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Neural networks and particle 
swarm for transformer oil diagnosis 
by dissolved gas analysis
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The lifetime of power transformers is closely related to the insulating oil performance. This latter can 
degrade according to overheating, electric arcs, low or high energy discharges, etc. Such degradation 
can lead to transformer failures or breakdowns. Early detection of these problems is one of the most 
important steps to avoid such failures. More efficient diagnostic systems, such as artificial intelligence 
techniques, are recommended to overcome the limitations of the classical methods. This work 
deals with diagnosing the power transformer insulating oil by analysis of dissolved gases using new 
techniques. For this, we have proposed intelligent techniques based on Multilayer artificial neural 
networks (ANN). Thus, a multi-layer ANN-based model for fault detection is presented. To improve 
its classification rate, this one was optimized by a meta-heuristic technique as the particle swarm 
optimization (PSO) technique. Optimized ANNs have never been used in transformer insulating oil 
diagnostics so far. The robustness and effectiveness of the proposed model is demonstrated, and high 
accuracy is obtained.

Keywords Power transformer, Insulating oil, Diagnosis, Dissolved gas analysis, Electrical and thermal faults, 
Artificial neural networks, Particle swarm algorithm, Optimization

Power transformers are crucial and essential components in the electrical power transmission and distribution 
networks. Such expensive electrical devices should work properly for  years1. The lifetime of a power transformer 
closely depends on its insulation system, generally consisting of a traditional solid component (paper, etc.) and 
a dielectric  fluid2.

Most power transformers use insulating oil as dielectric fluid, due to its low price and good physico-chemical 
properties. Besides insulation, this oil dissipates the heat generated by the magnetic circuit and the windings. 
Following its movement in a transformer in service, the insulating oil conducts this heat to the internal cooling 
systems (radiators, etc.), before releasing it into the  environment2,3.

Insulating oil is subjected to several electrical, thermal and chemical constraints in service. These latter lead 
to the gradual degradation of the insulating oil and eventually cause the transformer to de-energize when not 
analyzed in  time4,5. Indeed, various oil analyses are proposed to diagnose the power transformer’s internal state. 
The most popular are physico-chemical  analyzes2–4 and dissolved gas analysis (DGA)5–10.

DGA is a widely used as diagnostic technique. It is based on interpreting the concentrations of gases dissolved 
in the insulating oil. Indeed, the oil decomposes under electrical and thermal stresses, releasing gases in small 
 quantities5–10. In fact, DGA can be performed by introducing sensors into the transformers in service (online 
mode), or in the laboratory on samples (offline mode)8.
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The five main gases resulting from the oil decomposition are hydrogen  (H2), methane  (CH4), acetylene 
 (C2H2), ethylene  (C2H4) and ethane  (C2H6). The proportions of the concentrations of these gases in a sample 
allow determining the defect  type5–10. According to IEC 60599 (2007)11 and IEEE Standard C57.10412, six elec-
trical and thermal faults exist. They consist of partial discharges (PD), low energy discharges (D1), high energy 
discharges (D2), thermal faults for T < 300 °C (T1), thermal faults for T from 300 °C to 700 °C (T2) and, finally, 
thermal faults for T > 700 °C (T3).

Various traditional techniques have been developed to interpret the results of DGA of transformer  oil13,14. The 
most popular use gas concentration ratios of  Dornenburg15,  Rogers16, and IEC 60599 (1978)17, or graphical meth-
ods of Duval employing percentages of concentration ratios such as the  triangle18 and the  pentagon19. Although 
these techniques are simple and easy to implement, they have some drawbacks. First, they use only specific gas 
ratios. Their accuracy remains limited and are very sensitive to DGA data uncertainties. For instance, Duval’s 
triangle method showed certain PD detection failures and some interferences between thermal and electrical 
faults. IEC 60,599 technique presented some interferences between D1 and D2 faults. Except T1, the effectiveness 
of Rogers’ methods has not been demonstrated for the other  faults6. Finally, Dornenburg’s method considers only 
three faults: thermal decomposition, partial discharges or low energy corona, and high energy electric  arcs15.

Recent artificial intelligence and meta-heuristic approaches have been integrated with traditional methods to 
overcome such difficulties and improve the transformer oil diagnostic by DGA. Benmahamed et al. have devel-
oped two algorithms to improve the classification rate of the Duval pentagon (initially at 80%). The first (Duval 
pentagon-SVM-PSO) combines the Duval pentagon and support vector machines (SVM), whose parameters 
have been optimized by the particle swarm optimization technique, PSO. The second (Duval pentagon-KNN) 
combines Duval pentagon and the K-nearest neighbors (kNN) algorithm.

The accuracy rate of the first algorithm is 88% compared to 82% for the  second20. In another research work, 
Benmahamed et al. established two classifiers KNN and Naïve Bayes (NB) to diagnose transformer oil by DGA. 
The KNN algorithm provided the highest accuracy rate of 92%21. Furthermore, Benmahamed et al. developed 
two classifiers. The first is Gaussian and the second (SVM-Bat) uses Support Vector Machines (SVM), whose 
parameters have been optimized by the Bat algorithm. The SVM-Bat accuracy rate is 93.75% against 69.37% 
for the  Gaussian5. Kherif et al. developed an algorithm combining KNN with the decision tree principle. An 
accuracy rate exceeding 93% was obtained, demonstrating the effectiveness of the proposed  algorithm7. Taha 
and al proposed an approach using the particle swarm optimization and the fuzzy-logic (PSO-FS) to enhance 
the of Rogers’ four-ratio diagnostic accuracy from 47.19 to 85.65% and IEC 60,599 one from 55.09 to 85.03%22. 
Ghoneim et al. established an efficient teaching–learning based optimization (TLBO) a model to optimize both 
gas concentration percentages and ratios. The proposed algorithm allowed obtaining higher diagnostic accuracy 
(of 82.02%) than the best (78.65%) offered by other DGA techniques presented in the same  paper23. Ghoneim 
et al. developed a smart fault diagnostic approach (SFDA) integrating Dornenburg, Rogers three and four-ratio, 
IEC three-ratio and Duval triangle techniques. Using gas concentrations, the SFDA algorithm has been improved 
by ANN. The SFDA algorithm allowed obtaining 79.6%. This accuracy rate has been improved to 87.8% with the 
integration of  ANN24. It is worth noting that optimized ANNs have never been used in transformer insulating 
oil diagnostic so far.

In order to improve the accuracy rate of faults detection in power transformers oil by DGA, multilayer artifi-
cial neural networks (ANN) are developed, in this investigation. We opt for a multilayer neural network (MLP) 
comprising an input layer, two hidden layers and an output. Several input vectors are tested, namely the five gases 
in ppm and in percentage, Dornenberg ratio, Rogers four-ratio and IEC 60,599 three-ratio as well as the combi-
nation between the ratios of Rogers and those of Dornenberg, the centers of mass of the triangle and pentagon 
of Duval, as well as their combination. Various learning algorithms and activation functions are also considered.

To further improve diagnostic rates, neural networks are optimized using the particle swarm technique 
(PSO). Indeed, different population sizes have been adopted. The performances of these neural networks have 
been studied in terms of accuracy rate. A total of 481 sample datasets are  considered5. Two-thirds are used for 
the training process (so 321 samples), and the rest (160 samples) for the test. The six fault classes (PD, D1, D2, 
T1, T2, and T3) recommended by IEC 60599 (2007)11 and IEEE Standard C57.10412 are adopted. A comparative 
study is carried out between the different neural networks developed.

In this paper, we have demonstrated that the combination of the artificial neural network and the particle 
swarm optimization leads to global model. This one takes into account classification problem by learning and 
also optimization by the PSO. It gives significant results versus to the classical methods and we obtain a high 
level of accuracy.

ANN models for insulating oil diagnostic by DGA
The state of the power insulation system is responsible for determining the lifetime of the transformers. This 
insulation system is generally exposed to some constraints resulting from overheating, carbonization of the paper, 
electric arcs and low or high energy discharges. Such faults can accelerate insulation degradation, affecting the 
transformer’s reliability and lifetime. Indeed, early detection of these faults can prevent undesirable abnormal 
operating conditions or failures of power transformers. The dissolved gas analysis (DGA) technique is considered 
to be one of the fastest and most economical techniques widely used to diagnose power transformer fault  types13.

As mentioned above, traditional fault diagnostic techniques in power transformers have generally shown their 
limitations and inconsistencies. Despite their simplicity, these techniques are not really adopted by the scientific 
community, due to their low accuracy rate in faults detection, except Duval pentagon method giving acceptable 
rate faults  classification6,20. That is why artificial intelligence (AI) and/or meta-heuristic approaches can be com-
bined with conventional ones to improve the diagnostic accuracy of power transformer insulating oil further.
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This section proposes several artificial neural networks to detect faults in an oil-immersed power transformer. 
These networks have the same architecture (structure) consisting of a multilayer perceptron (MLP). However, 
their training algorithms and activation functions are different.

The artificial neural network connection is multilayer and consists of an input, output, and two hidden inter-
nal layers. In this structure, neurons belonging to the same layer are not connected. Each layer receives signals 
from the previous layer and transmits its processing result to the next layer. Thus, the information flows in a one 
direction, from the input to the output through the hidden layers. Such connection type is called feed-forward 
artificial neural networks (FFANNs)25.

The number of neurons in the input layer is equal to the number of elements of the input vector denoted B. 
Nine models with input vectors have been considered, namely:

• 1st Model: The database comprises the concentrations of the five gases in ppm. In such conditions, the input 
vector of this model is given by: B =  [H2  CH4  C2H2  C2H4  C2H6]T

• 2nd Model: For the same database, the input vector of this model for each sample can be written in terms in 
gas concentrations in percentages as follows: B = [%H2%CH4%C2H2%C2H4%C2H6]T, with:

• 3rd Model: Dornenburg ratios is one of the first techniques introduced for the power transformer oil diag-
nostic to interpret the results of dissolved gas  analyzes15. In this model, we use four ratios of gas, in ppm, 
consisting of B =  [CH4/H2  C2H2/C2H4  C2H4/C2H6  C2H2/CH4]T

• 4th Model: The four ratios of Rogers are also considered. For this model, the input vector can be expressed, 
for each sample (gas in ppm), by Ref.16 A =  [CH4/H2  C2H2/C2H4  C2H4/C2H6  C2H6/CH4]

• 5th Model: IEC 60,599 model uses three ratios of gas in ppm as  follows17:

• 6th Model: Duval triangle model is a graphic representation using the percentage ratios of three dissolved 
gases:  CH4,  C2H2 and  C2H4. These percentages are employed as coordinates  (Tx,  Ty) to draw the mass center 
point in the triangle and identify, for each sample, the defect zone in which it is  located18. The input vector 
for this model is therefore written by: B =  [Tx  Ty]T

• 7th Model: Duval pentagon model is a graphic representation similar to triangle one. Pentagon uses the five 
dissolved gas in percentages (%H2%CH4%C2H2%C2H4%C2H6) to draw the mass center point coordinates 
 (Px,  Py)19. The input vector of this model is given by: B =  [Px  Py]T

• 8th Model: A combination between the triangle and the pentagon of Duval was proposed for this model. In 
such conditions, the two mass centers coordinate of both triangle and pentagon of Duval will constitute the 
input vector, given by: B =  [Cx  Cy  Px  Py]T

• 9th Model: We suggest here another model consisting of combination between Rogers and Dornenburg 
ratios. The input vector of this model can be written as: B =  [CH4/H2  C2H2/C2H4  C2H4/C2H6  C2H2/CH4  C2H6/
CH4]T

The coordinates  Tx and  Ty in vector 6 are calculated, for each gas sample, as  follows18:

A is the irregular triangle area given by:

The coordinates  xi and  yi(i = 0 to n − 1 with n = 3 is the number of gas in percentages) are computed as follows:

(1)%H2 = H2/(H2 + CH4 + C2H2 + C2H4 + C2H6) × 100

(2)%CH4 = CH4/(H2 + CH4 + C2H2 + C2H4 + C2H6) × 100

(3)%C2H2 = C2H2/(H2 + CH4 + C2H2 + C2H4 + C2H6) × 100

(4)%C2H4 = C2H4/(H2 + CH4 + C2H2 + C2H4 + C2H6) × 100

(5)%C2H6 = C2H6/(H2 + CH4 + C2H2 + C2H4 + C2H6) × 100

B = [CH4/H2C2H2/C2H4C2H4/C2H6]
T

(6)Tx =
1

3A

n−1
∑

i=0

(xi + xi+1)
(

xiyi+1 − xi+1yi
)

(7)Ty =
1

3A

n−1
∑

i=0

(

yi + yi+1

)(

yixi+1 − yi+1xi
)

(8)A =
1

2

n−1
∑

i=0

(

xiyi+1 − xi+1yi
)

(9)x0 = %CH4cos(π/2)
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where α = 2π/3.
For the 7th Model, each sample, the coordinates  Px and  Py are computed by:

The pentagon surface Air given by:

The parameters  xi and  yi (i = 0 to n − 1 with n = 5 is the gas number) are expressed by:

where α = 2π/5.
Other possible combinations of the above technique have also been proposed to give strong credibility to the 

obtained results. Two combinations are given below.
Using a large number of hidden layers is not recommended. Most classification standards problems use only 

one or at most two hidden  layers26. Such ascertainments have been confirmed during our modeling. After sev-
eral attempts, the best results have been achieved for two hidden layers of ten neurons of each. In addition, we 
have considered one output delivering, for each gas sample, a single fault (PD, D1, D2, T1, T2 or T3). Indeed, 
we introduce only the number of input neurons varying from 2 to 5 according to the elements number of the 
input vector. Thus, the topology of the multilayer neural networks we adopted in this work is shown in Fig. 1.

The weighing parameters of the layers are calculated using learning algorithms. Many algorithms are pro-
posed in the  literature25,27. We can find the supervised and unsupervised ones. In this paper, we are interested by 
the supervised ones. Supervised learning is done by introducing pairs of inputs and their desired outputs. This 
learning uses an optimization criterion allowing it to find optimal synaptic weights giving the desired behavior 
using random samples. Several learning techniques are adopted to readjust  weights27. One of the most widespread 
algorithms is the “Back propagation”. Unfortunately, this algorithm suffers from the local minimum problem. A 
variant of the previous method consists of choosing an appropriate displacement to accelerate the convergence of 
the algorithm, which then leads to fast back propagation with momentum. There is another version called Robust 

(10)x1 = %C2H4cos(π/2+ α)

(11)x2 = %C2H2cos(π/2+ 2α)

(12)y0 = %CH4sin(π/2)

(13)y1 = %C2H4sin(π/2+ α)

(14)y2 = %C2H2sin(π/2+ 2α)

(15)Px =
1

6A

n−1
∑

i=0

(xi + xi+1)
(

xiyi+1 − xi+1yi
)

(16)Py =
1

3A

n−1
∑

i=0

(

yi + yi+1

)(

yixi+1 − yi+1xi
)

(17)A =
1

2

n−1
∑

i=0

(

xiyi+1 − xi+1yi
)

(18)x0 = %H2cos(π/2)

(19)x1 = %C2H6cos(π/2+ α)

(20)x2 = %CH4cos(π/2+ 2α)

(21)x3 = %C2H4cos(π/2+ 3α)

(22)x2 = %C2H2cos(π/2+ 4α)

(23)y0 = %H2sin(π/2)

(24)y1 = %C2H6sin(π/2+ α)

(25)y2 = %CH4sin(π/2+ 2α)

(26)y3 = %C2H4sin(π/2+ 3α)

(27)y2 = %C2H2cos(π/2+ 4α)
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Back propagation applicable in the stochastic case. In order to improve the choice of the direction to take in the 
weight space, we use to second-order optimization methods of the objective function specified by the Hessian.

Many learning algorithms, existing in the Matlab toolbox, have been tested. We have chosen three algorithms 
using the back-propagation of the quadratic error and only one using back-propagation of the gradient of the 
quadratic  error27. This latter is between the response calculated by the network and the desired one.

In fact, back-propagation or gradient back-propagation algorithms are the most widely used models in super-
vised training. For this, several models are presented in the Matlab toolbox. These models are used to adjust the 
weights and biases satisfying the quadratic error or its gradient between the output value and the desired one 
reaches minimum value for every gas sample. The selected training algorithms are as follows:

• Levenberg–Marquardt back-propagation algorithm (trainlm).
• One-step secant back-propagation algorithm ( trainoss).
• Resilient backpropagation algorithm (trainrp).
• Scaled conjugate gradient back-propagation algorithm ( trainscg).

The choice of a specific algorithm depends on the input vector and the cost function. There is no theoretical 
method to select one algorithm versus another. In our case, we have used four training algorithms for different 
DGA techniques.

The activation function transforms the unbounded signal into a bounded one. This function is chosen non-
decreasing monotonic. Increasing the input can only increase the output or keep it constant. Choosing a linear 
activation function makes calculation easier, but the neuron loses its robustness. A nonlinear activation func-
tion increases the network’s ability to approximate complex functions. There are three categories of activation 
functions. The first one allows to distinguish between differentiable functions (sigmoid, tangent, hyperbolic) 
and non-differentiable ones (threshold function, thresholding). The second category concerns the functions that 
have significant values around zero, and significant values far from this one. The third ones deal with difference 
between positive functions and functions with zero mean (0 and 1 or – 1 and 1).

Five activation (transfer) functions are selected from the Matlab toolbox: softmax, radbas, purelin, logsig 
and poslin. Several attempts have been made to obtain the best diagnostic rates. The best combinations have 
been found when using softmax in the second hidden layer and purelin in the output layer. Indeed, the five 
aforementioned activation functions are applied only in the first hidden layer, maintaining, softmax and purelin 
for the second hidden layer and the output one  respectively30.

The definitions of the selected activation functions  are30:

• Normalized Exponential (softmax): It is a normalized function, which takes as input vector B of m elements 
and gives a vector of K strictly positive numbers whose sum equals 1. This function is defined by:

• Radial Basic (radbas): it consists of the radial basic transfer function of Gaussian type, given by:

r being a real replacing the Euclidean distance neuron-center30.
• Linear (purelin): this activation function is linear.

(28)f (xj) =
exj

∑m
i=1 e

xi
with j = 1, 2, . . . ,m

(29)f (r) = e−r2

Figure 1.  Topology of the MLP networks adopted in this study.
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• Hyperbolic Tangent Sigmoid (tansig): It consists of the hyperbolic tangent sigmoid activation function defined 
by:

• Rectified Linear Unit Layer (poslin). It is a rectified linear unit layer activation function. For an input value 
x, this function can be expressed by:

The choice of the activation functions depends on the input data. These functions modify the data values 
from the input through the output. The combination of them leads to avoid the elimination of the information. 
So, it is necessary to proceed by some beginning choice of these functions. According to our experience, it is 
more convenient to make a combination of these functions from the input layer to the output one. In the hidden 
layer, a smoothie function is recommended to keep the information of the signal without truncation. This is very 
important for decision process and exploration of all the range of the input data.

ANN-PSO models for insulating oil diagnostic by DGA
Our optimization problem aims to find the best solution, consisting of the global optimum, among a set of solu-
tions belonging to the search space, by minimizing the MSE as function objective.

In fact, meta-heuristic optimization methods have the advantage of being adapted for a wide range of prob-
lems without major modification of their  algorithms28. These methods are based on populations of  solutions29. 
They are often inspired by natural processes, in particular by the theory of evolution in animal and insect socie-
ties which relate to evolutionary biology such as Genetic Algorithms (GA)30, or to the ethological theory such as 
Particle Swarm Optimization (PSO)31, Ant Colony Optimization (ACO)32, Social Spiders Optimization (SSO)33,34.

In our investigation, we opted for the PSO technique. To this end, we first present its principle, elements and 
parameters. We subsequently present the approach undertaken for optimizing the training of the ANN using 
PSO.

Particle swarm optimization is based on a homogeneous set of particles, initially arranged randomly. These 
particles move in the search space and each constitutes a potential solution. Each particle memorizes its best 
visited solution and communicates with the nearby particles. Thus, the particle will follow a trend based, on 
one hand, on its desire to return to its solution optimal, and, on other hand, on its mimicry with respect to the 
solutions found in its neighborhood on other hand. Indeed, from the local optima, the set of particles converges 
towards the optimal global solution of the treated  problem35.

To be able to apply the PSO algorithm, one must define a search space of the particles and an objective func-
tion to be optimized. The principle is to move these particles to find the optimum. Each particle  contains36:

• A position characterized by its coordinates in the definition space of the objective function: 
Xi = (Xi1, . . . ,Xij , . . . ,Xik)

• A velocity allowing the particle to change position during the iterations according to its best neighborhood, 
its best position, and its previous position: Vi = (Vi1, . . . ,Vij , . . . ,Vik)

• A neighbourhood constituted by the set of particles directly interacting on the particle, in particular the one 
having the best value of the objective function.

At any moment, each particle knows:

• Its best visited position Pi(t) through its coordinates and the value of the objective function;
• The position of the best neighbour of the swarm gi(t) which corresponds to the optimal scheduling;
• The value assigned to the objective function f (Pi(t)) at each iteration following the comparison between the 

value of this function given by the current particle and the optimal one.

The particle swarm algorithm is based on:

• Population size: According to Van den Bergh and  Engelbrecht35, increasing swarm size slightly improves the 
optimal value. Eberhart and  Shi36 illustrated that population size has a minimal effect on the performance of 
the EP method. The same observation was made by Nezhad and his  colleagues37. In our investigation, various 
population sizes Np, namely Np = 40, 80, 100 and 120.

• Initialization of position and velocity: Before generating the population of particles, it is necessary to define 
the search space for them and place them randomly according to a uniform distribution. In a d-dimensional 
search space, the particle i of the swarm is modelled by its position vector  Xi according to Eq. (33), and by 
its velocity vector Vi according to Eq. (32)38.

• Position and velocity update: The quality of the particle position is determined by the value of the objective 
function. Along its path, this particle memorizes its best position, which we note pbest = (pi1,…, pi2,…, pid). 
Furthermore, the best position found for its neighbouring particles is gbest = (gi1,…, gi2,…, gid). At each itera-

(30)f (x) =
2

1 + e−2x
− 1

(31)f (x) =

{

x, x ≥ 0
0, x < 0
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tion, the particles update their positions and velocities taking into account their best positions and those of 
its  neighbourhood39.

The new velocity is calculated by Ref.41:

Therefore, the new position velocity is calculated as  follows40:

Xi(k), Xi(k + 1): the positions of the Pi particle at iteration k and k + 1 respectively ; Vi(k), Vi(k + 1): the veloci-
ties the Pi particle at iteration k and k + 1 respectively; pbest(k + 1): the best position obtained by the Pi particle at 
iteration k + 1; gbest(k + 1): the best position obtained by the swarm at iteration k + 1; c1 et c2: constants representing 
the acceleration coefficients; r1 et r2: random numbers; w(k): inertial weight.

Methods
In the previous ANN presentation, each neural network delivers the best classification rate by minimizing the 
root mean quadratic error, MSE, estimated from the computed outputs and the desired ones, as a function of 
synaptic weights and biases.

The biases consist of  bh1,  bh2 and  bo.  bh1 and  bh2 are vectors of 10 elements each. The first is presented to the 
first hidden layer, and the second to the second hidden layer.  bo is an additional scalar added to the output layer.

The synaptic weights consist of  wi between the input layer and the first hidden layer,  wh inter-hidden layers, 
and finally  wo between the second hidden layer and the output one.

wi is a matrix having a number of rows equal to that of input vector elements (m varying from 2 to 5). Moreo-
ver, the number of columns of  wi is equal to the number of neurons of the first hidden layer, i.e. q = 10. In this 
hidden layer, we applied an activation function,  f1. The five previous functions (softmax, radbas, purelin, tansig 
and poslin) have been tested for this latter.

wh linking the first hidden layer to the second, is also a square matrix of dimension qxq (i.e. 10 × 10). The 
activation function, denoted  f2, applied in the second hidden layer, is sotfmax. As previously indicated, this 
activation function has been kept unchanged throughout the diagnostic process.

Likewise,  wo connecting the second hidden layer and the output layer, is also a matrix of dimension 1 × 10 
(i.e. a vector of 10 elements). The activation function, denoted  f3, which has been adopted in the output layer is 
purelin. This latter has also kept unchangeable. In such conditions, the output value is given by:

f1,  f2 and  f3 are the activation functions,  bh1,  bh2 and  bs the biases and B the input vector.
The mean value of the mean squared error has been used as the objective function giving by the following 

expression:

where TS is the total number of training samples (equal to 321), Y is the computed network output, and  Yd is 
the desired output.

Our contribution in this paper that we have proposed the new model for DGA by combining the artificial 
neural network and particle swarm optimization algorithm which gives significant results with very high accu-
racy. This hybridization has never been developed until now.

Taking into consideration the mathematical calculation of the PSO model in the previous section, the con-
vergence of the PSO towards the global optimum depends on the following parameters:

• Inertia factor: The inertia factor w allows controlling the impact of previous velocities on the actual  one41.

– If w <  < 1, rapid changes of direction are possible; little of the previous velocity is preserved;
– If w = 0, the particle moves in each step without knowledge of the previous velocity; the concept of 

velocity is completely lost;
– If w > 1, the particles barely change their direction, which results a great area of exploration and a hesita-

tion against convergence towards the optimum.

• Acceleration coefficients c1 et c2: The constant  c1 affects the acceleration of the particle towards its best perfor-
mance (cognitive behaviour of the particle). Otherwise,  c2 allows the particle to accelerate towards the Global 
Best (social ability of the particle)42. These constants belong to the interval [0;  2]39. In our investigation, c1 
equals 2 and c2 equals 1.

• Random numbers r1 et r2: At each iteration, the two parameters r1(k) and r2(k) are generated randomly in the 
interval [0; 1] by a uniform  distribution41.

• Stopping criterion: In order to converge towards the global optimal solution, different stopping criteria can 
be selected. The most commonly used consist  of42:

– Static criterion: it is generally based on the maximum number of iterations;

(32)Vi(k + 1) = wVi(k)+ c1r1(k)
(

pbest(k)− Xi(k)
)

+ c2r2(k)
(

gbest(k)− Xi(k)
)

(33)Xi(k + 1) = Xi(k)+ Vi(k + 1)

(34)Y = f3(
∑

wo ∗ f2(
∑

wh ∗ f1(
∑

wi ∗ B)+ bh1)+ bh2)+ bo

(35)MSE =
1

TS

∑

PT

(Yd − Y)
2
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– Dynamic criterion: it refers to the stagnation of velocity.

The static criterion has been adopted in our study. The number of iterations has been fixed to 10,000.
A high value of the inertia factor facilitates exploration (the search for new sectors). A low value facilitates 

exploitation (favoring the current sector of research)42. Better convergence, providing the balance between 
exploration and exploitation. Furthermore, it is possible to vary this factor during the iterations according to 
Eq. (36). Good results were obtained for an increase value from 0.4 to 0.9.

wmax: the maximum value of w (= 0.9); wmin: the minimum value of w (= 0.4); iter: the current iteration; maxiter: 
the maximum number of iterations.

Before applying the PSO to optimize the ANN training, first, it is necessary to choose the architecture (topol-
ogy) of the ANN (of two hidden layers with 10 neurons for each layer), the training algorithms, the activation 
functions, PSO parameters (population sizes, maximum number of iterations, variables to optimize, etc.), the 
database as well as the number of samples reserved for training and testing. Next, it is necessary to determine 
the objective function to be optimized. This function consists of the mean square error given by Eq. (35).

The PSO algorithm is employed in training the ANN to determine the set of parameters w and b. The total 
number (corresponding to search space dimension) of these parameters can be determined by the following 
equation:

si: input vector dimension.
The execution of the ANN-PSO algorithm is carried out in accordance with the following steps:

• Step 1: Upload the data training set and the data test one.
• Step 2: Define the architecture of ANN: number of hidden layers, neurons number, train algorithm and 

activation function.
• Step 3: Determine the PSO algorithm parameters and randomly generate p particles.Each one containsN 

values of weights and biases, and generate, then after, NpANN models.
• Step 4: Train the Np ANN and calculate objective functionMSE(p values) using weighs and biases generated 

by PSO.
• Step 5: Select the best solution and update it if it is different from the previous iteration.
• Step6: Check the criterium iteration.
• Step 7: If the condition of step 6 is not verified, return to step 4 with updating the particles velocities and 

positions. Else, if the condition of step 6 is verified, the optimal parameters are used to test the ANN.

We have compared in the same conditions, the performance of the two algorithms. Indeed, the same mul-
tilayer topology used has been kept for this part. Also, we have adopted the input vector 9 (of the coordinates 
of the two centers of mass of triangle 1 and pentagon I of Duval) offering the best classification performance of 
90% for neural network. This result was obtained using trainlm as training algorithm, and poslin, softmax and 
purelin as activation functions respectively in the first hidden layer, the second hidden one and in the output 
one. This training algorithm-activation functions combination has been kept in the second algorithm, in order to 
further improve the fault classification rate. Also, we have considered the same database of 481 samples including 
321 samples (set of 66%) for training and 160 (set of 33%) for testing, the same gases  (H2,  CH4,  C2H2,  C2H4 and 
 C2H6), and the same defects (PD, D1, D2, T, T2, and T3).

In order to ensure the convergence of the objective function (the mean square error) towards an optimum, 
four population sizes of the particle swarm have been adopted, namely 40, 80, 100 and 120.

The search space dimension, corresponding to the number of parameters w and b,has been fond equal to 
N = 171. The parameters of the PSO algorithm have been set as described in the Table 1.

Results
For ANN results, 180 programs of neural networks have been developed from the nine input vectors, four train-
ing algorithms and five activation functions. The database contains 481 samples. For each network (model), 66% 
(i.e. 321 gas samples) have been selected for training and the rest (160 samples) for the test.

(36)w(k) = wmin + (wmax − wmin)

(

k

maxiter

)

(37)N =
(

si ∗ q + bh1
)

+
(

q ∗ q + bh2
)

+ q + bo

Table 1.  PSO algorithm parameters values.

Parmeter Descriotion Value

c1 Particle coefficient 2

c2 Swarm coefficient 1

iter_max Maximum iteration 10,000

N Search space dimension 171
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The performance of each neural network has been evaluated in terms of classification or diagnosis rate. For 
this, the number of iterations adopted is 1000. Each neural network has been executed 50 times, and the best 
diagnosis rate has been recorded.

The obtained results are presented as histograms of Figs. 2, 3, 4 and 5. These figures illustrate the different 
diagnostic rates as a function of the activation function of the first hidden layer, for different training algorithms 

purelin radbas softmax tansig poslin

Levenberg-Marquardt back-propagation : trainlm
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Figure 2.  Accuracy rate-activation function of the first hidden layer, for trainlm training algorithm.

Figure 3.  Accuracy rate-activation function of the first hidden layer, for trainoss training algorithm. 

Figure 4.  Accuracy rate-activation function of the first hidden layer, for trainrp training algorithm.
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trainlm, trainrp, trainoss and trainscg, respectively. Note that the softmax and purelin have been used as activa-
tion functions in the second hidden layer and the output one, respectively.

In fact, the four figures were drawn using twenty tables (five tables per figure). To avoid burdening the manu-
script, we prefer to present only one Table 2 employing purlin algorithm for the input layer (for the first algorithm 
Purlin of Fig. 2). Such tables provide more details of the results in terms of activation functions for different input 
layers, accuracies and input vectors. This allows a better comparison between the considered models.

We are interested, through the results of Figs. 2, 3, 4 and 5, to determine the highest classification rate for 
each model. The input vectors can be classified in decreasing order of the classification rate (i.e. from best to 
bad) as follows:

• 8th Model gives a maximum rate of 90%, i.e. 144 faults well classified on 160 (reserved for the test).
• 2nd Model gives a maximum rate of 89.375% corresponding to 143 well-classified faults.
• 1rt Model gives a maximum rate of 77.5%, i.e. 124 well-classified faults.
• 6th Model gives a maximum rate of 60.625% is 97 well-classified faults.
• 3rd Model and 5th model of IEC 60,599 ratios have given a maximum rate of 59.375%, so 95 are well-classified 

faults.
• 9th Model has given a maximum rate of 58.125%, i.e., 93 well-classified faults.
• 4th Model gives a maximum rate of 54.375%, corresponding to 87 well-classified faults.

In order to provide all information of such classification, we present in the Table 3 the accuracy rate in 
descending order (from best to bad) for all input vectors with the activation functions of the first hidden layer 
as well as the training algorithms. Note that the activation functions in the second hidden layer and the output 
one are softmax and purelin respectively.

For PSO results, the variation of the objective function, consisting of the mean squared error (MSE), as a 
function of the number of iterations, for different population sizes is presented in Fig. 6.

Depending on the population size, the minimum mean square error, the precision rate and the number of 
well-classified faults, are summarized in Table 4.

Figure 5.  Accuracy rate-activation function of the first hidden layer, for trainscg training algorithm.

Table 2.  Details for Purelin algorithm by ANN in Fig. 2.

Activation functions

Accuracy Levenberg–Marquardt (%) Inpit vectorsInput layer Hiden layer Output layer

Purelin linear transfer Softmax normalized exponnetial Purelin linear transfer

89.38 Five gazes in pourcentage

77.50 Five gazes in ppm

54.38 Rogers’s Four ratio

59.38 Dornenburg"s Four ratio

59.38 LCEI 60,599 Three Ration

55.00 Duval’s Triangle

86.25 Duval’s Penatgone

89.38 Duval’s Triangle & Pen-
tagone

55.63 Rogers &Dornenburg’s 
ratio
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Discussion
The training algorithm trainlm contributed in the elaboration of these results by approximately 78%, since it has 
been used 7 times on 9. Otherwise, the activation functions purelin and poslin have participated in these results 
of about 56% (5 on 9) and 44% (4 on 9) respectively. Indeed, for such classification type, it is recommended to 
use trainlm as training algorithm, purelin or poslinas as activation function in the first hidden layer, softmax for 
the second hidden one and purelin in the output one.

The best classification rate of 90%, i.e. 144 well-classified faults on 160), has been obtained by presenting the 
input vector consisting of the coordinates of the two centers of mass of the triangle and the pentagon Duval, 
using trainlm as training algorithm and poslin, softmax and purelin as activation functions in the first hidden, 
the second hidden and the output layers respectively. This accuracy rate will be improved, in the same conditions, 
using particle swarm optimization (PSO) technique.

For a given population size, and over the iterations, Fig. 6 shows that the MSE (objective function) decreases 
abruptly from 0 to 120 iterations, and slowly elsewhere, tending practically towards a constant level. This latter 
is called minimum MSE which could represent the global MSE. It changes from one population to another, as 
illustrated in Table 3. In fact, with the progressive increase in the population size from 40 to 120, the global MSE 
slightly decreases from 0.0216 to 0.0066, while the classification rate and therefore the number of well-classified 
faults slightly increases from 154 to 159 reserved for the test. Indeed, the 120-population size allows obtaining 
159 well-classified faults out of 160 (reserved for the test) with an accuracy rate of 99.375% against 90% when 
using ANN alone.

Table 3.  Accuracy rates in descending order with activation functions of the first hidden layer and training 
algorithms.

Vector Accuracy rate (%) Classified faults/160 Training algorithm Activation function of the 1st hidden layer

8 90 144 Trainlm Poslin

2 89.375 143 Trainlm Purelinor poslin

7 89.375 143 Trainoss Poslin

1 77.500 124 Trainlm Purelin

6 60.625 97 Trainrp Tansig

3 59.375 95 Trainlm Purelin

5 59.375 95 Trainlm Purelin

9 58.125 93 Trainlm Poslin

4 54.375 87 Trainlm Purelinor radbas

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

M
S
E

N
p
= 120

N
p
= 100

N
p
= 80

N
p
= 40

Figure 6.  Variation of MSE as a function of the number of iterations, for different population sizes.

Table 4.  Diagnosis accuracy with several population sizes.

Population size 40 80 100 120

Global MSE 0.0216 0.0197 0.0173 0.0066

Accuracy rate (%) 96.25 98.125 98.750 99.375

Number of well-classified samples/160 154 157 158 159
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Conclusion
In this investigation, we have developed intelligent techniques using multilayer feed-forward ANN-based models 
for fault detection in an oil-immersed power transformer, by analysis dissolved gases. Nine input vectors have 
been used. Otherwise, each hidden layer contains ten neurons. Finally, the output having only one neuron deliv-
ers a single fault for each gas sample.

Using back-propagation, four training algorithms have been chosen, namely trainlm, trainoss, trainrp and 
trainscg. In addition, five activation functions, consisting in softmax, radbas, purelin, tansig and poslin, have 
been selected. These functions have been applied for the first hidden layer, while softmax was maintained for the 
second hidden layer, and purelin for the output layer. The used database contains 481 samples of which 321 have 
been selected for training and the rest (160 samples) for testing. Inspired by IEC and IEEE standards, six faults, 
consisting in PD, D1, D2, T1, T2, and T3, have been adopted. The best classification rate of 90% (i.e. 144 well-
classified faults out of 160) has been obtained when using the eighth input vector (formed from the coordinates 
of the two centers of mass of triangle 1 and pentagon I of Duval) and applying trainlm as learning algorithm.

In order to further improve the best classification rate, the corresponding multilayer network has been opti-
mized using particle swarm technique for various population sizes, namely 40, 80, 100 and 120. The mean square 
error (MSE) represents the objective function to be minimized for 10,000 iterations. Obviously, the same data-
base with the same number of samples for training and testing, and the same faults has been kept. For a given 
population size, the mean square error (the objective function) decreases abruptly for iterations ranging from 
0 to 120, and slowly elsewhere, tending towards a constant level representing the minimum mean square error 
(MMSE). Furthermore, the gradual increase in the population size from 40 to 120 results in a slight decrease in 
the minimum squared error from 0.0216 to 0.0066, and a slight increase in the classification rate of 96.250 (cor-
responding to 154 faults well classified out of 160) at 99.375% (with 159 well classified faults). In other words, 
the best fault classification rate of 99.375% has been obtained for 120 population size. In these conditions, the 
ANN-PSO algorithm was able to detect 159 faults out of 160 reserved for the test.

Finally, our contribution in the paper is to present a new approach by combining learning and particle swarm 
optimization in dissolved gas analysis field. We have demonstrated that this technique is leading to significant 
results comparing them to the existing ones in the previous research. We have obtained high level of decision 
about the quality of the transformer oil by using different methods according to IEC and IEEE standards.

In high voltage distribution, this new model facilitates the maintenance process and avoids transformer fail-
ure. It gives us the instantaneous decision about the characteristics of the failure and time life of the transformer. 
This latter may include smart sensors linked to digital process unit with supervisory and data acquisition system. 
The advantage to use this model is to control in real time the process by minimum time calculation of the deci-
sion. It leads time saving and minimum cost.

It is worth noting that the best results are obtained with the ANN-PSO model. This hybridization is the key to 
reach this objective. The choice of the architecture of the neural network was the crucial phase in our study. Also, 
the combination of different training algorithms and activation functions allows obtaining the best model with 
several tests. The ANN-PSO model needs many calculations to have the convergence of the algorithm. However, 
it is necessary to match the obtained models to the corresponding oil analysis technique. As input vector, the 
graphical methods of Duval give decision with best score.

In order to use our technique in other field, it is necessary to adapt the architecture of the neural network to 
the problem. It means that we can choose the input layer and the output layer according to the proposed prob-
lem. After that, the number of the hidden layer can be fixed according to the accuracy of the result. Finally, it is 
important to have a deep knowledge of the application that we want to use the model developed in this paper.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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