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Strategies for overcoming data 
scarcity, imbalance, and feature 
selection challenges in machine 
learning models for predictive 
maintenance
Ali Hakami 

Predictive maintenance harnesses statistical analysis to preemptively identify equipment and 
system faults, facilitating cost- effective preventive measures. Machine learning algorithms enable 
comprehensive analysis of historical data, revealing emerging patterns and accurate predictions of 
impending system failures. Common hurdles in applying ML algorithms to PdM include data scarcity, 
data imbalance due to few failure instances, and the temporal dependence nature of PdM data. 
This study proposes an ML-based approach that adapts to these hurdles through the generation 
of synthetic data, temporal feature extraction, and the creation of failure horizons. The approach 
employs Generative Adversarial Networks to generate synthetic data and LSTM layers to extract 
temporal features. ML algorithms trained on the generated data achieved high accuracies: ANN 
(88.98%), Random Forest (74.15%), Decision Tree (73.82%), KNN (74.02%), and XGBoost (73.93%).

The advent of Industry 4.0, as defined  by1,2, has revolutionized traditional manufacturing processes and business 
models. Industry 4.0 represents the fourth industrial revolution, integrating digital technologies, automation, 
data exchange, and the Internet of Things (IoT) to transform traditional manufacturing processes into inter-
connected and intelligent production systems. In the era of Industry 4.0, unplanned downtime’s are of major 
concern because they are believed to cause high drops in productivity. According  to3 unplanned downtime 
roughly accounts for 5–20% of such drops. A proactive maintenance approach is therefore crucial for mini-
mizing unplanned downtime, making the most out of available resources, and increasing  output1. Predictive 
maintenance(PdM) has proven to be such an approach. It entails the use of statistical analysis of historical data to 
identify eminent faults in equipment and systems before time. This way, maintenance operations can be carried 
out in time hence reducing unexpected stops.

The use of machine learning algorithms in data analytics has seen rapid growth over the recent  past4. In PdM, 
such algorithms enable the analysis of past occasions, the identification of emerging patterns, and the accurate 
prediction of future outcomes based on the acquired  insight5–7. Such insights simplify maintenance procedures 
and consequently improve resource  utilization8. Moreover, predictive maintenance datasets involve many crucial 
variables like device importance, accessible resources, and operational  limitations9. This makes ML techniques 
more desirable as they are fast and can seamlessly process vast parameters delivering insights in time, enabling 
timely preparation for potential  breakdowns10. Besides conventional machine learning methods, the application 
of deep learning (DL) and reinforcement learning (RL) has become a major area of research in  PdM11. With 
reinforcement learning machines perfect maintenance processes, and can perform them autonomously resulting 
in improved performance and  efficiency12.

Two common outcomes of interest in PdM are fault diagnosis and  categorization13,14, and Remaining Useful 
Life (RUL) prediction. In fault diagnosis, algorithms learn the normal patterns from the training data and then 
flag any observations that significantly deviate from the learned  patterns15. Such observations are thought of as 
indicative of abnormalities in the system and possibly impending failure. For RUL, the algorithms learn to predict 
the remaining useful life of a component from its performance. With these two maintenance decisions can be 
made in time, either manually or by a decision-making agent trained through reinforcement.
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As academics and practitioners strive to optimize maintenance methods and avoid costly equipment fail-
ures by using data and artificial intelligence, various research literature on the application of ML in PdM has 
 emerged16,17. Due to the diversity of machinery in industries and their performance patterns during different 
faulty conditions, PdM datasets tend to be diverse. Specializations therefore play a significant role in model 
choice. For instance, Random Forest (RF) algorithms work better with independent observations, while Long 
Short-Term Memory (LSTM) neural networks have proven effective with sequential data such as time  series18–20. 
The numerous literatures test different ML models in numerous business settings to establish their adaptability 
and  efficacy9,18. Researchers have identified common problems while dealing with different case studies. Data 
scarcity, feature selection from abundant sensor data properties, data imbalance, and temporal relationships in 
data are among these  difficulties21–23.

Machine learning approaches, especially deep learning, typically require large datasets to adequately learn 
failure patterns. The availability of such data can be a challenge, especially for new systems or components 
where there is insufficient historical data. Several reviewed literature have reported this challenge. For instance, 
Ganesan et al.24, who employed specialized modeling where different models were developed with data from 
each component of interest, acknowledge the challenge as a limitation to the approach. Rojek et al.25 encountered 
challenges related to data availability, reliability, and completeness while applying AI techniques in PdM. Another 
 study26. Attempted to address data scarcity by employing simulation to generate PdM data for automotive engine 
components. However, they further encountered issues with computational cost and feasibility in real-world 
applications. Data imbalance is another challenge that arises from the fact that there are typically few failure 
instances in maintenance datasets. Models trained on such datasets often do not have enough failure cases to learn 
from. Susto et al.16. Addressed this issue by introducing prediction horizons, where the most recent ’m’ instances 
in each run are segregated as failures and the preceding ’n-m’ instances as non-failures. The temporal nature of 
sensor data, where readings are collected over time, also presents complexities due to sequential dependence 
between readings. This can impact common feature extraction types such as those involving statistical moments. 
Another  study13,27 proposes the use of specialized networks such as GRUs and LSTMs during feature extraction 
to learn the temporal patterns. Such feature learnings also help avoid feature selection which can degrade data 
quality. A research gap exists concerning the need for a robust PdM approach that addresses the challenges of 
data scarcity, temporal dependence in sensor data, data imbalance, and limitations of feature selections. This 
study proposes a machine learning-based architecture, which adapts to the above problems through:

• Generation of synthetic data with patterns of relationship similar to those in observed data, but not identical 
to the observed data, to address the issue of data  scarcity28–30, using a Generative Adversarial Network(GAN).

• Creation of failure horizons around failure observations like  in16, to solve the issue of data imbalance that 
arises while using run-to-failure datasets.

• Deployment of Long Short Term Memory (LSTM) neural networks proposed  by18, as an alternative to statisti-
cal moments to extract temporal patterns before the application of traditional machine learning models.

• Integration of AI techniques into maintenance practices, as explored  by1, can significantly enhance main-
tenance strategies. This enhancement leads to improved failure prediction accuracy, reduced costs, and 
increased operational efficiency.

The remaining part of the paper is organized into the methods section which is the methodology that out-
lines the proposed architectures. Results section, which reports the results of the implementation. Finally, the 
conclusion section which presents the research conclusions, which concludes the analysis, limitations, and future 
research directions are provided.

Methods
Data Collection, cleaning and prepossessing
The study utilizes Production Plant Data for Condition Monitoring retrieved from the Kaggle data  repository31. 
The data is from the IMPROVE project that seeks to monitor production plant conditions for non-woven materi-
als, predicting component conditions through 8 run-to-failure  experiments32. Data cleaning and preprocessing 
included the creation of data labels and one hot encoding of the labels. Sensor readings were normalized with 
min–max scaling to maintain consistency in  scale33. The final data consists of 228,416 observations in the healthy 
category against 8 failure observations at the end of each run. This indicates a serious data imbalance issue. 
Overall the data consisted of 0.01% missing cases in each column.

Addressing data scarcity
The application of machine learning in PdM carries over the general limitations associated with ML techniques. 
One such limitation is the need for large data for the models to learn enough patterns to predict future values 
 correctly23,34,35. With the intensified effort to minimize costs by preventing equipment breakdowns and downtime 
in Industry 4.0, failure instances are rare, which means longer times are needed to gather enough data to train 
models. This makes dealing with data scarcity one of the fundamental issues in predictive  maintenance36. Genera-
tive Adversarial Networks (GANs) have been mentioned in other fields as a feasible solution to data  scarcity23. 
This study proposes the use of GANs to generate synthetic run-to-failure data with runs similar to the collected 
data to make the data large enough to train ML models.

The Adversarial Networks (GANs) consist of two neural networks: the Generator (G) and the Discriminator 
(D) which engage in a perpetual adversarial competition, each having a specific role.
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• Generator (G): The generator creates synthetic data. It takes a random noise vector or vector of random 
values as input and learns to map this input to data points that closely resemble the target dataset. Initially, 
the generator produces random, nonsensical data. However, it gradually refines its output through iterative 
training to generate data that becomes progressively more indistinguishable from the training data;

• Discriminator (D): The discriminator, on the other hand, acts as a binary classifier. It is provided with 
input data, which can either be real data from the training set or fake data generated by the generator. The 
discriminator’s task is to distinguish between these two types of data by classifying the input as real or fake. 
During training, the discriminator learns to become increasingly proficient at this binary classification task, 
thus becoming more accurate;

The hallmark of GANs is adversarial training. In this process, the generator and discriminator are trained 
concurrently in a mini-max game. The objective is two-fold, the generator aims to produce synthetic data virtually 
indistinguishable from real data. In essence, it seeks to deceive the discriminator. The discriminator, conversely, 
aims at correctly classifying real data as genuine and fake data as counterfeit. The adversarial competition in 
GAN training results in a dynamic equilibrium where the generator continually refines its ability to produce 
challenging data for  discrimination37. while the discriminator refines the ability to distinguish generated data 
from real training data. This equilibrium signifies successful GAN training. The trained generator can therefore 
be used to generate synthetic data to train the ML  models38. Figure 1 below visualizes the structure of a typical 
GANs model. With the GAN-generated data in hand, our methodology diverges into two primary paths: a clas-
sification path and a regression path.

Classification path
The classification path result is the categorization of machinery state into ’healthy’ or ’failure’ classes. The healthy 
class denotes that the machine is in a healthy working status while failure denotes impending failure.

Addressing data imbalance
With failure conditions being rare in PdM data, owing to proactive maintenance in Industry 4.0, available data-
sets are highly imbalanced because the components are mostly in a healthy status rather than a failure status. In 
run-to-failure data, for instance, only the last observation in each run is a failure, which results in the data having 
many healthy cases against few failure cases. To address this issue, failure horizons were first created as proposed 
by Susto et al.16, where the component’s last ‘n’ observations before a failure event are labeled as ‘failure’, while the 
rest are labeled as ‘healthy’. This increases the number of failure observations in each run by ‘n’. Moreover, these 
horizons represent a temporal window preceding a machine failure where the machine is believed to exhibit 
failure patterns (signs). Figure 2 below visualizes the process of making the horizons.

This assures enough cases on the failure group for the models to learn the characteristics of a system descend-
ing to failure. The value of ‘n’ is a trainable parameter chosen via hyperparameter tuning.

Addressing temporal dependence and feature selection
In predictive maintenance, data is collected from the same components or system continuously over time to 
help under- stand the component’s behavior and failure patterns, this way observations collected from the same 
sensor are temporally  dependent39,40. For instance, the scenario where a bolt becomes loose within a machine:

• Vibration Sensors: Loosening bolts may cause more machine vibrations thereby resulting in severe damage. 
This way the readings from vibration sensors would show a multiplicative trend where the measurements of 
vibration increase over time. Thus, the dynamic correlation between vibration and machine health reveals 
that sensor readings rely on previous data.

• Temperature Sensors: Similarly, mechanical problems may influence the temperature sensors hence causing 
temporal dependence of previous readings and influencing the current temperature readings.

Figure 1.  GAN Training  Architecture38.
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Extracting these temporal dependencies is important as it can help predict future failures. On the other hand 
feature selection entails scanning the entire feature space to identify an optimal feature set that doesn’t contain 
redundant and irrelevant  features41. Major challenges with feature selection is the possibility of ignoring feature 
 dependencies42, getting unstable  features43 and also inability to exploit all possible feature when the feature space 
is large. Employing feature learning approach can help evade most of these selection problems.

Recurrent Neural Networks (RNN) are a family of Artificial Neural Networks specialized for processing 
sequential data such as temporal dependencies. The network features an internal state that help the model to 
remember past information while processing the current  information44. A major challenge in RNNs is the van-
ishing gradient problem. The gradients of the loss function concerning the parameters of the network become 
extremely small as they are back-propagated from the output layer to the earlier layers during  training45. Long 
Short-Term Memory (LSTM) networks are RNNs specialized to handle the vanishing gradient problem by 
having a complex memory cell instead of simple recurrent  connections46. The memory cell features three gates 
which include; A forget gate that determines what information to forget from the memory cell, an input gate 
that determines what new information to store in the cell and an output cell that determines what information 
to output from the  cell46. This gating mechanism allows gradients to flow more freely through time enabling the 
network to capture long-range dependencies in sequential data. The proposed methodology employed Long 
Short-Term Memory (LSTM) networks to extract temporal patterns from the sensor data, improving our feature 
set for analysis.

Classification
The temporal features learned by the LSTM were subsequently utilized to train machine learning classifiers. A 
variety of classification algorithms were employed, including Artificial Neural Networks (ANN), Support Vec-
tor Machines (SVM), Decision Trees (DT), K-Nearest Neighbors (KNN), Random Forest (RF), and Extreme 
Gradient Boosted Classifier (XGBoost). The output of the classifiers is a classification of the component status 
as ’healthy’ or ’failure’, indicating whether the component is healthy or descending into failure.

Regression path
Other than the classification path, our methodology introduces a regression-oriented approach. In this context, 
the focus shifts from categorizing runs into ‘healthy’ and ‘failure’ classes to predicting the Remaining Useful Life 
(RUL) of the machinery. RUL represents the number of useful operational days remaining before a machine is 
expected to fail. Because RUL is a quantitative variable, the data imbalance issue doesn’t apply.

Addressing temporal dependence and feature selection
The regression path employs the same approach as the classification path to handle temporal dependence. LSTM 
architecture is utilized to learn temporal features from the GAN-generated data, which are valuable in training 
ML algorithms to predict the Remaining Useful Life (RUL).

Figure 2.  A depiction of 4- horizon categorization.
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Regression models
The LSTM-extracted features were passed to a suite of regression models. These models are designed to predict 
the Remaining Useful Life (RUL) of the machinery, providing valuable insights into how many operational days 
remain before potential failure. The regression models employed include: Artificial Neural Networks (ANN), Sup-
port Vector Regressor (SVR), Decision Trees Regressor (DT), K-Nearest Neighbors Regressor (KNN), Random 
Forest Regressor (RF), and Extreme Gradient Boosted Regressor (XGBoost). These models can quantitatively 
estimate the RUL of the machinery, providing maintenance personnel with actionable information on when 
maintenance actions should be taken. Figure 3 below visualizes the steps of the proposed methodology.

Proposed models
Artificial neural networks (ANN)
Artificial Neural Networks are deep learning models capable of learning complex relationships within data. They 
function through three primary layers: the input layer, hidden layer, and output  layer24. The input layer receives 
data and assigns activation values, while the hidden layer performs core computations and applies an activation 
function to standardize the  output13. Several hidden layers can be stacked together to form a deep neural network. 
The output layer presents the outcome using a cost function, indicating the network’s proximity to achieving the 
desired result. The activation value moves from input to output nodes, where weights are adjusted and the cost 
function measures the difference between actual and projected output, enhancing network performance. Two 
key processes are introduced to minimize the cost function and enhance the network’s performance;

(1) Back Propagation: This involves neural network training where weights are adjusted to boost model preci-
sion and accuracy, minimize error rates, and minimize cost function value.

(2) Forward Propagation: Data enters through the input layer, and moves forward through the network to 
obtain the output, which is then compared to the anticipated results.

Subsequent steps encompass error computation and backward propagation, which enables weight adjust-
ments. This structured algorithm allows for the concurrent adjustment of weights, thereby helping identify which 
weights contribute to errors.

K nearest neighbour (KNN)
A KNN model is a supervised learning model that predicts new cases based on the labels of the most similar cases 
in the training set. The model requires users to choose a parameter K, which represents the number of neighbors 
to consider. It computes the distance between the new case and all cases in the training set using distance metrics 
such as Euclidean distance, then determines the K nearest cases to the new case. Subsequently, the new case is 
labeled with the most common label among the K neighbors in the case of  classification47, or with the average 
of the labels of the K nearest neighbors for regression  tasks48.

Decision tree
In classification context DT works through binary splitting to categorize data into multiple outcomes. The 
process begins with a single node and proceeds to split the training data into subgroups (nodes) according to 
the feature most correlated with the outcome  variable49,50. Each subgroup is then further divided based on the 
feature most associated with the outcome variable within those subgroups. This process continues until all nodes 
become pure or are unable to be split further. The primary measures of node impurity/purity are typically Gini 
and entropy. In regression context, splitting is similar to classification, but the splitting objective is to sum of 
squared residuals at the leaf  node51.

Random forest
Random Forest is an advancement of the decision tree, where instead of building a single decision tree that is 
prone to over fitting, multiple decision trees are built as ensembles from the training set, resulting in a forest 
of decision trees. The algorithm first takes n bootstrap samples from the training set and builds a tree on each 
 sample52. To estimate model performance during training, each case is predicted by all the trees it was not 
involved in building, and then the most predicted class is considered as the predicted value for that case in the 

Figure 3.  Machine learning solution architecture.
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classification context. In the regression context, the average of the predicted values is considered as the predicted 
value. To predict new cases, all trees predict the new case, and then the most predicted class is considered as the 
prediction for classification  contexts53, while the average of the predictions is considered as the prediction for 
regression  cases54.

Extreme gradient boosting
Like Random forests Extreme Gradient Boosting is an advancement of decision trees, which combines multiple-
week learners for this case decision trees to come up with a strong predictive model, unlike decision tree where 
trees are build on independent bootstrap samples, in gradient boosting the trees are build  sequentially53, where 
each subsequent tree is built correct errors of the previous tree the aim is to minimize loss function commonly 
MSE. The final prediction of the model is usually the sum of predictions from all weak learners.

Support vector machines (SVM)
SVMs are powerful supervised learning techniques for regression, classification, and outlier detection tasks. The 
models present various advantages such as memory efficiency, high-dimensional effectiveness, and  robustness55. 
In classification, SVMs aim to find a hyperplane or set of hyperplanes that maximize the margin between different 
classes of data points. These hyperplanes are used to make predictions for new data points, where the side of the 
hyperplane they fall on determines their class. SVMs support various kernel functions like linear, polynomial, 
radial basis function (RBF), and sigmoid, allowing them to handle both linearly and non-linearly separable data. 
The choice of the kernel function and its parameters like C (controls misclassification penalty) and gamma (affects 
the decision boundary’s flexibility) plays a crucial role in SVM performance and must be carefully  selected56,57. 
Support Vector Regression (SVR) is a regression method that minimizes error between predicted and actual val-
ues. It can handle unbalanced datasets, multi-class classification, and probability estimation. However, it requires 
tuning hyperparameters, data preprocessing, and selecting appropriate kernel  functions58. SVR is implemented 
in popular libraries like scikit-learn libsvm and liblinear for efficient computation.

Results
GAN training
The GAN generator model was specified with a masking layer at the beginning to handle differing run lengths 
and LSTM layers to handle temporal features; the final layer includes a dense layer to control the output dimen-
sion. The discriminator included the same layers but the dense layer was binary to output classification of data as 
fake or real. The model was trained using a custom training loop, with batches of runs randomly sampled from 
the padded dataset. The discriminator classifies data as synthetic or real, while the generator aims to produce 
synthetic lines to deceive the discriminator. Additionally, binary cross-entropy loss functions for both the dis-
criminator and generator were tracked throughout training. The generator minimizes this loss to improve the 
quality of generated sequences. Binary cross-entropy loss measures the dissimilarity between predicted prob-
abilities and actual binary outcomes (0 or 1). It can be summarized in the formula below:

where L (y, p) is the loss for a single data point, y is the actual binary label (0 or 1), and p is the predicted prob-
ability that the data point belongs to class 1. Lower loss values for the discriminator indicate the discriminator’s 
ability to differentiate between synthetic and real data while for the overall model, it indicates the generator’s 
ability to fool the discriminator. Figure 4 below report the generator and discriminator.

According to the graphs in Fig. 5, the GANs framework shows a dynamic evolution of two critical loss com-
ponents, that is GAN loss and discriminator loss. The discriminator initially reduces loss when acquiring real 
data patterns, while gradually understanding fake data characteristics. Besides, the generator loss’s trajectory 
varies from an upward trend in discriminator training to a descending trend, an indication that it has a growing 
efficiency in duping the discriminator, with a key point at equilibrium.

After training the generator, synthetic data was generated using the median run size, resulting in 20 runs. The 
data was normalized to match the minimum and maximum values of the collected datasets before inclusion. The 
study addressed the issue of data imbalance in classification models by segmenting data into healthy segments 
(N–n readings) and failure segments (n readings), adjusting parameter ’n’ to evaluate model performance and 
sensitivity to different prediction horizons. Conversely, temporal dependence was addressed by introducing 
LSTM neural networks where the number of LSTM layers and neurons for each layer was decided through 
hyperparameter tuning. The network utilized a maximum pooling and dense layer to control output feature 
dimensionality, while a masking layer at the top handles dataset padding.

Classification feature extraction
The LSTM feature extractor for the classification path was trained jointly with the ANN classifier to learn the 
extraction of temporal features which can be used to classify component status. The number of LSTM layers to 
be used and the number of units for each layer were tuned using a Keras tuner to achieve optimal performance. 
Moreover, 5 horizon sizes were tried to see which horizon size was most appropriate. Figure 6 below reports 
optimal model for each widow size.

ANN classifier
The ANN layer uses the LSTM extracted features to classify component status with a sigmoid activation and 1 
unit output. The system, combined with a binary cross-entropy loss function, quickly learns to predict component 

(1)L(y, p) = −[y ∗ log(p)+ (1− y) ∗ log(1− p)]
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health in a few epochs but needs more training epochs for larger n-horizons. Figure 7 visualizes the trend in 
training and validation loss throughout the training process.

Table 1 reports the Artificial Neural Network (ANN) classification results for all the chosen n horizons. The 
model correctly predicted 88.98% of the next downtime across a horizon of 720 observations, with 99.19% of the 
healthy observations and 88.69% of the failure cases correctly predicted. The model precision is 99.97% which is 
the proportion of cases predicted as failure cases that are failures. The F1 score is 93.99% indicating that the model 
performs well in identifying both cases. Generally, the accuracy, sensitivity, specificity, and F1 score decrease as 
the horizon size increases. This indicates that the model can more accurately detect impending failures that are 
nearer in time compared to those farther in the future.

Other classifiers
The extracted LSTM features were applied to baseline ML classifiers including Random Forest, XG Boost, Deci-
sion Tree, KNN, and SVM. Hyper parameters were tuned for each model using a Keras tuner. Table 2 below 
reports the optimal parameter setting for each classifier. Generally, model performance decreased with the hori-
zon size, with a failure horizon of 720 observations yielding the best results for all baseline classifiers. Overall, 
SVM and Random Forest had the highest accuracy (74.15%) and identified failures better (specificity = 49.78%). 
Extreme boosted decision tree and KNN identified healthy conditions slightly better (specificity = 49.78%), while 

Figure 4.  Structure of generator and discriminator models.

Figure 5.  Trends in discriminator and generator loss during training.
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KNN had the highest precision. Support vector machine and Random Forest had the highest accuracy. Table 2 
below reports this information.

Generally, model performance decreased with the horizon size, with a failure horizon of 720 observations 
yielding the best results for all baseline classifiers. Overall, SVM and Random Forest had the highest accuracy 
(74.15%) and identified failures better (specificity = 49.78%). Extreme boosted decision tree and KNN identified 
healthy conditions slightly better (specificity = 49.78%), while KNN had the highest precision. Support vector 
machine and Random Forest had the highest accuracy. Table 3   below reports this information.

Regression feature extraction
For the regression path, the LSTM feature extractor was trained jointly with the ANN classifier to extract tem-
poral features appropriate for RUL prediction. The number of LSTM layers and units in each layer were tuned 
to get the optimal feature extractor. Figure 8 visualizes the optimal feature extractor which contains one LSTM 
layer of 64 units.

The model was compiled with the mean squared error loss function. Figure 9 visualizes the trend in training 
and validation loss during training, the two drops gradually to optimal values by the 8th training epoch (Table 4).

Figure 6.  Trends in LSTM model loss.
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Figure 7.  Trends in LSTM model loss.

Table 1.  Table of Model performance metrics.

Measure n = 720 n = 1440 n = 2160 n = 2880 n = 3600

Accuracy 0.889826 0.878790 0.822497 0.818892 0.807892

Sensitivity 0.886903 0.871930 0.806919 0.796817 0.786915

Specificity 0.991944 0.995208 0.993565 0.995174 0.985163

Precision 0.999740 0.999676 0.999274 0.999242 0.989041

F1_score 0.939947 0.931444 0.892854 0.886623 0.989440

Table 2.  Optimal parameters for the classification models.

Classifier Parameters

KNeighborsClassifier KNeighborsClassifier(n_neighbors = 20)

DecisionTreeClassifier DecisionTreeClassifier(max_depth = 90, max_features = ’log2’, max_leaf_nodes = 30, min_samples_leaf = 12,
min_weight_fraction_leaf = 0.2)

RandomForestClassifier RandomForestClassifier(max_depth = 50, max_features = ’auto’,
max_leaf_nodes = 40, min_samples_leaf = 3, random_state = 0)

SVC SVC(C = 5.0, gamma = ’auto’, tol = 0.1)

GradientBoostingClassifier GradientBoostingClassifier(learning_rate = 0.02, max_depth = 15,
min_samples_split = 5, n_estimators = 1000)
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ANN regressor
A fully connected dense layer was connected to the extracted features to predict the RUL in timesteps. The model 
achieved MAE = 362307520.0, MSE = 1.484075e+17, RMSE = 385236896.0 and R squared − 7.657908. Table 5 
compares the performance of this model with other baseline models.

Other regressors
Other regressors, including KNN, Decision Tree, Random Forest, SVR, and XGBoost regression, were fitted on 
the extracted features. Keras Tuner was used to optimize parameter values. Table 4 below reports the optimal 

Table 3.  Performance of the baseline classifiers.

Model

Performance at different horizons

Measure n = 720 n = 1440 n = 2160 n = 2880 n = 3600

KNN

Accuracy 0.740242 0.726611 0.713910 0.700434 0.684015

Sensitivity 0.495043 0.481722 0.469641 0.456629 0.437423

Specificity 0.985440 0.971499 0.958178 0.944238 0.930607

Precision 0.971429 0.944141 0.918231 0.891173 0.863081

F1_score 0.655859 0.637949 0.621439 0.603851 0.580592

Decision tree

Accuracy 0.738228 0.727695 0.712051 0.695167 0.681382

Sensitivity 0.491326 0.483891 0.465613 0.445787 0.429058

Specificity 0.985130 0.971499 0.958488 0.944548 0.933705

Precision 0.970624 0.944377 0.918143 0.889370 0.866166

F1_score 0.652406 0.639902 0.617883 0.593892 0.573855

Random forest

Accuracy 0.741481 0.727850 0.713755 0.700434 0.686029

Sensitivity 0.497831 0.484201 0.469641 0.456629 0.440830

Specificity 0.985130 0.971499 0.957869 0.944238 0.931227

Precision 0.970997 0.944411 0.917676 0.891173 0.865046

F1_score 0.658202 0.640180 0.621311 0.603851 0.584034

Support vector machine

Accuracy 0.741481 0.727850 0.714219 0.700434 0.685564

Sensitivity 0.497831 0.484201 0.470570 0.456629 0.441140

Specificity 0.985130 0.971499 0.957869 0.944238 0.929988

Precision 0.970997 0.944411 0.917825 0.891173 0.863030

F1_score 0.658202 0.640180 0.622159 0.603851 0.583846

XG boost

Accuracy 0.739312 0.724752 0.711896 0.699814 0.680452

Sensitivity 0.493185 0.477076 0.464684 0.454771 0.425960

Specificity 0.985440 0.972429 0.959108 0.944857 0.934944

Precision 0.971324 0.945365 0.919118 0.891859 0.867508

F1_score 0.654202 0.634136 0.617284 0.602380 0.571369

Figure 8.  optimal feature extractor.
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parameter settings for these models. The Decision Tree model achieved the lowest RMSE among the baseline 
models (12109), which was even lower than the RMSE for the proposed ANN regressor.

Conclusion and recommendations
The study has successfully implemented a machine learning-based architecture that addresses these problems 
by employing a generative adversarial network to resolve data scarcity, creating failure horizons to address data 
imbalance, and using LSTM to learn temporal patterns from the PdM dataset. In the provided case study, where 
data scarcity and data imbalance are evident with only 8 runs and 8 failures against 228,416 healthy observa-
tions, and where temporal dependence is present as data is collected from the same components over time, the 
proposed architecture adapts well to the data. It produces high accuracy even with few runs. Additionally, despite 
the poorly balanced data, the ANN classification results feature high F1 scores, indicating that the model can 
sufficiently learn patterns from both categories. Furthermore, the LSTM feature extractor successfully learns 
temporal patterns to classify cases and predict RUL with precision.

The interpretation of the results underscores the significance of addressing critical gaps in predictive main-
tenance. Firstly, the limited availability of comprehensive real-world datasets hampers the generalizability of 
predictive models. This highlights the urgent need for tools to compensate for data scarcity, additionally, our 
findings emphasize the potential of deep learning models, such as LSTM autoencoders, to capture temporal 
dependencies within data and enhance equipment condition predictions while avoiding manual selection of 
features. Lastly, the integration of AI techniques into maintenance practices is explored.

The research, holds promise in enhancing maintenance strategies, resulting in improved failure prediction 
accuracy, reduced operational costs, and increased operational efficiency. This highlights the significance of 
adopting AI technologies in Industry 4.0 settings, where optimization in maintenance practices can yield sub-
stantial benefits. In summary, our research findings indicate that addressing these gaps through collaborative data 
efforts, standardized metrics, advanced techniques, and AI integration can lead to more reliable, cost-effective, 
and efficient maintenance practices across industries.

Figure 9.  Trend in training and validation MSE.

Table 4.  Regression models parameter settings.

Model Parameter settings

KNeighborsRegressor
DecisionTreeRegressor
RandomForestRegressor SVR
GradientBoostingRegressor

n_neighbors = 4751
max_depth = 70, max_features = ’sqrt’, max_leaf_nodes = 30, min_samples_leaf = 6, min_weight_frac-
tion_leaf = 0.3 max_depth = 90, max_features = ’sqrt’, max_leaf_nodes = 10,
min_samples_leaf = 12, min_weight_fraction_leaf = 0.2, random_state = 0 C = 5.0, gamma = ’auto’, ker-
nel = ’linear’, tol = 0.1
learning_rate = 0.01, max_depth = 5, min_samples_split = 8, n_estimators = 500

Table 5.  Regression model performance metrics.

Model MAE MSE RMSE

ANN 3.62 ×  108 1.48 ×  1017 3.85 ×  108

KNN 8612.42 152,786,500 12,360.69

DT 8434.81 146,647,300 12,109.80

RF 8656.18 144,307,100 12,012.79

SVR 8347.24 229,316,400 15,143.20

Xgboost 18,492.86 679,985,400 26,076.53
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Limitations and future research
The research findings offer valuable insights into the critical gaps and potential advancements in predictive 
maintenance. However, it is essential to acknowledge certain limitations that could guide future research. Firstly, 
the proposed approach is computationally intensive, especially for the ANN classification where every new case 
has to be padded into a fixed size, before prediction, this is computationally costly for large data. Secondly, the 
GAN model learns to generate data similar to the provided real data. In the case of diverse Failure modes, the 
GANs model will not be able to generalize to patterns of failure mode it is not trained on. The study proposes 
Future research with more robust and diverse datasets, to test the adaptability of the architecture on diverse 
failure modes.

Data availability
The sensor data used in this study is accessible via the following link to https:// www. kaggle. com/ datas ets/ inIT- 
OWL/ produ ction- plant- data- for- condi tion- monit oring. Data analysis in this study can be provided by the cor-
responding author upon request.
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