data from various meteorologi-
cal stations within a designated area. The primary goal in this case is to create weights for the aggregation 
M ∈ M1,M2,M3, . . . ,Mk in a way that places stations with high COCPs at a lower weight than stations with low 
COCPs. Figure 1 shows the SVM-DI flow chart.

Stage 1: Incorporate of SVM based X-bar control chart.

(3)µ =
x1 + x2 + · · · + xn

n

(4)σx =
σ
√
n

(5)UCL = µ+ 3σx

(6)CL = µ

(7)UCL = µ− 3σx

Figure 1.   Flow chart of the SVM-DI.
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We use X-bar control in the first stage of SVM-DI to detect the OCP. The UCL and LCL in the X-bar control 
chart are determined by averaging the time series data from all meteorological stations within a given geographic 
area.

Let Zi represent the meteorological station mean time series data. Under the X-bar control chart, we con-
structed the upper and lower control limits for Zi . The vector with total values outside of the UCL and LCL is 
displayed by the ( COCP1,COCP2,COCP3, . . . ,COCPk ). Here, i indicated the quantity of meteorological stations.

Stage 2: Weights Estimation.
In the second stage of SVM-DI, weights for the aggregation of time series data from multiple meteorologi-

cal stations are determined. In this instance, the weight estimate is based on the COCP that is specific to each 
weather station. Assuring that observatories with relatively higher COCP are given lower weights and those with 
relatively smaller COCP are given higher weights are the following formulas.

In the above equation, Ui =
∑k

i=1 i.

The condition is 
∑k

i=1 wi = 1 . Here, k denotes the number of meteorological stations.
Stage 3: Fusion.
After allocating the estimated weights for the regional precipitation data aggregation is the task of this stage 

in our process. Mathematically, the Weighted Mean Time Series Data (WMTSD) can be computed as follows:

WMTSDi denotes the regional precipitation data in the equation above using the suggested weighting scheme, 
where Mij denotes the time series data from the jth meteorological station and the wij represents the estimated 
weights in the region.

WMTSD by considering the variability in the importance of meteorological stations through the COCP-
based weights contributes to a more nuanced and accurate representation of regional drought. It plays a pivotal 
role in enhancing the reliability and effectiveness of SVM-DI as a drought monitoring tool. WMTSD is a critical 
component in this stage ensuring that the regional precipitation data is aggregated in a way that accounts for the 
significance of individual meteorological stations. Its role extends beyond aggregation, influencing the normaliza-
tion process and ultimately contributing to the formulation of SVM-DI. This comprehensive approach enhances 
the ability of SVM-DI to accurately depict the spatiotemporal characteristics of regional drought conditions.

Stage 4: Normalization.
In SVM-DI, normalization is the final step. To model hydrological data, we have used KCGMD25. In this 

stage, the precipitation time series data are spatiotemporally aggregated regionally, and the Cumulative Distribu-
tion Function (CDF) of the KCGMD is fitted to them to normalize them. The KCGMD’s CDF has the following 
mathematical expression:

This paper derives SVM-DI using the normalization approximation proposed by Abramowitz and26. The 
normalization approximation’s mathematical structure is provided by the equation that follows.

do = 2.515517, d1 = 0.802853, d2 = 0.010328, g1 = 1.432788, g2 = 0.985269, g3 = 0.001308 are constant.

(8)vi = 1−
COCPi

U

(9)wi =
vi

∑k
i=1 vi

(10)WMTSDi =
k

∑

j=i

Mijwij

(11)F
(

q
)

= F(WMTSDi1)+ F(WMTSDi2 + · · · + F(WMTSDik)

(12)SVMDI = −(l +
do + d1l + d2l

2

1+ g1l + g2l2 + g3l3
)

l =
√

ln(
1

{

F
(

q
)}2

)

0 ≤ F(q) ≤ 0.5

SVMDI = +(l +
do + d1l + d2l

2
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The choice of K‑component Gaussian mixture distribution
The computation of the SDI involves fitting a suitable probability distribution to the time series data of diverse 
climatic variables. The selection of an appropriate probability model demands careful consideration as the accu-
racy and reliability of estimates depend significantly on the fitness of the chosen model. Numerous univariate 
probability distributions have been proposed in previous research for modeling precipitation data in SDI cal-
culations. The gamma distribution has been frequently employed by various authors in computing the SPI, as 
demonstrated by studies such as those conducted by9 and27.

In the last decade, researchers such as28 have put forth various probability models beyond the gamma distribu-
tion. The process of selecting the appropriate probability function can be facilitated through the utilization of R 
packages such as ’fitdistrplus’ and ’Propagate,’ as suggested by29. These tools contribute to the refinement of the 
SDI computation by aiding in the identification of a probability distribution that best fits the climatic variables’ 
time series data, thereby enhancing the accuracy and reliability of the index estimates. The use of univariate 
probability models is deemed inadequate for achieving accurate inferences. Instead, employing a multi-model 
distribution or a mixture of probability functions is recommended to enhance computational accuracy. In line 
with this approach30, have proposed the utilization of K-CGMM (K-component Gaussian Mixture Model) for 
modeling precipitation time series. This advanced modeling technique considers a combination of probability 
functions, offering a more nuanced and robust representation of the underlying patterns in precipitation data. By 
adopting such an approach, the study aims to improve the precision and reliability of computational inferences 
related to precipitation, acknowledging the limitations of traditional univariate probability models in capturing 
the complexities of climatic variables.

Application
The central focus of the research application is the five weather stations located in northern region of Pakistan (see 
Fig. 2). This is situated on the second-highest plateau in the world, this selected region is of great significance to 
the nation’s water resource management system. The dataset of selected meteorological stations consist of 41 years 
from January 1981 to December 2021, together with their corresponding latitude and longitude coordinates, are 
Astor (35.36 N, 74.84E), Bunji (35.64 N, 74.63E), Gilgit (35.92 N, 74.30E), Gupis (36.22 N, 73.44E), and Skardu 
(35.30 N, 75.61E). The challenges posed by climate change and global warming, the water resources in this 
region have experienced unprecedented depletion, leading to heightened risks of drought. This study evaluates 
the suggested model’s implications for more precise regional drought monitoring by utilizing time-series data 
on monthly precipitation accumulation from 1981 to 2021. The source of the data is power data access viewer 
of NASA website. The arithmetic mean (AM), standard deviation (SD), and coefficient of variation (CV) in the 
correlation coefficient between the SPIs of distinct meteorological stations of the SVM-DI and RSPI. The Simple 
Mean Time Series Data (SMTSD) from all meteorological stations is normalized in this article to produce the 
RSPI. It’s crucial to remember that the normalization used for the Weighted Mean Time Series Data (WMTSD) 
and SMTSD is the same. By following the30, the RSPI is computed by standardizing the simple average of time 
series (SATSD) data for all the stations. However, the standardization of SATSD is the same as that used for 
SVM-DI. The RSPI allows for the identification of wet and dry periods over different time scales, contributing 
to a nuanced understanding of the region’s climatic variability. The RSPI is unable to handle the extreme values 
in the data where the SVM-DI is useful in this situation.

Results and discussion
The proposed methodology is applied in this section. This section is further divided into three subsections.

Detecting OCP using SVM based X‑bar chart
This section presents and analyzes the outcomes concerning the identification of Out-of-Control Points (OCPs) 
by using residuals based X-bar control chart. The residuals are obtained by using the SVM based regression. The 
residual control charts are useful when the process exhibits autocorrelations31. The correlation in the Table 1 
represents the correlation coefficient between the predicted values and the actual values of the target vari-
able. The choice of the SVM based regression method is made on the basis of the correlation coefficient, mean 
absolute error, root mean square error, relative absolute error and root relative squared error results presented 
in the Table 1. Based on the results, SVM exhibited the most effective performance for precipitation (correla-
tion = 0.6604, MAE = 0.5766, RMSE = 0.7280, RAE = 0.6853 and RRSE = 0.7524) when compared to the other 
models.

To improve the accuracy in achieving normality, we partitioned and organized the data on a monthly basis. 
For each month, UCLs and LCLs were estimated accordingly. The monthly data segregation and plotting for each 
station made it easier to identify OCP (see Fig. 3). The cumulative number of OCP recorded for each station dur-
ing each month is displayed in Table 2. In January, 23 out of 41 observations from the Astor station were detected. 
In contrast, OCPs 23, 29, 21, and 22 have been found for Skardu, Gilgit, Gupis, and Bunji. Table 2 displays that the 
monthly distribution of OCPs in the precipitation time series data for each of the chosen meteorological stations.

Weights estimation
These weights are estimated based on the degree of heterogeneity or homogeneity observed between stations in 
different months. The conclusions related to the weights derived from the recommended weighting scheme are 
discussed and clarified in this section. This method assigns weights to stations based on their COCP; stations 
with higher COCP are given higher weights, and stations with lower COCP are given lower weights. This makes 
sense because it is well-known that stations with lower COCPs are more closely aligned with the regional data, 
while those with higher COCPs diverge from it more. Therefore, it makes sense to assign higher weights to 
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Figure 2.   Meteorological stations chosen to assess the SVM-DI implications.

Table 1.   Comparison of the machine learning models.

Model Correlation MAE RMSE RAE RRSE

Support Vector Regression 0.6604 0.5766 0.7280 0.6853 0.7524

Decision Tree Method 0.5976 0.6631 0.8177 0.7819 0.8119

Gradient Boosting Method 0.6076 0.7106 0.8441 0.8279 0.8378
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stations with lower COCP. Additionally, Table 2 displays the weight distribution for each station on a monthly 
basis under the suggested weighting scheme. These weights’ spatiotemporal variation reflects how each station’s 
significance varies from month to month.

Consistency and efficiency of SVM‑DI and RSPI
The Weighted Mean Time Series Data (WMTSD) log-likelihood and Bayesian Information Criterion (BIC) values 
for each time scale are shown in Table 3.

Figure 3.   Control Charts Depicting OCP with UCL and LCL for each Station.



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9849  | https://doi.org/10.1038/s41598-024-60616-3

www.nature.com/scientificreports/

The log-likelihood values are significantly high, and the BIC values are consistently low on all time scales, 
confirming that the K-CGMD model is appropriate for the WMTSD data. Utilizing the Coefficient of Variation 
(CV) and Pearson correlation (r), one can evaluate the efficacy of the SVM-DI. We compared the SVM-DI and 
RSPI correlations with the SPIs of specific meteorological stations in order to assess consistency. The temporal 
and associative behavior of RSPI and SVM-DI are shown in Figs. 4a–c. Table 4 presents the correlations between 
the RSPI and SVM-DI and the data from specific meteorological stations-based SPIs over several important 
time intervals.

The Astor station has the highest correlation value of 0.67081 between SVM-DI and SPI on a one-month time 
scale, while the Gupis station has the lowest correlation value of 0.62422. Thus for Gupis and Skardu, the highest 
and lowest RSPI correlations with SPI are 0.80401 and 0.64328. For every other time scale, comparable ranges 
between the maximum and minimum correlation values are presented in Table 4. The discrepancies indicate that 
SVM-DI is more consistent than RSPI with regard to the SPIs of individual weather stations.

After the evaluation of consistency assessment, the effectiveness of SVM-DI in comparison to RSPI is assessed. 
The correlation coefficient statistics (mean, standard deviation, and coefficients of variation) for RSPI and SVM-
DI are shown and contrasted in Table 5. The mean correlation between SVM-DI and individual meteorological 
stations is higher than RSPI at the one-month time scale. The observation that the standard deviation of indi-
vidual meteorological stations is low implies that SVM-DI is more homogeneous than RSPI. Last but not least, 
SVM-DI is more consistent than RSPI, as indicated by the low CV in correlation values with the SPI of individual 
meteorological stations (see Table 5). All of these thorough results point to SVM-DI’s greater regional emphasis 

Table 2.   Monthly allocation pattern of weights and COCP.

Month Astor Bunji Gilgit Gupis Skardu

January 23 23 29 21 22

Weights 0.2013 0.2013 0.1886 0.2205 0.2039

February 26 25 24 26 26

Weights 0.1988 0.2008 0.2027 0.1988 0.1988

March 32 32 29 24 32

Weights 0.1963 0.1963 0.2013 0.2097 0.1963

April 25 27 30 28 25

Weights 0.2037 0.2000 0.1944 0.1981 0.2037

May 32 32 29 24 32

Weights 0.1963 0.1963 0.2013 0.2097 0.1963

June 24 22 22 24 25

Weights 0.1987 0.2030 0.2030 0.1987 0.1966

July 27 26 30 22 26

Weights 0.1985 0.2004 0.1927 0.2080 0.2004

August 25 25 26 20 21

Weights 0.1966 0.1966 0.1944 0.2073 0.2051

September 19 20 26 24 22

Weights 0.2072 0.2049 0.1914 0.1959 0.2004

October 22 20 28 25 21

Weights 0.2026 0.2069 0.1896 0.1961 0.2047

November 24 21 25 24 21

Weights 0.1978 0.2043 0.1956 0.1978 0.2043

December 26 25 28 28 23

Weights 0.2000 0.2019 0.1961 0.1961 0.2058

Table 3.   Log likelihood and BIC for the KCGMD.

Time scale Likelihood BIC

1 698.3220 -345.0667

3 689.3926 -332.4133

6 8713.9890 -332.4248

9 732.7200 -329.5109

12 757.3073 -329.5215

24 842.1898 -322.8307

48 1034.0674 -320.5051
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than RSPI. This implies that the SVM-DI is a more appropriate tool for representing regional drought in an effec-
tive manner. The claim that SVM-DI is a more appropriate indicator for accurate and effective regional drought 
monitoring is firmly supported by provided results. In conclusion, water resource managers and policymakers 
will find the implications of SVM-DI to be beneficial, as they will provide deeper understanding of drought 
conditions and enable the creation of more efficient drought mitigation strategies.

Figure 4.   Correlation plot between SVM-DI and RSPI.
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Conclusion
The impacts of global warming and climate change have resulted in frequent drought occurrences, significantly 
affecting various facets of life. To enhance regional drought monitoring, this paper introduces an innovative 
weighting scheme for the SVM-based X-bar control chart. As a result, the study introduces the SVM-DI, a novel 
regional drought index. The study focuses on several meteorological stations in Pakistan’s northern region in 
order to assess the efficacy of SVM-DI. CVs in the correlations between RSPI and SVM-DI with specific mete-
orological stations are investigated for comparative analysis. The numerical results show that, in comparison to 
the straight forward RSPI, SVM-DI consistently displays more homogenous correlation values across all signifi-
cant time scales. The higher mean correlation values for SVM-DI highlight its overall stronger association with 
meteorological stations’ SPIs. The lower standard deviation indicates that SVM-DI performance is more stable 
and less susceptible to variations. These findings imply that RSPI is less able to adequately represent the entire 
region than SVM-DI. The study’s findings demonstrate in summary that SVM-DI based drought monitoring is 
a useful method for examining drought characteristics at the local level. Practitioners of drought management 

Table 4.   Correlation analysis of SVM-DI and RSPI.

Time scale Index

SPI

Astor Bunji Gilgit Gupis Skardu

1
SVM-DI 0.67081 0.66115 0.62813 0.62422 0.65529

RSPI 0.67025 0.66054 0.60996 0.80401 0.64328

3
SVM-DI 0.72413 0.72931 0.70897 0.72974 0.74398

RSPI 0.73191 0.72773 0.69119 0.82292 0.73922

6
SVM-DI 0.74952 0.75680 0.75636 0.77760 0.78271

RSPI 0.76309 0.75499 0.75430 0.83331 0.77608

9
SVM-DI 0.76684 0.77382 0.77691 0.79308 0.80790

RSPI 0.78293 0.77215 0.87449 0.84219 0.80484

12
SVM-DI 0.77394 0.75687 0.78381 0.79508 0.81655

RSPI 0.78839 0.75499 0.79937 0.85501 0.81402

24
SVM-DI 0.81491 0.83387 0.83072 0.80651 0.86458

RSPI 0.82529 0.83185 0.86979 0.89646 0.86543

48
SVM-DI 0.78151 0.85470 0.86477 0.81963 0.85631

RSPI 0.78851 0.82525 0.89443 0.94726 0.85964

Table 5.   Assessment of Correlation Coefficients between SVM-DI and RSPI Values.

Time scale Statistics SVM-DI RSPI

1

Mean 0.64790 0.67761

Standard Deviation 0.02067 0.07429

CV 3.18977 10.96396

3

Mean 0.72719 0.74259

Standard Deviation 0.01260 0.04858

CV 1.73313 6.54229

6

Mean 0.76459 0.77635

Standard Deviation 0.01464 0.03303

CV 1.91404 4.25395

9

Mean 0.78368 0.81532

Standard Deviation 0.01661 0.04256

CV 2.11926 5.22013

12

Mean 0.78519 0.80235

Standard Deviation 0.02241 0.03659

CV 2.85429 4.56061

24

Mean 0.83009 0.85776

Standard Deviation 0.02226 0.02927

CV 2.68185 3.41233

48

Mean 0.83538 0.86302

Standard Deviation 0.03473 0.06138

CV 4.15784 7.11288
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can accurately define regional climatology with the help of these findings. This study is limited to the machine 
learning method by using precipitation data. One may enhance this study by incorporating some other covariates 
such as the temperature. The deep learning methods can also be utilized in multivariate case.

Data availability
All data analyzed during this study is obtained from the website of NASA power Data Access Viewers (1981–
2021) and the website link is https://​power.​larc.​nasa.​gov/​data-​access-​viewer/.
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