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Self‑clustered GAN for precipitation 
nowcasting
Sojung An 1*, Tae‑Jin Oh 1, Sang‑Wook Kim 1,2 & Jason J. Jung 3

This paper proposes a novel GAN framework with self‑clustering approach for precipitation 
nowcasting (ClusterCast). Previous studies have primarily captured the motion vector using only 
a single latent space, making the models difficult to adapt to disparate space‑time distribution of 
precipitation. Environmental factors (e.g., regional characteristics and precipitation scale) have an 
impact on precipitation systems and can cause non‑stationary distribution. To tackle this problem, 
our key idea is to train a generator network to predict future radar frames by learning a sub‑network 
that automatically labels precipitation types from a generative model. The training process consists 
of (i) clustering the hierarchical features derived from the generator stem using a sub‑network and (ii) 
predicting future radar frames according to the self‑supervised labels, enabling heterogeneous latent 
representation. Additionally, we attempt an ensemble forecast that prescribes random perturbations 
to improve performance. With the flexibility of representation learning, ClusterCast enables the 
model to learn precipitation distribution more accurately. Results indicate that our method generates 
non‑blurry future frames by preventing mode collapse, and the proposed method demonstrates 
robustness across various precipitation scenarios. Extensive experiments demonstrate that our 
method outperforms four benchmarks on a 2‑h prediction basis with a mean squared error (MSE) of 
8.9% on unseen datasets.
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Deep learning has acted as a breakthrough achievement and serves as a turning point in precipitation 
 nowcasting1–3. Unfortunately, precipitation nowcasting models utilizing deep neural networks are adversely 
affected by data blurring problems with increasing forecast lead time. Several studies have highlighted the poten-
tial of GANs in effectively tackling blurring issue and demonstrating reliable predictive capabilities. For exam-
ple,  Jing4 introduced AENN, which is a network based on GAN that predicts precipitation in 90 min and uses 
previous radar reflectivity data to overcome blurry prediction. Following the AENN,  DGMR1 proposed a novel 
nowcasting system building hierarchical ConvGRU cells as a generator, with two discriminators designed to 
capture space-time patterns. At another point, researchers utilized  diffusion5,6, which has the advantage of being 
free from discriminators and has shown promising results in various real-world  applications7.

While researchers explore innovative approaches to precipitation nowcasting, deep learning-based models 
that use deep learning have focused on learning a single latent representation of the precipitation. Approximat-
ing rainfall with a single latent space may be overly restrictive, impeding the effective learning of precipitation 
features. Weather events with different types of precipitation have different characteristics. Convective thun-
derstorms, drizzles, and many other types of precipitation differ in terms of their spatial patterns, precipitation 
intensity, lifetime, and moving speed. Chaotic dynamics cause non-stationary precipitation patterns, thereby 
defining rainfall with a single distribution can be a cause of performance  degradation8–11. For these reasons, 
learning representations between similar and dissimilar pairs of precipitation types is crucial for achieving strong 
performance in precipitation nowcasting. However, precipitation data are inherently high-dimensional and 
complex, posing difficulties even for domain experts to directly label time-series datasets. Hence, we propose the 
ClusterCast framework, which utilizes a self-clustering approach for the forecasting task. An SSL-driven cluster-
ing methodology facilitates automated labeling of precipitation types within unannotated precipitation datasets, 
thereby facilitating precipitation prediction according to precipitation types. This approach offers the advantage 
of seamlessly integrating the clustering and forecasting tasks into a unified module, mitigating potential conflict 
in representations from each task and fostering adaptable representation learning.

For perspective deep learning architecture, GAN methods often suffer from mode collapse, wherein the 
generator network learns how to generate plausible outputs but fails to capture various precipitation scenarios. 
Recognizing the issue of collapsing, many researchers have chosen to cluster GAN architectures, typically as 
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generators or  discriminators12–14 based on self-supervised learning (SSL). SSL, a type of unsupervised learning 
that has become popular in computer vision and natural language  processing15, learns feature representations 
from the data itself. SSL enhances effective representations from unlabeled data for downstream task through 
self-generated signals. Diverse image generation via self-supervised  GANs16–19 enabled robust performance 
against mode collapse. For example,  Sage16 introduced a framework utilizing synthetic labels obtained through 
clustering to mitigate and prevent mode collapse. This approach promotes the disentanglement of variations 
within and across different classes, thereby facilitating the generation of diverse and realistic labels. These useful 
applications motivated us to propose a precipitation nowcasting model for learning heterogeneous representa-
tions of precipitation by SSL scheme as sub-network of GAN.

To achieve this goal, we leverage the idea of a self-clustering approach of SSL, which formulates time series 
as disparate latent spaces and exploits such prior knowledge to learn time-series representation. Specifically, 
ClusterCast leverages heterogeneous latent spaces according to various precipitation types learned by hierar-
chical resolutions from the sub-network of the generator. ClusterCast efficiently learns non-stationary patterns 
mitigating the problem of mode collapse and robust various precipitation scenarios. It also learns more power-
ful representation by leveraging learnable a sub-network for clustering precipitation types which enables stable 
network interactions. Experiments conducted on real-world datasets demonstrate that ClusterCast achieves 
over 3% and 8.9% improvement in critical success index (CSI) and MSE compared to four popular benchmark 
models in precipitation nowcasting, respectively.

In summary, the main contributions of our paper include: (i) We propose a self-clustered generator model 
to capture the high-dimensional distribution of disparate precipitation types (e.g., drizzles and convective rain), 
solving the collapsing problem of GAN. (ii) We investigate different self-clustering approaches with a GAN to 
explore the most suitable and stable method for precipitation nowcasting. (iii) We further enhance our model 
using an ensemble forecast that samples the uncertainty when radar measures the reflectivity or what may occur 
as the atmosphere evolves. Notably, we aim to address the following two main research questions; RQ1: Compared 
to the previous time-series nowcasting methods, what is the performance of ClusterCast? RQ2: Can we generate 
future radar frames against precipitation scenarios for unlabeled precipitation data?

Related works
Deep generative model for time‑series precipitation nowcasting
Precipitation nowcasting is a research-intensive field, especially with the increase of deep learning frameworks 
for prediction such as models based on  ConvLSTM20. Traditional precipitation nowcasting consists of a system 
that predicts future time steps based on an optical flow  algorithm21 which predicts precipitation evolution by 
movement extrapolation. Optical-flow-based systems have a limitation in predicting non-linear precipitation 
patterns as it does not consider the underlying moist physics such as evaporation, condensation, and so on. Deep 
learning models have recently surpassed optical flow-based weather prediction systems in performance, lead-
ing to feasible real-world applications.  Shi20 were able to effectively predict the space-time evolution patterns of 
precipitation by combining convolution with  RNN22,23. However, the algorithm has a limited ability to represent 
complex movements and the rotation of clouds. Precipitation nowcasting studies have attempted to overcome this 
shortcoming by constructing hierarchical ConvRNN  cells1,20,22. For instance, TrajGRU 22 formulated a loss func-
tion according to the precipitation threshold and incorporated hierarchically nested convolution and ConvGRU 
cells with the optical flow. Other researchers used a combination of convolution and LSTM encoder and adopted 
multi-resolution  connections24,25. Sønderby26 proposed Metnet, which was used to predict precipitation for the 
next 8 h by synthesizing observation data.  Espeholt27 proposed a follow-up model, which expanded its predic-
tion time to 12 h by additionally utilizing numerical weather prediction model output and showed promising 
short-term forecast results. Most previous studies designed RNN cells, which resulted in blurred images as the 
forecast time increased. However, predicting fine-scale details is an important element for successful precipita-
tion forecasts. Several groups have focused on developing nowcasting models that preserve the resolution over 
time.  Jing4 designed a GAN model with a ConvLSTM generator and two discriminators for radar extrapolation. 
This model adopted the loss function of the sum of the MSE and mean absolute error (MAE) for the generator 
and binary cross entropy (BCE) loss for the discriminators. They clipped the radar reflectivity between 0 and 75 
decibels and then predicted high-resolution radar data for the next 1.5 h.  Ravuri1 proposed another GAN-based 
precipitation prediction model, DGMR, using ConvGRU generators and two discriminators for discriminating 
spatial and temporal patterns. Not only did  Ravuri1 successfully develop high-resolution predictable models using 
only radar observations, but their models delivered performance better than other models when evaluated on the 
basis of the CSI indicators. Their algorithm targets heavy precipitation, consisting of hinge loss in the discrimina-
tor, hinge loss, and MAE in the generator. Recently, there have been efforts to utilize diffusion models to tackle 
mode collapse in GANs. However, despite these advancements, there remains a risk that generative models may 
exhibit deviations from physical behaviors, such as generating plausible noise or overlooking domain-specific 
 expertise6,28. Therefore, when employing generative models, it is imperative to ensure that the generated samples 
from the learned distribution adhere to physical realizable.

Mapping training to solve the mode collapse problem
There were many studies attempting to generate high-resolution images using GANs in the field of computer 
vision, but the GAN instability issue still remains. The generator attempts to identify one output that seems most 
plausible to the discriminator, but each iteration of the generator is over-optimized for a particular discriminator, 
and the discriminator undergoes mode collapse; that is, the model state is trapped in a local minimum of the 
loss. The unrolled  GAN29 attempted to solve the mode collapse problem by providing additional information 
on the discriminator response.  VEEGAN30 recovers latent distributions to reverse the action of the generator by 
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mapping the data to noise. Diverse image generation via self-supervised  GANs16–19 enabled robust performance 
against mode collapse. Lučić18 introduced a generative model clustered for unlabeled images based on self- and 
semi-supervised learning.  Sage16 suggested clustered GAN training on features obtained via unsupervised fea-
ture learning methods for multimodal data. To prevent the generator from generating similar samples, they set 
the condition of the discriminator and the process of categorizing the image as real or  fake17.  Liu19 proposed 
conditional GAN, which improves image diversity by employing a generator with labels automatically derived 
from clustering in the feature space of the discriminator. They solved the problem of matching the original labels 
with newly clustered labels using Hungarian matching. These methods are similar to those used in our work. 
Our goal is to generate non-blurry future radar frames from light rain to heavy rain by devising a more efficient 
self-supervised scheme within a unified model. We attempt to approach time-series precipitation nowcasting 
through a unified framework, employing self-clustering with a GAN. This approach aims to improve the model’s 
ability to learn better representations by exposing the AI system to precipitation uncertainty.

Self‑supervised precipitation nowcasting framework
In this paper, we present the architecture of the developed self-clustered generator G� . To achieve precipitation 
nowcasting based on SSL, our approach has two key steps:

• Figure 1: time-series forecasting framework utilizing a self-clustering approach. The generator is structured 
with hierarchical ConvGRU cells, while the discriminators comprise spatial and temporal components to 
capture space-time patterns of precipitation.

• Figure 2: sub-network framework combines multi-resolution features to facilitate the learning of both fine-
grained local and coarse-grained global interactions. we utilize traditional clustering techniques to provide 
condition information to the generator through self-clustering.

Self‑clustered generator
For a given radar input frames X = {x1, . . . , xi} ∈ R

i×h×w , we generate future radar frames set 
Y = {xi+1, . . . , xi+j} ∈ R

j×h×w through a self-clustered generator G� : X → Y  . � is composed of θ and π , where 
θ represents generator network and π refers to sub-network for self-clustering. We denote the underlying latent 
states according to precipitation type n by zn ∈ R

d× h
32
× w

32 , where d, h, and w are dimensions of latent vectors, 
height, and weight, respectively. Our framework aims to derive a model for generating radar frames by G�(X; zn) 
that is approximated to the radar frames of cluster n for z ∼ N(0, 1) , which is a self-clustered among the sampled 
points from the Gaussian distribution. For learning the temporal and spatial distribution, the model consists of 
two discriminators, spatial and temporal discriminators Sµ and Tφ respectively. This approach reduces the prob-
lem of solving the optimization task. The objective function of the self-clustered generator is defined as follows:

where hwt represents the mean value calculated across the dimensions of height, width, and lead time. α denotes 
the hyperparameter used to adjust the ratio of errors for different loss functions, and ⊙ represents the element-
wise multiplication. Lgauge represents the weighting wY of each pixel based on rainfall intensity, facilitating the 

(1)
LGθ

= EX∼Pn [Ezn [S(G�(zn;X))] + T(X;G�(zn;X))] − αLgauge + Lpos ,

Lgauge =
1

hwt
||(Ezn [G�(zn;X)] − Y)⊙ wY ||,

Figure 1.  Process flow where the generator predicts radar frames using self-supervised labels. After passing 
through the stem of the generator the four resolution representations, consisting of a feature extractor 
containing the convolution layers for each resolution, are fused. The features classify precipitation types from 
the classifier (section “Clustering methods for self-supervised learning”) and initialize ConvGRU cells with the 
latent vector according to the type. The specific structure of the network is described in Fig. 3.
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learning process for heavy rainfall gauges in sparse precipitation datasets. Given that precipitation data primarily 
consists of pixels with values under 10 mm, accurately predicting intense precipitation presents a challenge when 
utilizing the MAE loss function. Lgauge can enhance accuracy for heavy rainfall by applying the MAE loss function 
with weighting. The loss function Lpos minimizes positional information using the Dice loss, as outlined below:

here, M denotes the set of rainfall thresholds, and Ŷm represents a conditional matrix derived from G�(zn;X) , 
where a value is 1 if value exceeds threshold m, and 0 otherwise. For same reasons as Lgauge , wm serves as a loss 
weight of Lpos based on the rainfall. As a result of the penalty loss output, the position adjusts towards the target 
pixels in non-overlapping scenarios.

Inspired by self-supervised GAN  frameworks18,19, ClusterCast learns time-series representations by mini-
mizing the heterogeneous latent spaces according to precipitation types. The approach entails designing a sub-
network, denoted as Gπ , which classifies precipitation types by utilizing hierarchical resolution features obtained 
from historical observations. For achieving self-supervised nowcasting, the input frames undergo four down-
sampling process in the stem of the generator. The input frames are transformed into χn∈(1,4) ∈ R

2nc× h
2n

× w
2n by 

down-sampling process. The features at each of the four resolutions, as shown in Fig. 2, are concatenated and 
processed through convolution layers to classify the precipitation types n. Note that such hierarchical resolution 
features enables the analysis of local to global context of precipitation. After classifying the type, we initialize 
Gaussian distributions for each component according to the precipitation type. By doing this, our framework 
helps alleviate the issue of collapsing caused by variations in distributions among different types of precipitation. 
The initialized latent vector, denoted as zn , passes through the L block, which improves performance by rescaling 
its output  probabilities31. Subsequently, the latent states zn , along with each resolution features χi , are inputted 
into hierarchical ConvGRU cells as follows:

where R refers to the ReLU activation function. The hierarchical architecture gradually decodes with upsampling 
modules to multiple levels of representations and generates the future output frames Y described in Fig. 3. The 
output frames are sampled by Monte Carlo estimations as six cases, which estimate the log-likelihood gradient of 
the precipitation distribution and comprise radar  sequences1. The G�(X; zn) is jointly optimized for the classifier, 
and we update the parameters for two tasks, regression ( θ ) and clustering ( π ) simultaneously at each epoch, using 
the objective function. Solving the regression task through a single, unified model-based self-clustering approach 
provides greater stability compared to the two-stage models associated with separately classifying precipitation 

(2)Lpos =
∑

∀m∈M

wm

(

1−
2 · |Ŷm ∩ Ym|

|Ŷm| + |Ym|

)

.

(3)

h1 = zn,

ut = φ(χi ⊕ ht−1, wu),

rt = φ(χi ⊕ ht−1, wr),

ct = φ(χi ⊕ (σ (rt)⊙ ht−1), wc),

ht = σ(ut)⊙ ht−1 + (1− σ(ut))⊙ R(ct),

Figure 2.  Feature extractor architecture for self-cluster learning. A detailed list of modules in each block is 
configured as shown on the top right, and ( ↓ ) represents down-sampling.
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Figure 3.  Generator architecture details. (a) Generator: clustering precipitation types based on the features 
of each resolution through an input down-sampling process, referred to as the stem. The generator initializes 
the distribution zn according to the clustered results to generate rainfall time-series data that adheres to 
the distribution of zn . (b–e) blocks: detailed structures of the generator. The nearest mode is adopted for 
up-sampling, and attention refers to multi-head attention.
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types and predicting precipitation. Moreover, our framework enables comprehensive representation learning 
across both tasks, and the generator gains more understanding of the distribution of precipitation types.

Clustering methods for self‑supervised learning
We implement the fundamental self-clustering scheme outlined in section “Self-clustered generator”, and design 
four sub-networks for the clustering task aimed at learning representations in heterogeneous latent spaces. A 
self-supervised label n is sampled from the categorical distribution Pn which weighs each cluster proportional 
to its true size in the training set. In this section, we aim to employ traditional clustering techniques, such as 
k-means clustering, PCA, and linear-based methods, to explore the most stable and efficient sub-networks. The 
sub-networks not only enhance the performance of the generator by addressing the mode-collapse problem but 
also provide robust representations of high-dimensional distributions for predicting future frames. The Table 1 
shows the objective functions for the following four clustering methods.

• Method 1 ( LK ; K-means clustering). K-means clustering is a popular unsupervised machine learning algo-
rithm used for partitioning a dataset into a predetermined number of clusters. For the first clustering step, we 
used random centroid initialization k-means++, and for subsequent re-clustering, we initialized the K-means 
algorithm with the means induced by the previous clustering. Given a set of s samples passed through the 
convolution layer of the generator, 

{

s1, s2, . . . , st
}

⊂ R
S , where each sample represents a S-dimensional vec-

tor and a number k, the K-means algorithm aims to group these S samples into k clusters 
{

πn
}k

n=1
 . K-means 

clustering is periodically updated by redefining the cluster centers over a metric induced by the current 
generator features.

• Method 2 ( LPK ; PCA with K-means clustering). PCA is often used to reduce the dimensionality of the 
dataset by transforming it into a lower-dimensional space while preserving most of the variance. By reduc-
ing the number of dimensions, the computational complexity of K-means clustering can be reduced, espe-
cially for datasets with a large number of features. U = (u1, . . . , uc) contains the principal directions and 
V = (v1, . . . , vc) contains the principal components. Here, L1 normalization is beneficial for generalizing the 
 samples32. The optimization of the feature extraction for each vector using LPK (

{

πn
}k

n=1
) is only performed 

during the first epoch to stabilize the latent space.
• Method 3 ( LL ; Linear-based clustering). Linear-based clustering methods often implicitly or explicitly per-

form dimensionality reduction, where the covariance matrices can capture correlations between features. This 
algorithm is implemented via an l-layer encoder network, which resolves nonlinear mapping to enhance data 
representation. The model is designed to learn the latent space internally by encoding the hierarchical features 
derived from the generator stem and applying the softmax function. By exponentially increasing the number 
of samples, the dimensionality of the data can be reduced, which helps to avoid the curse of dimensionality. 
All the weights of the encoder and a softmax layer simultaneously update periodically at regular intervals.

• Method 4 ( LLK ; Linear-based K-means clustering). In high-dimensional spaces, the Euclidean distance used 
in K-means clustering may become less meaningful, as the concept of distance becomes less intuitive in high-
dimensional spaces (curse of dimensionality). To address this problem, this method extracts the features 
with an encoder and applies K-means clustering based on the features to derive condition labels using the 
optimization problem in Table 1. It’s important to note that the value of δ (the coefficient that balances the 
generator loss and cluster loss) depends on the specific dataset and experiment, and there is no fixed optimal 
value. To augment the precision and robustness of clustering, the network is subjected to retraining with a 
loss function that integrates K-means losses for evaluation. To preserve the integrity of the encoder structure, 
it is essential to fine-tune the loss function using cluster loss and K-means loss. This approach enhances the 
accuracy and stability of clustering by retraining the network with an optimized loss function.

Table 1.  Objective functions for self-clustering framework, which are proposed by using four traditional 
clustering methods. Notation. Let ǫn be the centroid of cluster Cn and be the centroid closest to s. Cf  denotes 
the encoder layer for clustering to the H(1)

t  and tℓ is the number of output neurons. Cf  represents derived from 
the expression LL(yn) , and f (·) refer to the nonlinear mapping function at the 5 K iteration.

Notes Equations

LK ({πn}
k
n=1) En∼Pπ

[

∑

k

n=1

∑

sc∈Cn
||sc − εn||2

]

  

LPK ({πn}
k
n=1)

En∼Pπ

[

Ex∼πn

[

||Pf (sc))− εn||2

]

]

, where Pf = minUV = ||sc − UV
T ||1

  

LL(yn)
exp(Cf (π))

∑k
n=1 exp(Cf (π))

, where Cf (π) = f dφ

(

∑d−1
ℓ=1 R

(

f ℓθ C
(ℓ−1)
1

)

)

LLK ({πn}
k
n=1) EX∼Pπ

[

∑

k

n=1

∑

sc∈Cf
||Cf (sc)− εn||L2

]
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Algorithm 1.  Self-supervised learning with clustering methods for precipitation nowcasting

Adversarial training
The structure of the discriminator is based on that of the DGMR  discriminator1. Specifically, the discriminator 
is designed to predict whether the spatio-temporal features in the radar sequence are real or fake. Half of the 
predicted sequences generated by the generator are randomly selected in the spatial discriminator. The temporal 
discriminator computes all time-series images cropped to 128 × 128 pixels. The discriminator consists of that 
are convolutional and residual layers, each followed by spectral normalization and ReLU activation function. As 
the input sequence passes through each convolution block, spatial dimension of Sµ decreased by a factor of two 
and spatial and time dimensions of Tφ decreased by a factor of two at the same time. We address these problems 
using a novel clustered Z using hinge loss, as follows:

here, LS(µ) and LT (φ) are the spatial and temporal discriminator loss functions, respectively. Spatial and temporal 
representations were approximated by sampling according to the clustered zn distribution. LS(µ) aims to better 
preserve precipitation distribution by randomly selecting output frames Y. For LT (φ) , the network discriminates 
the temporal distribution of Y combined with X by using the Hinge loss function. The discriminators learn to 
distinguish whether the samples generated by the self-clustered generator are real or fake. Figure 4 shows the 
network structure of the discriminators.

Algorithm 1 summarizes learning based on the self-supervised learning with GAN. The training ratio of the 
generator to the discriminators depends on the number of clusters, which is determined based on empirical 
observations and experimentation, as there is no fixed rule for choosing the optimal ratio. We found that setting 
a 2:1 ratio for training both the generator and discriminator effectively leads to GAN convergence. However, our 
model has a limitation: the proposed GAN framework may dominate the training process, potentially resulting 
in instability depending on the number of clustering labels.

Ensemble prediction system
Ensemble prediction systems improve prediction skills by addressing  uncertainties33,34. A simple random pertur-
bation ensemble system was applied to consider the uncertainties from observation errors. The ensemble system 
consists of 64 members, including the control. After testing under various conditions (not shown), we chose the 
perturbation members that delivered the best performance, created by multiplying a random number gener-
ated from N(0.95, 0.22) by an over 10 mm h−1 grid. The ensemble mean forecasts were used as the final result.

Experiments
This section describes the dataset and experimental setting. To study the effectiveness of the proposed approach 
for 2-h precipitation prediction, we conducted experiments on four comparison baselines: Rainy motion35, ConvL 
STM24, TrajG RU22, and DGMR1. The codes for the benchmark models are publicly available on GitHub. The 
codes represent the official codebase or reproduced implementations. They can be accessed by following the 
provided hyperlink.

(4)
LS(µ) = Ezn [R(1− Sµ(X))+ R(1+ Sµ(G�(zn;X)))],

LT (φ) = Ezn [R(1− Tφ(X))+ R(1+ Tφ(X;G�(zn;X)))].

https://github.com/hydrogo/rainymotion
https://github.com/Hzzone/Precipitation-Nowcasting
https://github.com/Hzzone/Precipitation-Nowcasting
https://github.com/Hzzone/Precipitation-Nowcasting
https://github.com/openclimatefix/skillful_nowcasting
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Dataset
South Korea runs 31 weather radars, observed by ministries and synthesized and provided by the Korea Mete-
orological Administration (https:// data. kma. go. kr/ cmmn/ main. do). Figure 5 depicts the observation area of 
South Korea. We conducted experiments using the constant altitude plan position indicator (CAPPI), a two-
dimensional representation of radar decibel channels at the same altitude. CAPPI reflectivity was provided at a 
resolution of 500 m, with a size of 2305 (longitude) × 2881 (latitude) and a temporal resolution of 5 min.

We gathered radar reflectivity data covering a 1024 km2 area with a resolution of 500 m. This radar data was 
then down-scaled to a resolution of 4 km, which was cropped of 256 × 256 pixels and collected at 10-min inter-
vals. For a 2-h precipitation forecast, we used 6 input frames and generated 12 output frames. Our dataset spans 
a period of 10 years, from 2012 to the summer of 2021, with the training dataset comprising data from 2012 to 
2019, the verification dataset from 2020, and the test dataset from 2021. In total, our dataset contains 132,480 
radar data points collected every summer (June–August) between 2012 and 2021 in South Korea. Given Korea’s 

Figure 4.  The details of the discriminators. Batch norm, Sectral norm, and FC denote the Batch normalization 
layers, Spectral normalization layers, and fully connected layers, respectively. (a) Temporal discriminator: The 
network comprises 3D convolution blocks and 2D convolution blocks to learn the temporal distribution of 
precipitation. (b) Spatial discriminator: To capture the spatial distribution, random frames are initially selected. 
Each frame is then discriminated by six 2D convolution blocks.

Figure 5.  An area of composite weather radar. Composite weather radar in Korea is observed as the S-band, 
and the radar data approximately covers Korea from 122◦ to 132◦ longitude and 30◦ to 40◦ latitude.

https://data.kma.go.kr/cmmn/main.do
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high annual precipitation levels, with more than 50% occurring during the summer monsoon season known as 
“Changma,” this dataset is particularly valuable for studying rainfall patterns.

Rainfall estimation
For the training, we first estimate rainfall intensity by using Z–R relationship. The Z–R relationship is a crucial 
step in radar-based quantitative precipitation estimation that involves converting reflectivity values into rainfall 
intensity while considering the types of echoes. Reflectivity is measured in dBZ, and a negative value indicates 
the detection of very small hydrometeors. To preserve the negative reflectivity value’s meaning, we trained the 
model by converting reflectivity to rainfall. The reflectivity is converted by the Z–R relationship between the 
radar reflectivity factor Z(mm6m−3) and rain rate R(mm h−1) as follows: Z = aRb , where a and b are param-
eters obtained empirically depending on the precipitation type. To minimize the precipitation estimation error, 
constants suitable for the Korean climate (a = 148 and b = 1.59) were  applied36.

Data sampling
Samples were systematically extracted from various rainfall events to enable the model to recognize patterns 
across all precipitation intensities, ranging from light showers to heavy rain. Specifically, sequences exhibiting 
a spatial distribution of more than 3% of precipitation over 3 h were selected, and the first hour of data was 
used as input, while the remaining 2 h were used as output. The dataset was comprised of approximately 10,000 
examples, and the training subset consisted of 7000 sequences with a Stride 2 (20 min). Moreover, to ensure 
uniformity in the data, rainfall intensities were capped at 96 mm h−1 , and missing values or empty grids were 
assigned a value of − 0.1, thereby precluding their utilization in test score calculations. In this study, we propose 
a novel generative model for nowcasting.

Detailed experimental setup
The networks were optimized using the Adam  algorithm37. For the experiment, the minimum and maximum 
ranges of each set of rainfall data in ConvLSTM and TrajGRU were manually set to [0, 1) using a min–max scaler. 
Experiments were conducted using a batch size of 16. To compare the AI models with optical flow, we utilized 
 Rainymotion21 from  Sun35 with default settings, employing Affine transform for computing motion vector. For 
training  ConvLSTM24, we applied MSE loss and Structural Similarity Index (SSIM) loss function. We configured 
a 3 × 3 kernel with leaky ReLU activation, and three ConvLSTM layers with resolutions of 16, 32, and 64 were 
tested. To compare the AI models with optical flow, we utilized  Rainymotion21 from  Sun35 with default settings, 
employing Affine transform for computing patterns of apparent motion. For training  ConvLSTM24, we applied 
MSE loss and Structural Similarity Index (SSIM) loss function. For the training, we reproduced the hierarchical 
ConvLSTM cells with resolutions of 16, 32, and 64. For TrajGRU, Leaky ReLU served as the activation function, 
and the ConvGRU cells comprised three layers with 5 × 5, 5 × 5, and 3 × 3 kernels, as detailed in the referenced 
 paper22. Each channel number maintained the same sizes as ConvLSTM to facilitate model performance compari-
son while fixing the number of parameters. The loss function combined MSE and MAE, incorporating weights 
ranging from 1 to 30 based on rainfall, as described in the paper. The learning rate and momentum were set to 
1e−4 and 0.5, respectively.  DGMR1 was trained using learning rates of 5e−5 for the generator and 2e−4 for the 
discriminators, respectively. To address GPU memory limitations, we halved the size of the latent vector from 
its original value to 384, in consideration of GPU capacity. The computation of Lgauge involves assigning weights 
to each pixel based on rainfall intensity: wr(ω) = max(ω, 24) . The latent space of the Gaussian distribution was 
initialized in six dimensions. In the experiment, hinge loss was employed, with the optimizer initialized with 
β1 = 0.0 and β2 = 0.999 . The generative model combines Hinge loss and MAE loss, with weights ranging from 
1 to 24 corresponding to rainfall intensity. The loss weight α was set to 20. To ensure stable training, the training 
ratio of the generator to discriminator was set at 1:1. For ClusterCast, we follow the settings outlined  in1, with 
the following adjustments: The weight of the generator loss function is empirically set to α = 10 . Denoting the 
rainfall threshold as M = {0, 1, 4} , where the classes are divided into three, weights wm = {1, 2, 4} are assigned 
to Lpos . The training ratio of the generator to the discriminators is set to 1:1. Clustering is performed using the 
CK method with 32 groups, and re-clustering occurs approximately every δ = 15 K iterations.

Evaluating metrics
Evaluation metrics are clearly the most significant criterion in the evaluation of the performance the proposed 
methods, and depending solely on a single metric to verify models may result in biased models receiving favora-
ble evaluations. Therefore, we conducted a comprehensive analysis of model performance from multiple perspec-
tives using various evaluation metrics, as discussed. There are six metrics for evaluating precipitation prediction 
models, and all the algorithms are evaluated following six standard metrics: MSE, PSNR, CSI, fractions skill 
score (FSS), equitable threat score (ETS), and heidke skill score (HSS). The evaluation metrics are defined as 
the predicted probability score and are defined in Table 2. We employed MSE as a metric to evaluate the over-
all accuracy of time-series predictions. Additionally, we utilized PSNR to measure the sharpness and fidelity 
of our forecasts. These metrics offer insights: MSE provides a comprehensive measure of predictive accuracy, 
while PSNR specifically assesses the visual quality and clarity of the predictions. For a comparative analysis of 
precipitation prediction performance regarding rainfall intensity, the model verifies models based on CSI, ETS, 
and HSS, which are established metrics for assessing binary accuracy using thresholds. Note that in binary 
accuracy evaluation, precipitation rainfall is assessed based on pixel-to-pixel, leading to an observed double 
penalty for non-blurring models such as GAN-based models. These double-penalty problems frequently occur 
in high-resolution precipitation predictions, and to solve these problems, the FSS is an indicator of evaluating 
the performance of the prediction model by expanding the spatial scale.
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Results
Bearing in mind the formulated RQs, the main goal has been to check if it was able to efficiently generate future 
radar frames based on precipitation type with unlabeled datasets only through SSL. The following are the main 
results for comparing performance (see section “Main results”), and the ablation studies were conducted to 
analyze the clustering results for the unlabeled precipitation dataset (see section “Ablation studies”).

• RQ1: Compared to the previous time-series nowcasting methods, what is the performance of ClusterCast? 
To answer the first question, we conducted a comprehensive analysis of the results using various evalua-
tion metrics. Key findings indicate that the results are i) flexible across a range of precipitation types, and 
ii) through the learning of distinct distributions for each precipitation type, our model exhibits robustness 
compared to other models over time.

• RQ2: Can we generate future radar frames against precipitation scenarios for unlabeled precipitation data? 
We attempt to address the second question from the perspective of visualization by considering clustering 
results based on spatial and temporal variables. Specifically, we mapped high-dimensional features into two 
and three dimensions by extracting average rainfall and motion vectors (angle and magnitude) to represent 
and time and spatial characteristics of precipitation. We discovered relationships among the variables in the 
visualization result and formed meaningful self-supervised labels for these groups. By doing so, we showed 
the effectiveness of the SSL in nowcasting and provided insight into the clustering scheme.

Main results
The study compared the results of the proposed algorithm for predicting 2-h precipitation with comparison mod-
els. Note that the per-pixel accuracy of the models was evaluated by comparing them after denormalizing using 
the min–max scaling method for models such as ConvLSTM and TrajGRU. Method 1 (K) based on K = 32 , was 
adopted for SSL as it proved to be the most reliable method, as outlined in section “Ablation studies”. Our brief 
results are shown in Fig. 6, where ClusterCast outperforms all baselines in most cases. The proposed approach 
showed the best values for MSE after 60 min of prediction. Although there was no difference from other models 
in predicting up to 50 min, the proposed method showed a minor increase in loss over the prediction time. In 
terms of (b) in Table. 3, the proposed method outperformed the previous SOTA approach, achieving a PSNR of 
33.906 after 1-h of prediction and 33.580 for the 2-h prediction. Despite slightly lower accuracy than the other 
models for the initial 50 min, the proposed method outperformed them after this period. The superior results 
underscore the necessity and effectiveness of using a multi-latent space. GAN-based models might exhibit lower 
performance in the early time steps of prediction due to the inherent sharpness they strive to achieve, particu-
larly when dealing with real-world radar data or similar sharp data types. This sharpness pursuit can sometimes 
introduce a slight amount of noise, which may affect the accuracy of early predictions. Another factor that could 
be speculated to contribute to the initial degradation in results is to distribution shift problem. Time-series 
precipitation data exhibit non-stationary behavior, where the underlying data distribution changes over time. 
At the beginning of the forecast horizon, the model might not have fully adapted to these distribution shifts, 
leading to lower performance. However, despite this initial setback, GAN-based models possess the advantage 
of learning the temporal distribution effectively over time. This enables them to maintain robust performance as 
they continue to learn and adapt to the underlying time-series distribution. Note that as the forecast progresses, 
the model can adjust to these changes and improve its predictions.

Table 3 represents the performance of each model for two threshold values, 1 and 4 mm. For the 30-min 
prediction, ConvLSTM performed the best followed by TrajGRU, while Rainymotion showed a similar perfor-
mance to AI models, indicating little non-linear movement in precipitation during that period. However, after 

Table 2.  Evaluation metrics for comparing the performance. The thresholds are set as 1 and 4  mm which are 
commonly used. Notation. Let N represent the number of pixels, while fi and pi denote the true observations 
and the predicted radar frames, respectively. MAXf  represents the maximum rainfall intensity. TP, TN, FP, and 
FN stand for true positives, true negatives, false positives, and false negatives, respectively, between f θi  and 
pθi  . Nx and Ny represent the sums of the x-grid and y-grid divided by the number of neighboring grid cells, 
denoted by r.

MSE = 1
N

∑N
i=1(fi − pi)

2,

PSNR = 10 log

(

MAXf
2

MSE

)

,

CSI = TP
TP+FP+FN ,

ETS =
TP− 1

N (TP+FP)(TP+FN)

TP+FN+FP− 1
N (TP+FP)(TP+FN)

,
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the initial hour, Rainymotion, being an optical flow-based model, showed performance differences compared 
to other AI models, suggesting gradual changes in precipitation patterns. This implies that AI models may 
struggle to predict accurately beyond 1 h. Our proposed model demonstrated the best performance in the 2-h 
precipitation prediction evaluation across all six indices considered, with DGMR ranking second. Regarding 
GAN-based models, while they do not show performance improvements in rainfall prediction up to 1 h, they 

Figure 6.  Comparative analysis of lead time performance of benchmarks versus ClusterCast.

Table 3.  Comparison scores with benchmark models. The 2-h precipitation prediction results are validated 
using CSI, ETS, HSS, and FSS. The evaluation was conducted at 30-min intervals using thresholds of 1.0 and 
4.0 mm. For FSS, we set the radius to 3. Significant values are in bold.

Method

1 mm h−1 4 mm h−1

CSI FSS ETS HSS CSI FSS ETS HSS

(A) Results on the 30 min prediction

  Rainymotion 0.511 0.826 0.478 0.638 0.382 0.736 0.367 0.523

  ConvLSTM 0.571 0.826 0.547 0.699 0.434 0.735 0.403 0.598

  TrajGRU 0.572 0.840 0.529 0.679 0.422 0.706 0.396 0.544

  DGMR 0.533 0.819 0.507 0.637 0.420 0.705 0.386 0.558

  Ours 0.549 0.836 0.520 0.659 0.425 0.727 0.388 0.558

(B) Results on the 60 min prediction

  Rainymotion 0.396 0.697 0.359 0.515 0.265 0.561 0.250 0.383

  ConvLSTM 0.410 0.707 0.439 0.597 0.314 0.571 0.303 0.456

  TrajGRU 0.468 0.731 0.419 0.588 0.324 0.561 0.289 0.430

  DGMR 0.412 0.706 0.422 0.595 0.318 0.567 0.290 0.440

  Ours 0.468 0.744 0.439 0.598 0.342 0.588 0.305 0.451

(C) Results on the 90 min prediction

  Rainymotion 0.329 0.603 0.290 0.435 0.202 0.446 0.187 0.300

  ConvLSTM 0.410 0.647 0.369 0.522 0.251 0.468 0.240 0.364

  TrajGRU 0.413 0.645 0.356 0.525 0.270 0.473 0.229 0.361

  DGMR 0.417 0.644 0.369 0.504 0.260 0.480 0.229 0.365

  Ours 0.426 0.673 0.376 0.526 0.278 0.486 0.245 0.372

(D) Results on the 120 min prediction

  Rainymotion 0.280 0.529 0.241 0.373 0.160 0.361 0.145 0.239

  ConvLSTM 0.364 0.583 0.318 0.462 0.202 0.386 0.191 0.297

  TrajGRU 0.370 0.587 0.305 0.472 0.223 0.412 0.187 0.310

  DGMR 0.372 0.590 0.321 0.467 0.211 0.417 0.195 0.313

  Ours 0.383 0.614 0.329 0.476 0.224 0.423 0.201 0.314
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exhibited improvements beyond that timeframe. Both models were able to learn the non-linear distribution of 
rainfall and capture trends effectively as prediction time increased, showcasing strong performance over time.

Regarding the ConvLSTM results, the MSE for the 30-min prediction was the highest, but the model ranked 
lower for the 2-h prediction. Analysis revealed that over time, there is a noticeable smoothing of the spatial 
distribution, a gradual decrease in intensity, and an increase in TP. ConvLSTM seems to achieve higher TP 
due to random chances from numerous rainfall cases. Moreover, as rainfall intensity increases, ConvLSTM’s 
performance gradually declines, particularly with time, leading to increased model errors. To address this issue, 
TrajGRU was adopted as a loss function for combining MAE and MSE weighted by rainfall intensity. Addi-
tionally, applying the advection scheme improved prediction performance in terms of movement trend and 
intensity. TrajGRU tends to overestimate over time, leading to increased MSE and significant FN. Despite the 
higher MSE results, the TrajGRU excels in predicting rainfall intensity. Even when analyzed using ETS, its per-
formance remains excellent from weak to strong precipitation. While TrajGRU’s performance is better in terms 
of MSE and ETS, it shows strengths in accurate rainfall prediction, suggesting that adjusting weights based on 
rainfall intensity during training could mitigate overestimations. However, there remains an issue with artifacts 
introduced by the discretization of the spatial or the time-stepping scheme. The artifact typically refers to any 
unexpected or undesirable features present in the forecasted data or model output that are not reflective of the 
underlying patterns or trends in the data.

Figure 7 highlights the improved precipitation prediction cases generated by our model compared to other 
models. In particular, our proposed model produces the most accurate simulation of solid elongated precipita-
tion patterns in the monsoon case, where hourly accumulated rainfall exceeds 20 mm. Although the direction 
of precipitation over the South Sea of Korea differs slightly from the observation, it is worth noting that the 
direction of precipitation predicted by all deep learning networks remains the same. However, in the case of 
ConvLSTM and TrajGRU, it is observed that increasing rainfall intensity leads to a smoother spatial distribution, 
which, in turn, makes it difficult to track the precise location and intensity of precipitation over time. DGMR 
also exhibits superior simulation capabilities for heavy rain. Nevertheless, the precipitation simulation model 
requires robustness in accurately capturing a wide range of rainfall intensities, which would help increase CSI 
scores. To address this issue, we proposed a solution designing heterogeneous latent spaces considering rainfall 

Figure 7.  Qualitative comparisons between architectures. The case is a representative type of summer 
precipitation on the Korean Peninsula; the east Asian monsoon in summer and torrential rain. Based on each 
model, we visualized the 1-h and 2-h precipitation prediction results, respectively.
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intensity to enhance the performance of DGMR. The advantage of designing more than one of these latent spaces 
enhances representation flexibility.

Korean weather has several types of precipitation, including topographical torrential rain, atmospheric insta-
bility-induced precipitation, and typhoon-induced nationwide precipitation, which display considerable devia-
tions. In this study, we aimed to visualize the predictions of different precipitation types, which are illustrated in 
Fig. 8. The figure demonstrated that our method simulated highly plausible images, which closely matched the 
patterns of the actual rainfall intensity, ranging from light to heavy rainfall.

Ablation studies
In order to validate the effectiveness of the clustering components designed for precipitation forecasting, we 
conducted ablation studies, and the results are presented in Table 4. Specifically, we applied each of the clustering 
methods proposed in section “Clustering methods for self-supervised learning”, and then experimented with 
comparing the MSE and CSI using the same dataset. The results indicated that all of the proposed clustering 
techniques were effective for generating radar frames, which helped to improve the performance of the K-means 
clustering method. Combining an encoder with K-means clustering achieved the best performance for heavy 
rain events. SSL algorithms trained using K-means clustering (Method 1) were found to be reliable for predict-
ing all types of precipitation. Conversely, clustering using an encoder layer with softmax led to instability in 
predicting radar frames.

The clustering process was initiated with ten central clusters, which were subsequently partitioned into 16, 
32, or 64 new groups. We utilized six radar images as input and applied SSL with various clustering methods. 
When comparing the clustering results to K32 clustering results were found to be the most effective. In experi-
ments with fewer than K16 , the performance remained similar to that of the existing model. However, previous 
research indicated that clustering at less than 16 groups decreased performance when combining convolutional 
layers and K-means  clustering38–40. Although we designed more filters than the referenced paper when clustering 
into fewer than 16 groups, our model’s performance did not improve on an unseen dataset. On the other hand, 
clustering using too many input sequences can lead to difficulty in approximating all spaces stably because they 
map the latter spaces with K labels. In this regard, the effectiveness of the forecasting task relies on the number 
of clusters utilized, which directly influences its parameter configuration. As the number of clusters increases, 
the instances within each cluster decrease, potentially reducing the training load required for the generator 
compared to the discriminator. As the number of clusters increases, the instances within each cluster decrease, 
potentially resulting in representations being less learned in a few latent spaces of the generator compared to the 
discriminator. Therefore, we adjusted the ratio of generators to discriminators to 1:1, 2:1, and 4:1, accompanied 
by corresponding adjustments to the learning rates. In our experiments, we explored four different learning 
rates-1e−4, 1e−5, 5e−4, and 5e−5-aiming to identify the most optimal parameter setup.

We defined the problem of classifying precipitation types as a means to design an adaptive latent space in the 
generator. For clustering purposes, extracted high-dimensional vectors from the generator stem were visualized 
by defining two arbitrary variables to represent the clustered results. To capture spatial information, we averaged 
the rainfall of the input radar frames. For temporal patterns, we calculated optical flow to represent motion and 
averaged the magnitude and angle of the input radar frames. In Fig. 9, we visualized 32 clustered results and the 
top 5 clusters with the highest proportions. As shown in the figure, the centroid of the most prevalent cluster had 
a spatial precipitation of 0.68 mm (including areas with no rainfall), a magnitude of 1.184, and an angle of 8.467. 
Analyzing the results of this case, it corresponds to a typical occurrence of rainfall during the Korean summer 
season, characterized by the formation of precipitation-bearing cloud bands over the West Central Sea due to 
the intensification of warm and moisture-laden southwesterly winds from the south of a low-pressure  system41,42.

Specifically, the case ranked in the top three represented a coverage of approximately 0.89% or higher for over 
10 mm and appeared to correspond to precipitation events at the level of heavy rain with rapid movement. The 
most severe precipitation scenario recorded a frequency of 3.41% for 10 mm or more, accompanied by an average 
wind speed of 16 m/s. When we analyze each cluster, these top five types of precipitation commonly occur during 
the summer in  Korea43,44. The results indicate that multi-latent space learning of the generator is well-trained 
from a logical perspective. Additionally, implementing an ensemble approach resulted in a 3.3% reduction in 
MSE. As nonlinear interactions within the precipitation, even minor changes in the input can result in notable 
fluctuations in predictions. Leveraging an ensemble technique can bolster the reliability of the prediction model 
by mitigating uncertainty associated with sensitive precipitation events.

Conclusion
This paper introduced a novel self-clustered generator for precipitation nowcasting, facilitating heterogeneous 
representation learning. We hypothesize that nowcasting models approximated with a single Gaussian distribu-
tion are a restrictive assumption for predicting all precipitation scenarios. To validate this hypothesis, extensive 
experiments were designed and conducted to assess the accuracy of predictions. The experimental results demon-
strated that our proposed method more accurately time-series forecasting while mitigating mode collapse issues. 
Our framework enables predicting non-blurry future radar frames, which is robust against diverse precipitation 
types. In addition, a simple ensemble system was utilized to enhance the performance of our proposed model. 
We believe that ClusterCast, based on SSL and incorporating various traditional clustering methodologies, will 
aid readers in designing future time series nowcasting models against different precipitation scenarios.
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Figure 8.  Simulation results of 6 precipitation cases for comparison. The samples are classified according to 
the precipitation distributions within the test dataset, then randomly selecting those samples. The A group 
corresponds to cases where the input pixel values indicate precipitation amounts less than 10 mm, while the B 
group represents cases with 10 mm or exceed rainfall. The simulation of the DGMR and the proposed model is 
shown in the image to fairly closely approximate the natural radar, which can deliver more specific information. 
Also, the proposed model best simulates the dangerous weather conditions occurring downtown, and they are 
quite similar to the ground truth in terms of intensity.
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Table 4.  Comparison of CSI and MSE scores according to clustering methods. K, P, and L refer to K-means 
clustering, PCA, and a linear-based model, respectively. Lpos and E denote a model based on a dice loss and 
ensemble of methods. (·) of K(·) indicates the number of clusters. Significant values are in bold.

Methodology

MSE ( ↓) CSI 2.0 mm/h ( ↑)

+0.5h +1h +1.5h +2h +0.5h +1h +1.5h +2h

(A) Comparison with baseline study

  DGMR (Baseline) 5.362 7.164 8.221 8.716 0.454 0.373 0.325 0.291

  K32 5.791 6.772 7.581 8.117 0.482 0.384 0.329 0.298

  K32 + Lpos (Ours) 4.680 6.465 7.194 7.552 0.484 0.401 0.347 0.299

  K32 + Lpos + E 4.853 5.638 6.402 6.936 0.502 0.422 0.366 0.317

(B) Comparison based on the number of clusters

  K16 + Lpos 6.312 7.32 7.847 7.878 0.469 0.357 0.306 0.262

  K64 + Lpos 5.429 7.129 7.402 7.982 0.494 0.365 0.324 0.290

(C) Comparison based on clustering methods in section “Clustering methods for self-super-
vised learning”

  E32 + Lpos 5.591 6.956 7.875 8.498 0.482 0.384 0.329 0.300

  PK32 + Lpos 5.309 6.624 6.911 7.210 0.462 0.381 0.328 0.273

  EK32 + Lpos 6.453 7.048 7.174 7.902 0.475 0.398 0.349 0.304

Figure 9.  Clustering results of the test dataset using K-means clustering. (a) Visualization of results grouped into 32 
clusters. (b) Visualization of predominant findings in the test dataset, representing 7.4%, 7.4%, 6.5%, 6.8%, and 5.3% 
of the total, respectively. The x-axis represents temporal rainfall variability, while the y-axis depicts mean rainfall. (c) 
Top 5 clustering results by calculating the magnitude and angle of optical flow between the first and last frames of 
input in order to measure temporal changes. (d) Top 5 clustering results based on mean rainfall rainfall variability.



16

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9755  | https://doi.org/10.1038/s41598-024-60253-w

www.nature.com/scientificreports/

Data availability
The data that support the findings of this study are available from Korea Meteorological Administration but 
restrictions apply to the availability of these data, which were used under license for the current study, and so are 
not publicly available. Data are however available from the authors upon reasonable request and with permission 
of Korea Meteorological Administration.
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