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HBCVTr: an end‑to‑end 
transformer with a deep neural 
network hybrid model for anti‑HBV 
and HCV activity predictor 
from SMILES
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Hepatitis B and C viruses (HBV and HCV) are significant causes of chronic liver diseases, with 
approximately 350 million infections globally. To accelerate the finding of effective treatment options, 
we introduce HBCVTr, a novel ligand-based drug design (LBDD) method for predicting the inhibitory 
activity of small molecules against HBV and HCV. HBCVTr employs a hybrid model consisting of 
double encoders of transformers and a deep neural network to learn the relationship between small 
molecules’ simplified molecular-input line-entry system (SMILES) and their antiviral activity against 
HBV or HCV. The prediction accuracy of HBCVTr has surpassed baseline machine learning models 
and existing methods, with R-squared values of 0.641 and 0.721 for the HBV and HCV test sets, 
respectively. The trained models were successfully applied to virtual screening against 10 million 
compounds within 240 h, leading to the discovery of the top novel inhibitor candidates, including 
IJN04 for HBV and IJN12 and IJN19 for HCV. Molecular docking and dynamics simulations identified 
IJN04, IJN12, and IJN19 target proteins as the HBV core antigen, HCV NS5B RNA-dependent RNA 
polymerase, and HCV NS3/4A serine protease, respectively. Overall, HBCVTr offers a new and rapid 
drug discovery and development screening method targeting HBV and HCV.
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ReLU	� Rectified linear unit
LR	� Linear regression
k-NN	� K-nearest neighbors
SVR	� Support vector regression
RF	� Random forests
DT	� Decision trees
GBM	� Gradient boosted machines
RR	� Ridge regression
Adaboost	� Adaptive boosting
MSE	� Mean square error
MAE	� Mean absolute error
RMSE	� Root mean square error
UPGMA	� Unweighted pair group method with arithmetic mean
PCC	� Pearson correlation coefficient
Spearman	� Spearman rank correlation
RMSD	� Root-mean-square deviation
PK	� Pharmacokinetics
PD	� Pharmacodynamics
PAINS	� Pan assay interference compound

Hepatitis B virus (HBV) and Hepatitis C virus (HCV) are two blood-borne viruses that have been causing major 
global health concerns. Globally, it is estimated that over 296 and 58 million people are chronically infected with 
HBV and HCV, respectively, with approximately 1.5 million new infections with each virus annually1–6. In addi-
tion, there are estimated 820,000 and 300,000 deaths from HBV and HCV complications each year7,8. Infection 
of HBV and HCV can cause liver diseases that progressively develop into more serious diseases, such as cirrhosis 
and hepatocarcinoma, which are major causes of death9,10. Even though HBV and HCV possess distinct viral 
genetic materials, in which HBV contains double-stranded DNA (dsDNA), and HCV contains positive-sense 
single-stranded RNA (+ssRNA), they infect hepatocytes11,12. HBV and HCV share similar transmission routes 
via blood contact, thus increasing the chance of coinfection. HBV-HCV coinfection highlights the higher risk 
of viral virulence enhancement, leading to more severe liver diseases and an increased risk of hepatocarcinoma 
progression compared to a single infection with HBV or HCV13–16.

Preventive vaccines are currently available for single infection with HBV. However, there is no vaccine for 
HCV17–19. The antiviral development efforts against HBV mainly target viral proteins essential for viral replica-
tion and pathogenesis, such as the viral nucleocapsid hepatitis B core antigen (HBcAg). HBcAg plays a crucial 
role in the viral assembly20–22, the host immune response regulation, and the progression of liver fibrosis and 
carcinogenesis23–31. In contrast, the development of antivirals for HCV focuses mainly on direct-acting antivirals 
(DAAs) designed to inhibit NS3/4A serine protease and NS5B RNA-dependent RNA polymerase (RdRp), which 
are crucial for HCV viral protein activation and viral genome replication, respectively32. Although the existing 
small molecules have shown efficacy against single HBV or HCV infections, co-infected patients require consist-
ent monitoring and more potent antivirals for therapy19. Therefore, there is a critical and immediate need for 
more effective antivirals against HBV, HCV, and their coinfection.

Two main types of in silico approaches are available in the drug design process: structure-based drug design 
(SBDD) and ligand-based drug design (LBDD). The SBDD employs computational chemistry tools to identify 
the binding pocket, perform virtual screening, and find the candidates. This allows structure optimization of 
the candidates based on the binding energy between the identified binding site of the three-dimensional target 
protein and the small molecules33–35. However, the main limitation of the SBDD emerges when there is no avail-
able accurate structure of the target proteins36. Even though protein structure prediction tools such as AlphaFold 
and RoseTTAFold have been developed, they may not provide sufficiently accurate structures for practical use 
in SBDD37–39. In addition, the protein pocket selection is another challenge in the SBDD method, especially in 
proteins with multiple domains, since each pocket may contribute to the protein function differently40,41. There-
fore, using uncharacterized protein structures or binding pockets in SBDD should be approached with caution, 
as it may lead to a high rate of false positives42.

Unlike SBDD, the LBDD approach does not depend on the highly accurate structure of the target proteins, 
circumventing the limitations of SBDD. The LBDD approach has recently become more prevalent in drug dis-
covery applications due to the availability of big data and high computing power. The principle of the LBDD 
method utilizes the multi-target quantitative structure–activity relationship (QSAR) and multi-tasking quanti-
tative structure-biological effect relationships (QSBER). These approaches describe the compounds’ biological 
activities or chemical properties based on their molecular structures43–47. These strategies lead to various appli-
cations in multi-target or pan-antiviral drug discovery48–51. Furthermore, the applications of machine learning 
(ML) and deep learning (DL) techniques have recently become prevalent in the LBDD framework due to their 
high capability to learn and integrate the relationship between molecular representations and their biological 
activities from big data52–54. The applications of ML- and DL-based models also facilitate rapid virtual screening 
processes, enhancing the discovery of novel antiviral compounds55–58.

In this study, we introduce HBCVTr, a novel virtual screening tool developed within the framework of the 
LBDD paradigm (Fig. 1). This approach utilizes a deep learning algorithm to train on a dataset of small molecules 
represented by a simplified molecular-input line-entry system (SMILES)59–61 with known biological activity 
against HBV and HCV. The SMILES encoding part of the model was built from transformer architecture, which 
comprises multi-head attention layers. This architecture allows an exceptional capacity to contextualize large 



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9262  | https://doi.org/10.1038/s41598-024-59933-4

www.nature.com/scientificreports/

Figure 1.   HBCVTr model architecture and proposed drug discovery process outline. (A) Illustration of 
the HBCVTr model structure, featuring atom-wise and fraction-wise encoders and neural network layers. 
(B–E) Outlines of the proposed drug discovery process, including training HBCVTr models with HBV and 
HCV datasets, conducting a virtual screening process using trained models with 10 million compounds, and 
identifying the targets of representative molecules through molecular docking and molecular dynamics against 
known HBV and HCV drug targets.
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datasets by analyzing the interrelationship within sequential data62,63. Its versatility and effectiveness have led to 
widespread applications in various fields, including bioinformatics, cheminformatics, and drug discovery64–71. 
Furthermore, deep neural networks (DNNs) were incorporated into the HBCVTr model to predict the biologi-
cal activity of small molecules. The utilization of DNNs has demonstrated success in regression tasks across 
various fields, notably in predicting molecular activities from the molecular structures72–74. Here, we employed 
the end-to-end model that integrates the encoders of the transformer architecture with the DNNs to predict 
the biological activity of small molecules against HBV and HCV. This prediction is based on tokenized SMILES 
via atom-wise and fraction-wise tokenization. We applied permutation token importance methods to interpret 
the model by determining the significance of each molecular substructure contributing to inhibition activities 
against HBV and HCV. The trained models were benchmarked with other well-known machine learning algo-
rithms and an existing SMILES encoding method. The models were then employed in virtual screening against 
10 million small molecules to identify the novel bioactive compounds targeting HBV and HCV. We performed 
molecular docking and molecular dynamics simulations on the top candidates against selected HBV and HCV 
target proteins, including HBV HBcAg, HCV NS3/NS4A, and HCV NS5B, to validate our findings. These allow 
us to assess the binding energy, favorable conformation, and stability between the candidates and their targets.

Materials and methods
Collection of SMILES and activity dataset
The antiviral activity assay data of HBV and HCV were retrieved from ChEMBL database (https://​www.​ebi.​ac.​
uk/​chemb​l/)75,76. In total, 7726 and 20,485 compounds have been reported for their experimental results against 
HBV and HCV, respectively. Due to the variability of biological activity in raw data, only the biological activity 
data which contain the standard types of IC50, EC50, Ki, and Kd, the standard relations of ‘ = ’ and the standard 
units of ‘nM’ or ‘M’ were retained and used for training and testing the model. The activity values were then 
converted to a comparable standard unit in a negative logarithmic scale. The standard unit was defined as pACT 
with the formula:

where IC50, EC50, Ki, or Kd are the half-maximal inhibitory concentration, half-maximal effective concentration, 
inhibitory constant, and dissociation constant, respectively.

All other antiviral activity standard types were excluded due to the inability to interpret them into a single 
unit, pACT. For SMILES with multiple available pACT values, we retained only the highest pACT, aiming to 
train our models to predict the highest pACT for each SMILES. After filtering, HBV and HCV’s antiviral activity 
assay data contain 1941 and 7454 compounds, respectively. Among these compounds, the training, validation, 
and independent test datasets were randomly split by 72%, 8%, and 20% of the total dataset, respectively, using 
the Scikit-learn package77. For virtual screening, 10 million compounds were compiled from multiple databases, 
including eMolecules (https://​www.​emole​cules.​com/)78 and ChEMBL75,76.

SMILES preparation and tokenization
The molecular structures of small molecules, represented as SMILES notations59–61, were preprocessed to remove 
salts and converted into canonical SMILES using the RDKIT package (https://​www.​rdkit.​org/)79. The canoni-
cal SMILES were subsequently dissected into atom-wise and fraction-wise tokens. The atom-wise tokenization 
technique identified individual atoms and bonds, while the fraction-wise tokenization focused on identifying 
unique fractions or functional groups within the molecules based on the distinctive pattern of SMILES. Both 
tokenization techniques were processed using the tokenizer function implemented in SmilesPE (https://​pypi.​org/​
proje​ct/​Smile​sPE/)80, and DeepSMILES (https://​github.​com/​baoil​leach/​deeps​miles/)81 packages. All preprocess-
ing and tokenization tasks were carried out in Python environment (version 3.8.10)82. The total vocabularies 
from atom-wise and fraction-wise tokenization comprised 274 and 3093 unique tokens, respectively. These 
sequential tokens were transformed into sequence vectors, representing the index number corresponding to the 
presence of each token within the original SMILES, for input into the HBCVTr model. All vectors were adjusted 
to 250 dimensions through truncation or padding. As a result, each molecule was represented by two distinct 
250-dimensional vectors, corresponding to atom-wise and fraction-wise tokenization techniques, respectively. 
Illustrative applications of the atom-wise and fraction-wise tokenization techniques are presented in Fig. 2.

Model architecture and training
Our novel virtual screening tool methodology, HBCVTr, was fundamentally based on a bidirectional and auto-
regressive transformer (BART) architecture, which was adapted for a regression task to predict the biological 
activity against HBV and HCV using SMILES notations (Fig. 1B)83,84. This approach utilized positional encodings 
to represent the sequential information of tokenized SMILES before inputting into the model. The model 
contained two encoders: the first encoder processes atom-wise tokenized items, while the second encoder 
processes fraction-wise tokenized items. These encoders contained multi-head attention layers that learned the 
contextual relationships of each token in relation to the prediction of biological activity. The outputs from both 
encoders were concatenated into a single output layer and passed through into fully connected layers designed 
for biological activity prediction (Fig. 2). Each hidden layer comprised a linear layer followed by the rectified 
linear unit (ReLU) activation function. The output of the final layer was processed through a regression head, a 
single linear unit, to output predicted pACT values.

To implement our methodology in predicting biological activity, we separately trained and tested two 
distinct datasets, HBV and HCV, aiming to predict the biological activity of small molecules against each 
virus. The training phase involved optimizing learnable weights from both transformers and regression layers 

(1)pACT = −log10(IC50, EC50, Ki, or Kd inmolar concentration)

https://www.ebi.ac.uk/chembl/)
https://www.ebi.ac.uk/chembl/)
https://www.emolecules.com/)
https://www.rdkit.org/)
https://pypi.org/project/SmilesPE/)
https://pypi.org/project/SmilesPE/)
https://github.com/baoilleach/deepsmiles/)
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based on normalized pACT values. We employed a mean squared error loss function for training. Models that 
demonstrated minimal loss on the validation sets were saved to ensure robust training and avoid overfitting. 
The number of learnable weights and hyperparameters were varied to achieve the optimum training procedure. 
We utilized the grid search for the following hyperparameters: learning rate, number of epochs, dimension of 
encoder outputs, number of attention heads, number of hidden layers, encoder feed-forward dimension, dropout 
rate, weight decay, and the number of hidden units and hidden layers in the regression model. Models were built, 

Figure 2.   The illustration of the HBCVTr model architecture. Atom-wise and fraction-wise tokenization were 
applied to the input SMILES chemical structures. These tokenized inputs were processed and passed on to a 
deep neural network in an end-to-end fashion, yielding the prediction of the biological activity.
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trained, and tested using transformers (https://​pypi.​org/​proje​ct/​trans​forme​rs/)85 and Pytorch (https://​pytor​ch.​
org/)86 packages in a Python environment (version 3.8.10). Details on the number of learnable weights and 
layers, along with other hyperparameters, are shown in Table 1, while search details are provided in Table S1.

Evaluation criteria
To evaluate the models, we utilized a variety of well-known machine learning models for the regression task 
of predicting pACT values for small molecules targeting HBV and HCV. The selected models included linear 
regression (LR), k-nearest neighbors (k-NN), support vector regression (SVR), random forests (RF), decision 
trees (DT), gradient boosting machines (GBM), ridge regression (RR), and adaptive boosting (AdaBoost). These 
machine learning models predicted the pACT values based on 1024-dimensional output vectors from pre-trained 
transformers on approximately one million SMILES from the eMolecules database78. Additionally, we employed 
the Mol2vec tool (https://​github.​com/​samot​urk/​mol2v​ec)87, which converted SMILES into vector representation 
by identifying molecular substructures. This method was combined with GBM for training and testing in pACT 
values prediction, providing a benchmark comparison with our methodology. Our comparison also extended 
to the models that relied solely on atom-wise or fraction-wise tokenization techniques. To assess the predictive 
efficiency of all models, we employed six metrics for the regression task: mean square error (MSE), mean absolute 
error (MAE), root mean square error (RMSE), R-squared, Pearson’s correlation coefficient (PCC), and Spearman 
rank correlation (Spearman). The metrics for these evaluation criteria are described as follows:

where n is the number of total compounds, Yi is the actual biological activity value for compound i , Ŷi is the pre-
dicted biological activity value for compound i , Y  is the mean of actual biological activity values, Ŷ  is the mean 
of predicted biological activity values, and di is the difference in ranks between actual and predicted biological 
activity values for compound i.

Lower MSE, RMSE, and MAE and higher R-squared, PCC, and Spearman values indicate the higher predic-
tive performance of the model.
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Table 1.   Model configurations and hyperparameters of HBCVTr models.

Model configurations and hyperparameters

HBCVTr

Atom-wise encoder Fraction-wise encoder

Total encoder dimension (d_model) 512 512

Number of attention heads 64 64

Number of encoder layers 6 6

Number of feed-forward dimensions 4096 4096

Vocabulary size 274 3093

Max length 250 250

Learning rate 0.00001

Weight decay 0.001

Regression deep neural network size [1024, 640, 1]

https://pypi.org/project/transformers/)
https://pytorch.org/)
https://pytorch.org/)
https://github.com/samoturk/mol2vec)
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Model interpretation
To understand the insight of the prediction made by the HBCVTr model, we employed the permutation 
importance to identify the significance of each token88. The importance of each atom-wise and fraction-wise 
token was calculated based on the increase of prediction errors or the loss of SMILES’s validity after permuting the 
tokens, compared with the prediction value of original SMILES. We employed MSE to evaluate the importance 
of the token between permuted SMILES and original SMILES. We define token importance score as:

where MSEperm and MSEorig represent MSE from permuted SMILES and original SMILES, respectively. Neces-
sary tokens increase the prediction error or result in invalid SMILES when shuffled, while unimportant tokens 
do not change the prediction errors when shuffled. The importance of each token was investigated separately in 
HBV and HCV models. The importance score of each token, specifically for HBV and HCV biological activity 
prediction, was presented as the average score.

Virtual screening and pharmacokinetic properties prediction
The optimal models, trained explicitly for HBV and HCV for biological activity prediction, were utilized in 
virtual screening to identify new potential inhibitors for HBV and HCV (Fig. 1D). We screened a library 
of 10 million compounds, represented as SMILES, against separate models for both viruses. The SMILES 
used in virtual screening were preprocessed using the same techniques as the training and validation step. 
The top candidates exhibiting the highest pACT scores from the prediction were then further evaluated for 
their preferable physicochemical properties as drug candidates for HBV and HCV treatment. Relevant 
pharmacokinetic properties, including molecular weight, solubility, lipophilicity, the potential to be pan-assay 
interference compounds, and structural alerts for potentially toxic chemical substructures, were predicted 
using the SwissADME web tool (http://​www.​swiss​adme.​ch/)89–91. The molecular distances of the top candidates 
were determined based on their Tanimoto distance between binary fingerprints. For each dataset, the top 500 
compounds with the highest pACT values were selected and clustered based on their Tanimoto similarity 
distances using the average unweighted pair group method with arithmetic mean (UPGMA) to ascertain 
the distances between classes92,93. The cluster distances of 0.6 or lower were clustered into the same class. The 
individual Tanimoto distances and the cluster distance are described as follows:

where d(A,B) is the Tanimoto distance between binary fingerprints of molecules A and B, xjA represents the indi-
vidual element in molecule A, xjB is the individual element in molecule B, and d(AB,M) is the average UPGMA 
between the joined clusters of AB and the new cluster M.

Molecular docking and molecular dynamics simulation
The top candidates identified from virtual screening and pharmacokinetic properties were subjected to molecular 
docking and molecular dynamics simulations to determine their possible target and propose their mechanism 
as HBV and HCV inhibitors (Fig. 1E). The druggable targets for HBV and HCV were selected from the avail-
able structures of viral proteins reported as the potential drug targets94–97. The HBV inhibitor candidates were 
evaluated for their binding affinity against HBV core antigen (HBcAg) (PDB ID: 6J10)98, while HCV inhibitor 
candidates were evaluated for their binding affinity against HCV NS3/4A protease (PDB ID: 6UE3)99, and NS5B 
RNA-dependent RNA polymerase (RdRp) (PDB ID: 4KHM)100. The structures of all target proteins were obtained 
from the Protein Data Bank (https://​www.​rcsb.​org/)101. The proteins were then prepared by adding hydrogen 
atoms, removing all non-standard residues, including solvents and existing ligands, and calculating AMBER 
ff14SB charges using the Dock Prep feature in UCSF Chimera software (version 1.17.3)102. The 3D structures of 
the ligands were optimized using OpenBabel (https://​openb​abel.​org/) for the ligand input103. We utilized Auto-
dock Vina (version 4.2.6) and UCSF Chimera suite for molecular docking to prepare, calculate binding energy, 
and visualize the 3D binding poses102,104–106. The 2D poses of the ligands and the target proteins were visualized 
using the Proteins Plus web server (https://​prote​ins.​plus/)107–110. The protein–ligand interactions were further 
validated using Desmond Molecular Dynamics System (version 6.9), D. E. Shaw Research, New York, NY. The 
simulation employed periodic boundary conditions, with 150 mM Na+ and Cl− added to establish equilibrium. 
The system, with explicit modeling of water molecules using TIP3P and additional ions (Na+ or Cl−) to neutralize 
protein charge, underwent a 100 ns simulation at a constant temperature (300 K) and isotropic pressure (1 bar) 
using the MTK barostat in an NPT ensemble. The stability of the complexes was analyzed based on root-mean-
square deviation (RMSD) and contact frequencies. Residue protonation states were determined at pH 7, and 
trajectory analysis was carried out using the Schrodinger Maestro (version 13.1.137), Schrödinger, LLC, New 
York, NY, 2022111.

(8)Importance score = MSEperm −MSEorig

(9)d(A,B) =
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2 +
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2 +
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1
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Results and discussion
Data preparation and analysis
To evaluate the pACT distribution of the compounds, we extracted, preprocessed, and compiled SMILES and 
their corresponding pACT values against HBV and HCV into two datasets. The HBV dataset’s pACT values 
range from 4.01 to 10.22 (60 pM to 100 μM), showing a positively skewed distribution with an average of 5.87 
and a standard deviation of 1.21. The HCV dataset’s pACT values range from 3.37 to 11.00 (10 pM to 426 μM), 
presenting a slightly broader distribution with a mean pACT of 6.67 and a standard deviation of 1.55. The distri-
bution of pACT on HBV and HCV datasets is depicted in Fig. 3A and B, respectively. Analysis of token lengths 
from both datasets indicates that most entries contain around 25–200 tokens after atom-wise tokenization, while 
fraction-wise tokenization shows a range of 5–20 tokenized characters. The heatmap depicting the distribution 
and the size of atom-wise and fraction-wise tokenization objects from both datasets is illustrated in Fig. 3C–F. 
Therefore, we set a maximum of 250 tokens for both transformer models responsible for atom-wise and fraction-
wise tokenization, as this maximum length is expected to cover the majority of entries in the datasets adequately.

Figure 3.   The distribution of pACT values and the length of atom-wise and fraction-wise tokenization of HBV 
and HCV datasets. (A,B) Bar plots show the distribution of the number of small molecules against their pACT 
values for HBV and HCV datasets, respectively. (C,D) Heat map displays the correlation between the length 
of atomic tokens and the pACT values for HBV and HCV datasets. (E,F) Heat map displays the correlation 
between the length of fraction tokens and the pACT values for HBV and HCV datasets. The color gradient 
reflects the density of the data in each region.
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Training and evaluation of the HBCVTr model
The standard BART models utilize the pre-training phase for understanding the context before the specializa-
tion through fine-tuning steps, a strategy proven to be productive in studying correlations between the general 
properties and the SMILES of molecules83,112. However, this approach requires extensive libraries and substantial 
computational resources, and pre-training errors can also carry over to the downstream tasks. For this reason, 
our methodology avoids the possible pitfalls by skipping the sequence-to-sequence pre-training and proceeding 
directly to simultaneous training for both the transformer encoders and the DNNs. Nevertheless, a drawback of 
lacking pre-training is that the encoders do not independently learn the complex grammar or context of SMILES. 
To address this, we implemented the double transformers employing atom-wise and fraction-wise tokenization 
methods to identify atoms, bonds, functional groups, scaffolds, and moieties of small molecules. The predictive 
accuracy of the HBCVTr model, relative to the reference models and the existing SMILES encoding method for 
biological activity against HBV and HCV, was evaluated using cross-validation and independent tests (Tables 2, 
3).

Regarding the HBV dataset, the HBCVTr model demonstrated the predictive scores as follows: RMSE of 
0.114, MAE of 0.090, R-squared of 0.665, and PCC of 0.818 for cross-validation. The HBV independent test set 
scores included RMSE of 0.120, MAE of 0.088, R-squared of 0.641, and PCC of 0.803 (Table 2). For the HCV 
dataset, our model achieved RMSE of 0.097, MAE of 0.070, R-squared of 0.776, and PCC of 0.881 for cross-
validation. The HCV independent test set scores were RMSE of 0.104, MAE of 0.074, R-squared of 0.721, and 
PCC of 0.850 (Table 3). These results, characterized by low RMSE and MAE values alongside high R-squared and 
PCC values, indicate the potential of the HBCVTr model to exhibit excellent predictive competency against HBV 

Table 2.   Cross-validation and independent test results of HBCVTr model on HBV dataset on pACT 
prediction compared to baseline machine learning and existing models. *This work.

Model

Cross-validation Independent test

RMSE MAE R-squared PCC Spearman RMSE MAE R-squared PCC Spearman

LR 0.274 0.212  − 0.911 0.475 0.453 0.263 0.206  − 0.714 0.465 0.466

kNN 0.117 0.095 0.649 0.807 0.740 0.142 0.102 0.497 0.720 0.698

SVR 0.123 0.102 0.614 0.784 0.698 0.138 0.106 0.530 0.731 0.703

RF 0.120 0.097 0.635 0.806 0.728 0.134 0.104 0.555 0.750 0.742

DT 0.181 0.141 0.169 0.592 0.536 0.191 0.140 0.100 0.532 0.533

XGB 0.126 0.102 0.594 0.771 0.696 0.139 0.103 0.518 0.725 0.699

GBM 0.124 0.102 0.606 0.781 0.677 0.143 0.108 0.491 0.703 0.696

Ridge 0.141 0.114 0.492 0.721 0.661 0.169 0.132 0.289 0.645 0.633

AdaBoost 0.143 0.118 0.476 0.731 0.603 0.158 0.132 0.378 0.647 0.603

Mol2vec87 0.127 0.101 0.583 0.763 0.697 0.122 0.096 0.625 0.795 0.771

Atom-wise tokenization* 0.117 0.091 0.650 0.807 0.765 0.136 0.102 0.540 0.743 0.717

Fraction-wise tokenization* 0.121 0.092 0.623 0.797 0.757 0.127 0.092 0.598 0.779 0.757

HBCVTr* 0.114 0.090 0.665 0.818 0.757 0.120 0.088 0.641 0.803 0.780

Table 3.   Cross-validation and independent test results of HBCVTr model on HCV dataset on pACT 
prediction compared to baseline machine learning and existing models. a This work.

Model

Cross-validation Independent test

RMSE MAE R-squared PCC Spearman RMSE MAE R-squared PCC Spearman

LR 0.127 0.099 0.622 0.792 0.747 0.135 0.105 0.536 0.734 0.704

kNN 0.108 0.079 0.731 0.857 0.816 0.118 0.085 0.645 0.807 0.784

SVR 0.110 0.085 0.716 0.848 0.812 0.115 0.088 0.660 0.814 0.799

RF 0.106 0.082 0.740 0.863 0.824 0.116 0.088 0.659 0.814 0.792

DT 0.157 0.109 0.428 0.712 0.675 0.158 0.115 0.359 0.666 0.637

XGB 0.107 0.081 0.732 0.856 0.813 0.119 0.090 0.640 0.801 0.779

GBM 0.121 0.097 0.661 0.816 0.764 0.127 0.100 0.587 0.768 0.740

Ridge 0.125 0.096 0.636 0.798 0.751 0.129 0.100 0.574 0.759 0.732

AdaBoost 0.140 0.119 0.543 0.757 0.678 0.145 0.120 0.466 0.693 0.661

Mol2vec87 0.116 0.090 0.685 0.830 0.788 0.117 0.091 0.647 0.806 0.784

Atom-wise tokenizationa 0.101 0.072 0.762 0.874 0.847 0.115 0.084 0.657 0.813 0.796

Fraction-wise tokenizationa 0.106 0.080 0.737 0.862 0.829 0.105 0.075 0.717 0.847 0.831

HBCVTra 0.097 0.070 0.776 0.881 0.855 0.104 0.074 0.721 0.850 0.831
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and HCV datasets with minimal error and high accuracy. The performance surpasses other baseline models and 
the existing SMILES encoding approach, Mol2vec87, in cross-validation and independent evaluations.

Furthermore, we utilized Spearman rank correlation to explore the correlation between predicted and actual 
ranks of compounds in the datasets. Our HBCVTr model achieved Spearman scores of 0.757 and 0.855 for the 
HBV and HCV datasets, respectively, in cross-validation. The independent test sets scored 0.780 for HBV and 
0.831 for HCV, which is higher than the performance of other models. These results indicate that the HBCVTr 
model effectively predicts the rank of compounds in datasets based on their pACT values. It is an essential 
capability for predictive models used in virtual screening tasks to identify compounds with high pACT.

Our design and training strategy of the HBCVTr model has demonstrated a significant improvement over 
models that exclusively rely on either atom-wise or fraction-wise tokenization methods. This enhancement 
is evidenced by its prediction accuracy on both HBV and HCV datasets in cross-validation and independent 
tests. The result suggests that incorporating information on atom and connection patterns in SMILES notations 
through atom-wise and fraction-wise tokenization is crucial for the transformer models to comprehend the 
contexts and relevant chemical features for predicting biological activity. This approach highlights a successful 
end-to-end training strategy, where dual transformers and DNNs simultaneously could reduce computational 
resource and time costs while maintaining learning efficiency. Details of all models used as the reference models 
for benchmarking are provided in Supplementary Table S2.

The heat map plots of the predictive outcomes for the test datasets (Fig. 4A, B) illustrate that the predicted 
and actual values predominantly cluster along the diagonal, underscoring the models’ highly accurate predic-
tions for most entries in both datasets. However, outliers in the plots indicate occasional over-predictions and 
under-predictions, suggesting that specific SMILES patterns may challenge the models’ interpretative accuracy. 
The structures of representative compounds from both datasets and their predicted and actual pACT values 
are displayed in Fig. 4C, D. Compounds with high prediction accuracy (green in Fig. 4C) typically contain the 
common fractions, functional groups, and substituents such as indole, imidazole, pyridine, pyrrolidine, benzene, 
simple aliphatic rings, halogen, ester bonds, and peptide bonds. In contrast, the compounds with low prediction 
accuracy (red in Fig. 4D) often contain long aliphatic hydrocarbons or complex aromatic systems. The models 
tend to overpredict the presence of these uncommon fractions in SMILES. Additionally, the molecular fractions 
with high prediction accuracy are generally smaller compared to those with lower prediction accuracy, which 
may correlate with poor water solubility, a feature not directly trained in the models. Furthermore, uncommon 
elements, such as silicon, which is rarely found in small molecule libraries, appear to reduce prediction accuracy. 
This issue arises from the limited training data available for these elements, leading to models being trained on a 
small set of examples. This limitation might introduce misunderstanding regarding the impact of these specific 
elements on biological activity. These issues could be addressed by expanding the size of the training libraries.

For the model interpretation, we adopted permutation token importance to investigate the contribution of 
each atom-wise and fraction-wise token to the prediction pACT against HBV and HCV88. Tokens with high 
scores indicate that the permuted SMILES lost the predictive accuracy or became invalid. The top 20 most crucial 
atom-wise and fraction-wise tokens from HBCVTr models, pre-trained on HBV and HCV datasets (referred to as 
HBV and HCV models), are shown in Fig. 5. The results of importance scores from both HBV and HCV models 
reveal that most impactful tokens span a diverse range of chemical elements and structures. Among these, the 
top important atom-wise tokens include phosphorus atoms with specific stereochemical configurations, such as 
[P@], [P@@], and [P@+]; halogens, including fluorine (F) chlorine (Cl), and bromine (Br); heteroatoms, such as 
phosphorus (P), aromatic nitrogen bonded to hydrogen ([nH]), aromatic oxygen (o), and aromatic nitrogen (n); 
ions, such as [S−], [O−], [N+], [S+], and [N−]; types of bonds, such as triple bond (#), double bond ( =), and single 
bond (–), and truncated tokens, such as ‘(’, ’)’, and ‘1’. For the fraction-wise tokens, the majority of the tokens 
with high importance scores in both HBV and HCV models were part of an aromatic system, such as c3ccc(OC), 
c2ccccc12, CCc1ccccc1, c2cc(OC)c(OC), and Cc1ccc(F)cc1) tokens. These indicate that the models recognize 
the common and hetero aromatic rings as essential features in HBV and HCV inhibitors, consistent with the 
previously reported inhibitors113–117. In addition, the tokens representing peptide bonds, such as N1CCN(C(= O)), 
O = C1NC(= O), and NC(= O)c1cc, were found to have high importance scores, suggesting that our models 
are capable of identifying peptidomimetic compounds, which are frequently used in the development of viral 
protease inhibitors118,119. Furthermore, in the HCV model, high importance scores on amine tokens such as 
CC1CCN(, CN(CC, CCC(N3, and CCCC(N highlight the significance of nitrogen in alkyl amine or heterocyclic 
compounds as potential HCV inhibitors120. The order of these tokens is crucial, as shuffling them can drastically 
change the context of the SMILES, leading to a significant loss in prediction accuracy.

Figure 6 presents the tokenized SMILES of the molecule IJN04, processed through atom-wise and fraction-
wise tokenization methods. Each token is colored based on its importance score, with darker shades indicating 
higher importance. Atom-wise tokenization heatmaps for both HBV and HCV models are nearly identical, 
suggesting the uniform contribution of each atom-wise token in the models’ predictive ability. In contrast, the 
fraction-wise tokens vary in their contribution to the compounds’ potential as HBV or HCV inhibitors. The HBV 
model emphasizes the benzimidazole group, with tokens representing this structure, such as c4ccc, [nHc(, and 
n, assigned high importance scores. Benzothiazole appeared more crucial for the HCV model, with tokens such 
as Cc1cc and sc2c1 marked highly significant. Utilizing the permutation token importance technique effectively 
identifies crucial functional groups in HBV and HCV inhibitors. The encoders of HBCVTr models featuring 
multi-head attentions have demonstrated high proficiency in recognizing these essential substructures, offering 
valuable insights for developing antivirals targeting HBV and HCV based on specific structural features.
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Virtual screening
Virtual screening is essential for identifying the potential drug candidates in the SBDD approach, wherein target 
proteins are screened against millions of small molecules in the libraries using molecular docking and molecular 

Figure 4.   Prediction accuracy and example molecules with predicted and actual pACT values. (A,B) are 
heat maps illustrating the correlation between predicted and actual pACT values for the HBV and HCV test 
datasets, respectively. The y-axis represents the predicted values, while the x-axis represents the actual pACT 
values. The color gradient shows the data density in each area. Data aligned along the diagonal line indicate high 
prediction accuracy, whereas data deviating from this line points to prediction errors. (C) displays the structures 
of example small molecules from the HBV and HCV validation datasets outlined in green, which the model 
predicts with very high accuracy. (D) the structures of small molecules from the HBV and HCV validation 
datasets that exhibit low prediction accuracy for their pACT values are outlined in red.
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dynamics simulation. These processes typically require tremendous computational resources, time, and a high-
resolution 3-dimensional structure of target proteins and their identified binding pockets41. To circumvent these 

Figure 5.   The permutation token importance in the HBCVTr models for the HBV and HCV datasets. (A) 
displays the top 20 most important atomic tokens, and (B) shows the top 20 most important fraction tokens. 
The values depicted represent the relative importance of each token, with higher values indicating greater 
significance in the models’ prediction.
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issues, we employed the virtual screening process using the pre-trained HBCVTr models. Screening 10 million 
compounds for biological activities against HBV and HCV models can be completed in only 240 h using an 
NVIDIA 80 GB GPU. Performing molecular docking with AutoDock Vina on the same system would take over 
7600 h to process all 10 million compounds104–106,121, which is ~ 32 times slower than using the HBCVTr models. 
This improvement highlights our approach’s substantial reduction in computational time and resources.

We obtained two separate datasets of predicted biological activities from HBV and HCV models from each 
virtual screening. The top 500 compounds from each dataset, ranked by their predicted pACT, were clustered 
based on molecular similarity into 20 unique classes (10 each for HBV and HCV). The molecules with valid 
structure and best-predicted pACT values in their class were chosen as representatives, yielding 20 representa-
tives: 10 for HBV, coded as IJN01 to IJN10, and 10 for HCV, coded as IJN11 to IJN20. The structures of all 20 
representatives are shown in supplementary Figs. S1 and S2. Tables 4, 5 present the SMILES, ID codes, biological 
activity predictions, and relevant PK/PD properties for each representative of the major classes from HBV and 
HCV datasets, respectively.

From the analysis of HBV inhibitor candidates, the predicted EC50 values in nanomolar range from 7 to 
32 nM. Figure 7A displays the structures of the major representatives and the predicted EC50 values for the 
HBV inhibitor candidates. Compound IJN01 possesses adenine and phosphate, critical features in tenofovir 
disoproxil–an antiviral initially developed to treat human immunodeficiency virus (HIV) and later repurposed 
against chronic HBV infection122. The mechanism of tenofovir disoproxil in inhibiting HBV relies on its cellular 
conversion from a prodrug to its active form, tenofovir diphosphate, a nucleotide analogue inhibitor against HBV 
polymerase123,124. Similarly to tenofovir, IJN01 and other members of this class could be cleaved at diphosphate 
moiety, yielding the tenofovir diphosphate, the competitive inhibitor of HBV polymerase. Besides adenine, other 
heterocyclic compounds, including chromene, pyrazolopyrimidine, thiazolopyrimidine, benzothiazole, isoin-
doline, benzodioxole, thiazolothiazole, thiazole, oxazole, and substituted benzene, are found among top classes 
representatives. This finding indicates that these groups are essential features for active HBV inhibitors, aligning 
with the results of the previous discussion of the permutation token importance. Interestingly, representatives 
IJN02 to IJN10 have not shown high similarity with the known active HBV inhibitors, highlighting the potential 

Figure 6.   Visualization of the degree of importance of each atom-wise and fraction-wise token based on 
the interpretation of the HBV and HCV models. The top panel displays the 2D chemical structure and 
corresponding SMILES representation of IJN04. The middle panel illustrates the degree of importance for atom-
wise tokens, indicated in shades of blue. The bottom panel demonstrates the degree of importance of fraction-
wise tokens, as indicated in shades of red. The darker shades signify the greater importance of the specific token 
for biological activity prediction tasks.
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Figure 7.   The chemical structures of top representatives and their predicted biological activities against HBV 
and HCV. (A) The 2-dimensional structures and predicted EC50 values of the top representative compounds 
from the HBV dataset include IJN01, IJN02, IJN04 and IJN08, outlined in pale blue. (B) The 2-dimensional 
structures and predicted EC50 values of the top representative compounds from the HCV dataset include IJN11, 
IJN12, IJN13, IJN16 and IJN19, outlined in yellow.
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for novel classes of active HBV inhibitors. Regarding the pharmacological properties, most compound classes 
are within an acceptable range, except for IJN01 and IJN10. These two representatives have slightly low logP 
values, indicating low cell permeability. In addition, the toxicity prediction for IJN01 suggests slight toxicity due 
to the presence of Michael acceptor, while the rest of the candidates do not show any toxicity alerts. No pan assay 
interference structure (PAINS) alerts were observed in these top representatives, suggesting the low likelihood 
of off-target binding and adverse side effects.

The results of virtual screening using the HCV model show lower EC50 than those using the HBV model. The 
EC50 values of all ten representatives range from sub-nanomolar to a few nanomolar levels, specifically from 0.02 
to 3 nM. Figure 7B depicts the 2D structures of the representative of major classes among the top candidates for 
HCV inhibitors alongside their predicted EC50 values. Compound IJN11 possesses high similarity to daclatasvir, 
an effective inhibitor of HCV NS5A, a multifunctional protein crucial for HCV replication125. Compound IJN16, 
the sulforhodamine analogue, commonly used as a fluorescent dye to label DNA/RNA in click chemistry, has 
shown excellent predicted EC50 values126. In addition, the model identified the compound IJN20, an analogue 
of anthracycline antibiotic nogalamycin, as a potent HCV inhibitor127. This finding suggests the possibility of 
repurposing these compounds for HCV treatment. The remaining representatives do not resemble any known 
HCV inhibitors. The representatives, including IJN12, IJN13, IJN16, and IJN19, tend to have higher molecular 
weight, implying low water solubility and narrowing the window of concentrations allowable for treatment 
options. However, the predicted effective doses of the representative compounds against HCV are very low, 
potentially compensating for their poor cell permeability and water solubility. The compounds IJN14, IJN16, 
IJN18, and IJN19 were predicted to have a high likelihood of being PAINS compounds, possibly targeting 
a wide range of off-target proteins. Additionally, these compounds’ structural alert or toxicity prediction is 
higher than the remaining representatives due to their possession of known toxic and reactive substructures, 
including diazo, imine, quaternary nitrogen, sulfonic acid, phthalimide, and Michael acceptor. The predicted 
overall physicochemical properties of most representatives from both the HBV and HCV inhibitor candidates 
fall within an acceptable range. These predictions indicate that the models can identify favorable atom-wise and 
fraction-wise tokens and associate them with high pACT or low EC50 values. However, since the physicochemical 
properties were not directly introduced as features to the models during the training process, further investigation 
of the physicochemical properties of candidates identified through virtual screening using HBCVTr models has 
proven useful. This additional analysis helps ensure that the top candidates possess desirable PK/PD properties.

Molecular docking and molecular dynamics simulation of HBV and HCV drug candidates
We performed molecular docking of the representative candidates against known target proteins for HBV and 
HCV using AutoDock Vina104–106 to gain insight into the possible binding affinity and inhibitory effects. We 
selected the HBV core protein (HBcAg) due to its vital function in viral assembly during the viral replication 
process128. Core proteins form a homodimer that further assembles into a trimer of dimers, identified as the 
nucleating scaffold of viral capsid assembly129. The binding energy of IJN01–IJN10 compounds against HBV 
core protein is shown in Table 4. Among the candidates, IJN04 demonstrated the best binding score of − 8.8 kcal/
mol, suggesting a strong binding affinity to the HBV core protein. The 2D and 3D binding poses of IJN04 against 
the HBV core protein are displayed in Fig. 8A, B, respectively. The docked site of IJN04 was found at the dimer 
interfaces, with residues including PRO5, TYR6, VAL13, ALA54, ALA58, LYS96, and LEU100 participating in 
the interactions. The dimerization of the HBV core protein, a crucial event in capsid assembly, can be disrupted 
by the binding of the small molecules at the interface. This strategy aims to inhibit the structural formation of 
the virus and, consequently, block the viral replication98. Therefore, we postulate that the representative IJN04 
may exert its activities on HBV core protein through this mechanism.

The docking scores of all ten representatives of HCV inhibitor candidates against HCV NS3/4A protease and 
NS5B polymerase are shown in Table 5. For HCV NS3/4A proteases, the structure of D168A mutant was chosen 
for docking because ASP168 is one of the hotspots for resistance-associated substitutions 130,131, where this resi-
due contributes to an active-site electrostatic network that modulates the inhibitor binding99. The docking pose 
suggested that IJN19 shows strong binding efficacy against the D168A HCV NS3/4A protease with a binding 
affinity of − 9.9 kcal/mol. The contact residues within the selected target pocket include GLN41, THR42, VAL78, 
ASP79, GLY137, ARG155, ALA156, which are located close to the catalytic triads, HIS57, ASP81, and SER139 
(Fig. 8C, D). HCV NS3/4A protease recognizes the conserved 3D shape of the peptide substrates rather than 
conserved amino acid sequences132, and the binding mode of IJN19 overlaps with the substrate binding site of 
NS3/4A at position P1 to P3132 (supplementary Fig. S3). The docking result highlights the possibility of IJN19 as a 
compound to inhibit HCV NS3/4A protease D168A and other variants. In addition, IJN12 exhibited strong bind-
ing efficacy against HCV polymerase with a binding affinity of −11.3 kcal/mol (Fig. 8E, F). The contact residues 
of HCV polymerase include those from the finger domain: LYS141, ASN142, GLU143, VAL144, and PHE162, 
and from the thumb domain: PRO404, VAL405, GLY557, and ASP559. IJN12 formed the hydrogen bonding 
through its imidazopyridazine moiety with VAL144 and Pi–Pi stacking interaction between its isoindoline and 
PHE162, stabilizing the complex. The binding site of IJN12 was found close to the acidic β-hairpin loop and 
the triphosphate group of NTP, suggesting that IJN12 could inhibit HCV polymerase by interfering with RNA 
binding. This result highlights that IJN12 may have a strong and specific binding affinity to HCV polymerase. 
The docking results were subsequently subjected to a 100 ns molecular dynamics simulation. The stability of 
the complexes formed by IJN04, IJN19, and IJN12 with the respective target proteins, HBV core antigen, HCV 
NS5B polymerase, and HCV NS3/4A serine protease, was analyzed based on RMSD and contact frequencies. 
Our findings reveal that IJN04, IJN19, and IJN12 maintained binding to their target proteins throughout the 
100 n simulation, as illustrated in Fig. 9.
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Figure 8.   Binding poses and interactions of top representatives against known drug targets of HBV and HCV. 
(A) 2D and (B) 3D binding poses of IJN04 against HBV core protein, (C) 2D and (D) 3D binding poses of 
IJN19 against HCV protease, (E) 2D and (F) 3D binding poses of IJN12 against HCV polymerase. The HBV/
HCV protein targets are colored in gray, hydrogen bonds are shown as black dotted lines, and the ligands IJN04, 
IJN19, and IJN12 are shown as magenta, teal, and orange sticks, respectively. IJN compounds and interacting 
residues are represented as sticks. Oxygen, nitrogen, sulfur, and fluorine atoms are colored red, blue, orange, and 
green, respectively.
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Conclusion
In this study, we introduced HBCVTr, a transformers-based model designed for predicting effective drug 
concentration against HBV and HCV in LBDD applications, utilizing the SMILES notations of small molecules. 
The models comprised two transformer encoders that capture the provided SMILES’ atomic and fractional 
information through distinct tokenization levels: atom-wise and fraction-wise. The outputs from these encoders 
were processed by the DNNs for the regression task of antiviral activity prediction. The models were trained 
separately in an end-to-end manner using biological activity data from HBV and HCV databases. Our training 
approach and the model architecture outperformed the traditional training methods, such as pretrain-and-
fine-tune strategies, other popular machine learning models, and the existing encoding method in predicting 
biological activities from SMILES representation. This improvement was evident in both cross-validation and 
independent test datasets. Specifically, we achieved R-squared values of 0.665 and 0.776 for cross-validation of 
HBV and HCV datasets, respectively, and R-squared values of 0.641 and 0.721 for the test set of HBV and HCV 
datasets, respectively. The permutation token impotence analysis identified halogen and heteroatom substitutions, 
common and hetero aromatic rings, and peptide bonds as essential features for HBV and HCV inhibitors. The 
pre-trained HBV and HCV models virtually screened 10 million compounds, identified the top compounds that 
show the highest activities, and classified them based on their structural similarity. Among the novel molecules 

Figure 9.   Schematic representation of the root mean square deviation (RMSD) and ligand atom interactions 
with protein residues over a 100.00 ns simulation. The residue interactions with compounds that occurred for 
more than 30.0% of the simulation time within the selected trajectory (0.00 through 100.00 ns) are illustrated, 
providing the most prevalent molecular contacts during the simulation. (A–C) RMSD plots and detailed ligand 
atom interactions with protein target residues are presented for (A) IJN04 against HBV core protein, (B) IJN19 
against HCV protease, and (C) IJN12 against HCV polymerase.
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not yet tested with HBV and HCV, IJN04 emerged as the best representative for the HBV inhibitor candidates, 
with a predicted EC50 of 14.88 nM and favorable binding energy to HBV core protein. IJN12 and IJN19 were 
identified as top candidates for the HCV’s top representative molecules, with predicted EC50 values of 0.31 and 
0.50 nM against HCV, respectively. Molecular docking and molecular dynamics simulation further supported 
the potential of IJN12 and IJN19 as novel viral inhibitors targeting HCV polymerase and protease, respectively. 
The HBCVTr model’s use of atom-wise and fraction-wise tokenization techniques has exhibited its ability to 
recognize crucial atoms, bonds, functional groups, scaffolds, and moieties of small molecules in predicting 
biological activities against HBV and HCV. The molecular insights from this study broaden our understanding 
of the structure relationship of small molecules in the inhibition of HBV and HCV. This research can contribute 
to the discovery and development of HBV and HCV drugs, which may soon offer new therapeutic options that 
will benefit patients with HBV, HCV, or HBV/HCV co-infection.

Data availability
All data, trained models, and source codes of HBCVTr, including those for training and predicting biological 
activity against HBV and HCV using SMILES, are available at https://​github.​com/​imeew​an/​HBCVTr/.

Received: 9 January 2024; Accepted: 16 April 2024

References
	 1.	 Jeng, W.-J., Papatheodoridis, G. V., Lok, A. S. F. & Hepatitis, B. Lancet 401(10381), 1039–1052. https://​doi.​org/​10.​1016/​S0140-​

6736(22)​01468-4 (2023).
	 2.	 Hajira Basit, Isha Tyagi, Janak Koirala. Hepatitis C. StatPearls Publishing. (2023).
	 3.	 Guvenir, M. & Arikan, A. Hepatitis B virus: From diagnosis to treatment. Pol. J. Microbiol. 69(4), 391–399 (2020).
	 4.	 Downs, L. O. et al. A Systematic review of hepatitis B virus (HBV) prevalence and genotypes in Kenya: Data to inform clinical 

care and health policy. PLOS Glob. Public Health 3(1), e0001165. https://​doi.​org/​10.​1371/​journ​al.​pgph.​00011​65 (2023).
	 5.	 Nguyen Mindie, H., Grace, W., Edward, G., Jia-Horng, K. & Geoffrey, D. Hepatitis B virus: Advances in prevention, diagnosis, 

and therapy. Clin. Microbiol. Rev. https://​doi.​org/​10.​1128/​cmr.​00046-​19.​10.​1128/​cmr.​00046-​19 (2020).
	 6.	 Van Damme, E., Vanhove, J., Severyn, B., Verschueren, L. & Pauwels, F. The hepatitis B virus interactome: A comprehensive 

overview. Front. Microbiol. 12, 724877 (2021).
	 7.	 The World Health Organization. Guidelines for the Prevention, Care and Treatment of Persons with Chronic Hepatitis B Infection 

(WHO Press, Geneva, 2015).
	 8.	 The World Health Organization. Updated Recommendations on Treatment of Adolescents and Children with Chronic HCV Infec-

tion, and HCV Simplified Service Delivery and Diagnostics (WHO Press, Geneva, 2022).
	 9.	 Dash, S., Aydin, Y., Widmer, K. E. & Nayak, L. Hepatocellular carcinoma mechanisms associated with chronic HCV infection 

and the impact of direct-acting antiviral treatment. J. Hepatocell. Carcinoma 7, 45–76. https://​doi.​org/​10.​2147/​JHC.​S2211​87 
(2020).

	 10.	 Levrero, M. & Zucman-Rossi, J. Mechanisms of HBV-induced hepatocellular carcinoma. J. Hepatol. 64(1), S84–S101. https://​
doi.​org/​10.​1016/j.​jhep.​2016.​02.​021 (2016).

	 11.	 Szabó, E., Páska, C., Novák, P. K., Schaff, Z. & Kiss, A. Similarities and differences in hepatitis B and C virus induced hepato-
carcinogenesis. Pathol. Oncol. Res. 10(1), 5–11. https://​doi.​org/​10.​1007/​BF028​93401 (2004).

	 12.	 Li, H.-C., Yang, C.-H. & Lo, S.-Y. Hepatitis C viral replication complex. Viruses https://​doi.​org/​10.​3390/​v1303​0520 (2021).
	 13.	 Seeger, C. & Mason, W. S. Hepatitis B virus biology. Microbiol. Mol. Biol. Rev. 64(1), 51–68. https://​doi.​org/​10.​1128/​MMBR.​

64.1.​51-​68.​2000 (2000).
	 14.	 Zeisel, M. B., Barth, H., Schuster, C. & Baumert, T. F. Hepatitis C virus entry: Molecular mechanisms and targets for antiviral 

therapy. Front. Biosci. 14(9), 3274–3285. https://​doi.​org/​10.​2741/​3450 (2009).
	 15.	 Torres Ibarra, R. Treatment of HBV–HCV coinfection. Ann. Hepatol. 5, S49–S52. https://​doi.​org/​10.​1016/​S1665-​2681(19)​31972-6 

(2006).
	 16.	 Liu, C.-J. et al. Treatment of patients with dual hepatitis C and B by peginterferon α and ribavirin reduced risk of hepatocellular 

carcinoma and mortality. Gut 63(3), 506 (2014).
	 17.	 Aimla, K. et al. Vaccination against HBV and HAV as mode of hepatitis prevention among people living with HIV—Data from 

ECEE network group. Vaccines https://​doi.​org/​10.​3390/​vacci​nes11​050980 (2023).
	 18.	 Said, Z. N. A. & El-Sayed, M. H. Challenge of managing hepatitis B virus and hepatitis C virus infections in resource-limited 

settings. World J. Hepatol. 14(7), 1333–1343. https://​doi.​org/​10.​4254/​wjh.​v14.​i7.​1333 (2022).
	 19.	 Shih, Y.-F. & Liu, C.-J. Hepatitis C virus and hepatitis B virus co-infection. Viruses https://​doi.​org/​10.​3390/​v1207​0741 (2020).
	 20.	 Cole, A. G. et al. Design, synthesis, and structure-activity relationship of a bicyclic HBV capsid assembly modulator chemotype 

leading to the identification of clinical candidate AB-506. Bioorg. Med. Chem. Lett. 94, 129456. https://​doi.​org/​10.​1016/j.​bmcl.​
2023.​129456 (2023).

	 21.	 Maepa, M. B., Bloom, K., Ely, A. & Arbuthnot, P. Hepatitis B virus: Promising drug targets and therapeutic implications. Expert 
Opin. Ther. Targets 25(6), 451–466. https://​doi.​org/​10.​1080/​14728​222.​2021.​19159​90 (2021).

	 22.	 Zhang, W. et al. Discovery of linvencorvir (RG7907), a hepatitis B virus core protein allosteric modulator, for the treatment of 
chronic HBV infection. J. Med. Chem. 66(6), 4253–4270. https://​doi.​org/​10.​1021/​acs.​jmedc​hem.​3c001​73 (2023).

	 23.	 Bock, C. T. et al. Structural organization of the hepatitis B Virus minichromosome. J. Mol. Biol. 307(1), 183–196. https://​doi.​
org/​10.​1006/​jmbi.​2000.​4481 (2001).

	 24.	 Guo, Y.-H., Li, Y.-N., Zhao, J.-R., Zhang, J. & Yan, Z. HBc binds to the CpG islands of HBV cccDNA and promotes an epigenetic 
permissive state. Epigenetics 6(6), 720–726. https://​doi.​org/​10.​4161/​epi.6.​6.​15815 (2011).

	 25.	 Yi, H. et al. Hepatitis B core antigen impairs the polarization while promoting the production of inflammatory cytokines of M2 
macrophages via the TLR2 pathway. Front. Immunol. https://​doi.​org/​10.​3389/​fimmu.​2020.​00535 (2020).

	 26.	 Li, M. et al. Kupffer cells support hepatitis B virus-mediated CD8+ T cell exhaustion via hepatitis B core antigen–TLR2 interac-
tions in mice. J. Immunol. 195(7), 3100–3109. https://​doi.​org/​10.​4049/​jimmu​nol.​15008​39 (2015).

	 27.	 Liu, J. et al. Pathological pattern of intrahepatic HBV in HCC Is phenocopied by PDX-derived mice: A novel model for antiviral 
treatment. Transl. Oncol. 12(9), 1138–1146. https://​doi.​org/​10.​1016/j.​tranon.​2019.​05.​006 (2019).

	 28.	 Tang, X. et al. Occult hepatitis B virus infection and liver fibrosis in chinese patients. J. Infect. Dis. https://​doi.​org/​10.​1093/​infdis/​
jiad1​40 (2023).

	 29.	 Zhao, F. et al. The functions of hepatitis B virus encoding proteins: Viral persistence and liver pathogenesis. Front. Immunol. 12, 
691766 (2021).

https://github.com/imeewan/HBCVTr/
https://doi.org/10.1016/S0140-6736(22)01468-4
https://doi.org/10.1016/S0140-6736(22)01468-4
https://doi.org/10.1371/journal.pgph.0001165
https://doi.org/10.1128/cmr.00046-19.10.1128/cmr.00046-19
https://doi.org/10.2147/JHC.S221187
https://doi.org/10.1016/j.jhep.2016.02.021
https://doi.org/10.1016/j.jhep.2016.02.021
https://doi.org/10.1007/BF02893401
https://doi.org/10.3390/v13030520
https://doi.org/10.1128/MMBR.64.1.51-68.2000
https://doi.org/10.1128/MMBR.64.1.51-68.2000
https://doi.org/10.2741/3450
https://doi.org/10.1016/S1665-2681(19)31972-6
https://doi.org/10.3390/vaccines11050980
https://doi.org/10.4254/wjh.v14.i7.1333
https://doi.org/10.3390/v12070741
https://doi.org/10.1016/j.bmcl.2023.129456
https://doi.org/10.1016/j.bmcl.2023.129456
https://doi.org/10.1080/14728222.2021.1915990
https://doi.org/10.1021/acs.jmedchem.3c00173
https://doi.org/10.1006/jmbi.2000.4481
https://doi.org/10.1006/jmbi.2000.4481
https://doi.org/10.4161/epi.6.6.15815
https://doi.org/10.3389/fimmu.2020.00535
https://doi.org/10.4049/jimmunol.1500839
https://doi.org/10.1016/j.tranon.2019.05.006
https://doi.org/10.1093/infdis/jiad140
https://doi.org/10.1093/infdis/jiad140


21

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9262  | https://doi.org/10.1038/s41598-024-59933-4

www.nature.com/scientificreports/

	 30.	 Mohamadkhani, A. et al. The role of mutations in core protein of hepatitis B virus in liver fibrosis. Virol. J. 6(1), 209. https://​doi.​
org/​10.​1186/​1743-​422X-6-​209 (2009).

	 31.	 Gai, X. et al. Hepatitis B virus core protein enhances human telomerase reverse transcriptase expression and hepatocellular 
carcinoma cell proliferation in a C-Ets2-dependent manner. Int. J. Biochem. Cell Biol. 45(7), 1174–1185. https://​doi.​org/​10.​
1016/j.​biocel.​2013.​03.​015 (2013).

	 32.	 Zhou, Z. et al. Small molecule NS5B RdRp non-nucleoside inhibitors for the treatment of HCV infection: A medicinal chemistry 
perspective. Eur. J. Med. Chem. 240, 114595. https://​doi.​org/​10.​1016/j.​ejmech.​2022.​114595 (2022).

	 33.	 Lionta, E., Spyrou, G., Vassilatis, D. K. & Cournia, Z. Structure-based virtual screening for drug discovery: Principles, applica-
tions and recent advances. Curr. Top. Med. Chem. 14(16), 1923–1938. https://​doi.​org/​10.​2174/​15680​26614​66614​09291​24445 
(2014).

	 34.	 Zheng, M. et al. Computational chemical biology and drug design: Facilitating protein structure, function, and modulation 
studies. Med. Res. Rev. 38(3), 914–950. https://​doi.​org/​10.​1002/​med.​21483 (2018).

	 35.	 Batool, M., Ahmad, B. & Choi, S. A structure-based drug discovery paradigm. Int. J. Mol. Sci. https://​doi.​org/​10.​3390/​ijms2​
01127​83 (2019).

	 36.	 Zheng, M. et al. computational methods for drug design and discovery: Focus on China. Trends Pharmacol. Sci. 34(10), 549–559. 
https://​doi.​org/​10.​1016/j.​tips.​2013.​08.​004 (2013).

	 37.	 Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596(7873), 583–589. https://​doi.​org/​10.​
1038/​s41586-​021-​03819-2 (2021).

	 38.	 Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373(6557), 
871–876. https://​doi.​org/​10.​1126/​scien​ce.​abj87​54 (2021).

	 39.	 Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596(7873), 590–596. 
https://​doi.​org/​10.​1038/​s41586-​021-​03828-1 (2021).

	 40.	 Kitchen, D. B., Decornez, H., Furr, J. R. & Bajorath, J. Docking and scoring in virtual screening for drug discovery: Methods 
and applications. Nat. Rev. Drug Discov. 3(11), 935–949. https://​doi.​org/​10.​1038/​nrd15​49 (2004).

	 41.	 Ni, D., Lu, S. & Zhang, J. Emerging roles of allosteric modulators in the regulation of protein–protein interactions (PPIs): A new 
paradigm for PPI drug discovery. Med. Res. Rev. 39(6), 2314–2342. https://​doi.​org/​10.​1002/​med.​21585 (2019).

	 42.	 Zhu, T. et al. Hit identification and optimization in virtual screening: Practical recommendations based on a critical literature 
analysis. J. Med. Chem. 56(17), 6560–6572. https://​doi.​org/​10.​1021/​jm301​916b (2013).

	 43.	 Tropsha, A., Isayev, O., Varnek, A., Schneider, G. & Cherkasov, A. Integrating QSAR modelling and deep learning in drug 
discovery: The emergence of deep QSAR. Nat. Rev. Drug Discov. 23(2), 141–155. https://​doi.​org/​10.​1038/​s41573-​023-​00832-0 
(2024).

	 44.	 Speck-Planche, A. & Kleandrova, V. V. Multi-condition QSAR model for the virtual design of chemicals with dual pan-antiviral 
and anti-cytokine storm profiles. ACS Omega 7(36), 32119–32130. https://​doi.​org/​10.​1021/​acsom​ega.​2c033​63 (2022).

	 45.	 Speck-Planche, A. & Dias Soeiro Cordeiro, M. N. Speeding up early drug discovery in antiviral research: A fragment-based in 
silico approach for the design of virtual anti-hepatitis C leads. ACS Comb. Sci. 19(8), 501–512 (2017).

	 46.	 Vásquez-Domínguez, E., Armijos-Jaramillo, V. D., Tejera, E. & González-Díaz, H. Multioutput perturbation-theory machine 
learning (PTML) model of ChEMBL data for antiretroviral compounds. Mol. Pharm. 16(10), 4200–4212. https://​doi.​org/​10.​
1021/​acs.​molph​armac​eut.​9b005​38 (2019).

	 47.	 Kleandrova, V. V. & Speck-Planche, A. Chapter 3—Multitasking model for computer-aided design and virtual screening of 
compounds with high anti-HIV activity and desirable ADMET properties. In Multi-Scale Approaches in Drug Discovery (ed. 
Speck-Planche, A.) 55–81 (Elsevier, 2017).

	 48.	 Kleandrova, V. V., Scotti, T. M. & Speck-Planche, A. Indirect-acting pan-antivirals vs. respiratory viruses: A fresh perspective 
on computational multi-target drug discovery. Curr. Top. Med. Chem. 21(30), 2687–2693 (2021).

	 49.	 Speck-Planche, A., Kleandrova, V. V., Luan, F. & Cordeiro, M. N. D. S. A ligand-based approach for the in silico discovery of 
multi-target inhibitors for proteins associated with HIV infection. Mol. BioSyst. 8(8), 2188–2196. https://​doi.​org/​10.​1039/​C2MB2​
5093D (2012).

	 50.	 Speck-Planche, A. & Kleandrova, V. V. In silico design of multi-target inhibitors for C–C chemokine receptors using substructural 
descriptors. Mol. Divers. 16(1), 183–191. https://​doi.​org/​10.​1007/​s11030-​011-​9337-y (2012).

	 51.	 Prado-Prado, F. J., García, I., García-Mera, X. & González-Díaz, H. Entropy multi-target QSAR model for prediction of antiviral 
drug complex networks. Chemom. Intell. Lab. Syst. 107(2), 227–233. https://​doi.​org/​10.​1016/j.​chemo​lab.​2011.​02.​003 (2011).

	 52.	 Parvatikar, P. P. et al. Artificial intelligence: Machine learning approach for screening large database and drug discovery. Antivir. 
Res. 220, 105740. https://​doi.​org/​10.​1016/j.​antiv​iral.​2023.​105740 (2023).

	 53.	 Askr, H. et al. Deep learning in drug discovery: An integrative review and future challenges. Artif. Intell. Rev. 56(7), 5975–6037. 
https://​doi.​org/​10.​1007/​s10462-​022-​10306-1 (2023).

	 54.	 Zhang, Y., Ye, T., Xi, H., Juhas, M. & Li, J. Deep learning driven drug discovery: Tackling severe acute respiratory syndrome 
coronavirus 2. Front. Microbiol. 12, 739684 (2021).

	 55.	 Nand, M. et al. Virtual screening of anti-HIV1 compounds against SARS-CoV-2: Machine learning modeling, chemoinformatics 
and molecular dynamics simulation based analysis. Sci. Rep. 10(1), 20397. https://​doi.​org/​10.​1038/​s41598-​020-​77524-x (2020).

	 56.	 Yang, Y. et al. D3AI-CoV: A deep learning platform for predicting drug targets and for virtual screening against COVID-19. 
Brief. Bioinform. https://​doi.​org/​10.​1093/​bib/​bbac1​47 (2022).

	 57.	 Joshi, T. et al. Predictive modeling by deep learning, virtual screening and molecular dynamics study of natural compounds 
against SARS-CoV-2 main protease. J. Biomol. Str. Dyn. 39(17), 6728–6746. https://​doi.​org/​10.​1080/​07391​102.​2020.​18023​41 
(2021).

	 58.	 Ali, M. et al. How deep learning in antiviral molecular profiling identified anti-SARS-CoV-2 inhibitors. Biomedicines https://​
doi.​org/​10.​3390/​biome​dicin​es111​23134 (2023).

	 59.	 Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. 
Chem. Inf. Comput. Sci. 28(1), 31–36. https://​doi.​org/​10.​1021/​ci000​57a005 (1988).

	 60.	 Weininger, D., Weininger, A. & Weininger, J. L. SMILES. 2. Algorithm for generation of unique SMILES notation. J. Chem. Inf. 
Comput. Sci. 29(2), 97–101. https://​doi.​org/​10.​1021/​ci000​62a008 (1989).

	 61.	 Weininger, D. SMILES. 3. DEPICT. Graphical depiction of chemical structures. J. Chem. Inf. Comput. Sci. 30(3), 237–243 (1990).
	 62.	 Lin, T., Wang, Y., Liu, X. & Qiu, X. A survey of transformers. AI Open 3, 111–132. https://​doi.​org/​10.​1016/j.​aiopen.​2022.​10.​001 

(2022).
	 63.	 Vaswani, A. et al. Attention Is All You Need. In Advances in Neural Information Processing Systems (eds Guyon, I. et al.) (Curran 

Associates, Inc., 2017).
	 64.	 Wen, N. et al. A fingerprints based molecular property prediction method using the BERT model. J. Cheminform. 14(1), 71. 

https://​doi.​org/​10.​1186/​s13321-​022-​00650-3 (2022).
	 65.	 Kim, H., Lee, J., Ahn, S. & Lee, J. R. A merged molecular representation learning for molecular properties prediction with a 

web-based service. Sci. Rep. 11(1), 11028. https://​doi.​org/​10.​1038/​s41598-​021-​90259-7 (2021).
	 66.	 Rajan, K., Zielesny, A. & Steinbeck, C. DECIMER 1.0: Deep learning for chemical image recognition using transformers. J. 

Cheminform. 13(1), 61. https://​doi.​org/​10.​1186/​s13321-​021-​00538-8 (2021).

https://doi.org/10.1186/1743-422X-6-209
https://doi.org/10.1186/1743-422X-6-209
https://doi.org/10.1016/j.biocel.2013.03.015
https://doi.org/10.1016/j.biocel.2013.03.015
https://doi.org/10.1016/j.ejmech.2022.114595
https://doi.org/10.2174/1568026614666140929124445
https://doi.org/10.1002/med.21483
https://doi.org/10.3390/ijms20112783
https://doi.org/10.3390/ijms20112783
https://doi.org/10.1016/j.tips.2013.08.004
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1126/science.abj8754
https://doi.org/10.1038/s41586-021-03828-1
https://doi.org/10.1038/nrd1549
https://doi.org/10.1002/med.21585
https://doi.org/10.1021/jm301916b
https://doi.org/10.1038/s41573-023-00832-0
https://doi.org/10.1021/acsomega.2c03363
https://doi.org/10.1021/acs.molpharmaceut.9b00538
https://doi.org/10.1021/acs.molpharmaceut.9b00538
https://doi.org/10.1039/C2MB25093D
https://doi.org/10.1039/C2MB25093D
https://doi.org/10.1007/s11030-011-9337-y
https://doi.org/10.1016/j.chemolab.2011.02.003
https://doi.org/10.1016/j.antiviral.2023.105740
https://doi.org/10.1007/s10462-022-10306-1
https://doi.org/10.1038/s41598-020-77524-x
https://doi.org/10.1093/bib/bbac147
https://doi.org/10.1080/07391102.2020.1802341
https://doi.org/10.3390/biomedicines11123134
https://doi.org/10.3390/biomedicines11123134
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1021/ci00062a008
https://doi.org/10.1016/j.aiopen.2022.10.001
https://doi.org/10.1186/s13321-022-00650-3
https://doi.org/10.1038/s41598-021-90259-7
https://doi.org/10.1186/s13321-021-00538-8


22

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9262  | https://doi.org/10.1038/s41598-024-59933-4

www.nature.com/scientificreports/

	 67.	 Liu, C., Sun, Y., Davis, R., Cardona, S. T. & Hu, P. ABT-MPNN: An atom-bond transformer-based message-passing neural 
network for molecular property prediction. J. Cheminform. 15(1), 29. https://​doi.​org/​10.​1186/​s13321-​023-​00698-9 (2023).

	 68.	 Mazuz, E., Shtar, G., Shapira, B. & Rokach, L. Molecule generation using transformers and policy gradient reinforcement learn-
ing. Sci. Rep. 13(1), 8799. https://​doi.​org/​10.​1038/​s41598-​023-​35648-w (2023).

	 69.	 Tran, T. & Ekenna, C. Molecular descriptors property prediction using transformer-based approach. Int. J. Mol. Sci. https://​doi.​
org/​10.​3390/​ijms2​41511​948 (2023).

	 70.	 Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. 
Sci. Rep. 11(1), 321. https://​doi.​org/​10.​1038/​s41598-​020-​79682-4 (2021).

	 71.	 Chen, L. et al. Sequence-based drug design as a concept in computational drug design. Nat. Commun. 14(1), 4217. https://​doi.​
org/​10.​1038/​s41467-​023-​39856-w (2023).

	 72.	 Korkmaz, S. Deep learning-based imbalanced data classification for drug discovery. J. Chem. Inf. Model. 60(9), 4180–4190. 
https://​doi.​org/​10.​1021/​acs.​jcim.​9b011​62 (2020).

	 73.	 Grebner, C. et al. Application of deep neural network models in drug discovery programs. ChemMedChem 16(24), 3772–3786. 
https://​doi.​org/​10.​1002/​cmdc.​20210​0418 (2021).

	 74.	 Wang, Z. et al. Advanced graph and sequence neural networks for molecular property prediction and drug discovery. Bioinfor-
matics 38(9), 2579–2586. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btac1​12 (2022).

	 75.	 Mendez, D. et al. ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res. 47(D1), D930–D940. https://​doi.​org/​
10.​1093/​nar/​gky10​75 (2019).

	 76.	 Gaulton, A. et al. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40(D1), D1100–D1107. 
https://​doi.​org/​10.​1093/​nar/​gkr777 (2012).

	 77.	 Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
	 78.	 eMolecules: La Jolla, CA. eMolecules, 2023. https://​www.​emole​cules.​com/. Accessed 20 Mar 2023 (2023).
	 79.	 Landrum, G. et al. Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 

8, 31 (2013).
	 80.	 Li, X. & Fourches, D. SMILES pair encoding: A data-driven substructure tokenization algorithm for deep learning. J. Chem. Inf. 

Model. 61(4), 1560–1569. https://​doi.​org/​10.​1021/​acs.​jcim.​0c011​27 (2021).
	 81.	 O’Boyle, N. & Dalke, A.  DeepSMILES: An Adaptation of SMILES for Use in Machine-Learning of Chemical Structures. Chem-

Rxiv. https://​doi.​org/​10.​26434/​chemr​xiv.​70979​60.​v1 (2018).
	 82.	 Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, Scotts Valley, 2009).
	 83.	 Lewis M, Liu Y, Goyal N, Ghazvininejad M, Mohamed A, Levy O, Stoyanov V, Zettlemoyer L. BART: Denoising Sequence-to-

Sequence Pre-Training for Natural Language Generation, Translation, and Comprehension. In Proceedings of the 58th Annual 
Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, pp 7871–7880. (2020).

	 84.	 Yu Y, Zhan F, Wu R, Pan J, Cui K, Lu S, Ma F, Xie X, Miao C. Diverse image inpainting with bidirectional and autoregressive 
transformers. In Proceedings of the 29th ACM International Conference on Multimedia; MM ’21; Association for Computing 
Machinery: New York, pp 69–78. (2021).

	 85.	 Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, Cistac P, Rault T, Louf R, Funtowicz M, Davison J, Shleifer S, von 
Platen P, Ma C, Jernite Y, Plu J, Xu C, Le Scao T, Gugger S, Drame M, Lhoest Q, Rush A. Transformers: State-of-the-art natural 
language processing. In Liu Q, Schlangen D (eds) Proceedings of the 2020 Conference on Empirical Methods in Natural Language 
Processing: System Demonstrations. Association for Computational Linguistics, 38–45. (2020).

	 86.	 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Köpf A, 
Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S. PyTorch: An Imperative Style, 
High-Performance Deep Learning Library. In Proceedings of the 33rd International Conference on Neural Information Processing 
Systems. Curran Associates Inc.: Red Hook, NY. (2019).

	 87.	 Jaeger, S., Fulle, S. & Turk, S. Mol2vec: Unsupervised machine learning approach with chemical intuition. J. Chem. Inf. Model. 
58(1), 27–35. https://​doi.​org/​10.​1021/​acs.​jcim.​7b006​16 (2018).

	 88.	 Altmann, A., Toloşi, L., Sander, O. & Lengauer, T. Permutation importance: A corrected feature importance measure. Bioinfor-
matics 26(10), 1340–1347. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btq134 (2010).

	 89.	 Daina, A., Michielin, O. & Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal 
chemistry friendliness of small molecules. Sci. Rep. 7(1), 42717. https://​doi.​org/​10.​1038/​srep4​2717 (2017).

	 90.	 Daina, A., Michielin, O. & Zoete, V. iLOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient 
for drug design using the GB/SA approach. J. Chem. Inf. Model. 54(12), 3284–3301. https://​doi.​org/​10.​1021/​ci500​467k (2014).

	 91.	 Daina, A. & Zoete, V. A BOILED-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMed-
Chem 11(11), 1117–1121. https://​doi.​org/​10.​1002/​cmdc.​20160​0182 (2016).

	 92.	 Bero, S. A., Muda, A. K., Choo, Y. H., Muda, N. A. & Pratama, S. F. Similarity measure for molecular structure: A brief review. 
J. Phys. Conf. Ser. 892(1), 012015. https://​doi.​org/​10.​1088/​1742-​6596/​892/1/​012015 (2017).

	 93.	 Andriani, T. & Irawan, M. I. Application of unweighted pair group methods with arithmetic average (UPGMA) for Identifica-
tion of kinship types and spreading of Ebola virus through establishment of phylogenetic tree. AIP Conf. Proc. 1867(1), 020064. 
https://​doi.​org/​10.​1063/1.​49944​67 (2017).

	 94.	 Viswanathan, U. et al. Targeting the multifunctional HBV core protein as a potential cure for chronic hepatitis B. Antivir. Res. 
182, 104917. https://​doi.​org/​10.​1016/j.​antiv​iral.​2020.​104917 (2020).

	 95.	 Eltahla, A. A., Luciani, F., White, P. A., Lloyd, A. R. & Bull, R. A. Inhibitors of the hepatitis C virus polymerase. Mode Action 
Resist. Viruses 7(10), 5206–5224. https://​doi.​org/​10.​3390/​v7102​868 (2015).

	 96.	 Gundala, R., Balutia, H., Lavanya, R., Velayutham, R. & Roy, K. K. Chapter 9—HCV NS3 serine protease as a drug target for the 
development of drugs against hepatocellular carcinoma (liver cancer). In Cancer-Leading Proteases (ed. Gupta, S. P.) 243–263 
(Academic Press, 2020).

	 97.	 Waheed, Y., Bhatti, A. & Ashraf, M. RNA dependent rna polymerase of HCV: A potential target for the development of antiviral 
drugs. Infect. Genet. Evol. 14, 247–257. https://​doi.​org/​10.​1016/j.​meegid.​2012.​12.​004 (2013).

	 98.	 Kang, J.-A. et al. Ciclopirox inhibits hepatitis B virus secretion by blocking capsid assembly. Nat. Commun. 10(1), 2184 (2019).
	 99.	 Matthew Ashley, N. et al. Avoiding drug resistance by substrate envelope-guided design: Toward potent and robust HCV NS3/4A 

protease inhibitors. mBio https://​doi.​org/​10.​1128/​mbio.​00172-​20.​10.​1128/​mbio.​00172-​20 (2020).
	100.	 Maynard, A. et al. Discovery of a potent boronic acid derived inhibitor of the HCV RNA-dependent rna polymerase. J. Med. 

Chem. 57(5), 1902–1913. https://​doi.​org/​10.​1021/​jm400​317w (2014).
	101.	 Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28(1), 235–242. https://​doi.​org/​10.​1093/​nar/​28.1.​235 (2000).
	102.	 Pettersen, E. F. et al. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 

1605–1612. https://​doi.​org/​10.​1002/​jcc.​20084 (2004).
	103.	 O’Boyle, N. M. et al. Open Babel: An open chemical toolbox. J. Cheminform. 3(1), 33. https://​doi.​org/​10.​1186/​1758-​2946-3-​33 

(2011).
	104.	 Eberhardt, J., Santos-Martins, D., Tillack, A. F. & Forli, S. AutoDock Vina 1.2.0: New docking methods, expanded force field, 

and python bindings. J. Chem. Inf. Model. 61(8), 3891–3898 (2021).
	105.	 Trott, O. & Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient 

optimization, and multithreading. J. Comput. Chem. 31(2), 455–461. https://​doi.​org/​10.​1002/​jcc.​21334 (2010).

https://doi.org/10.1186/s13321-023-00698-9
https://doi.org/10.1038/s41598-023-35648-w
https://doi.org/10.3390/ijms241511948
https://doi.org/10.3390/ijms241511948
https://doi.org/10.1038/s41598-020-79682-4
https://doi.org/10.1038/s41467-023-39856-w
https://doi.org/10.1038/s41467-023-39856-w
https://doi.org/10.1021/acs.jcim.9b01162
https://doi.org/10.1002/cmdc.202100418
https://doi.org/10.1093/bioinformatics/btac112
https://doi.org/10.1093/nar/gky1075
https://doi.org/10.1093/nar/gky1075
https://doi.org/10.1093/nar/gkr777
https://www.emolecules.com/
https://doi.org/10.1021/acs.jcim.0c01127
https://doi.org/10.26434/chemrxiv.7097960.v1
https://doi.org/10.1021/acs.jcim.7b00616
https://doi.org/10.1093/bioinformatics/btq134
https://doi.org/10.1038/srep42717
https://doi.org/10.1021/ci500467k
https://doi.org/10.1002/cmdc.201600182
https://doi.org/10.1088/1742-6596/892/1/012015
https://doi.org/10.1063/1.4994467
https://doi.org/10.1016/j.antiviral.2020.104917
https://doi.org/10.3390/v7102868
https://doi.org/10.1016/j.meegid.2012.12.004
https://doi.org/10.1128/mbio.00172-20.10.1128/mbio.00172-20
https://doi.org/10.1021/jm400317w
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1002/jcc.20084
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1002/jcc.21334


23

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9262  | https://doi.org/10.1038/s41598-024-59933-4

www.nature.com/scientificreports/

	106.	 Morris, G. M. et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 
30(16), 2785–2791. https://​doi.​org/​10.​1002/​jcc.​21256 (2009).

	107.	 Fricker, P. C., Gastreich, M. & Rarey, M. Automated drawing of structural molecular formulas under constraints. J. Chem. Inf. 
Comput. Sci. 44(3), 1065–1078. https://​doi.​org/​10.​1021/​ci049​958u (2004).

	108.	 Stierand, K., Maaß, P. C. & Rarey, M. Molecular complexes at a glance: Automated generation of two-dimensional complex 
diagrams. Bioinformatics 22(14), 1710–1716. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btl150 (2006).

	109.	 Stierand, K. & Rarey, M. From modeling to medicinal chemistry: Automatic generation of two-dimensional complex diagrams. 
ChemMedChem 2(6), 853–860. https://​doi.​org/​10.​1002/​cmdc.​20070​0010 (2007).

	110.	 Stierand, K. & Rarey, M. Drawing the PDB: Protein−ligand complexes in two dimensions. ACS Med. Chem. Lett. 1(9), 540–545. 
https://​doi.​org/​10.​1021/​ml100​164p (2010).

	111.	 Schrödinger Release 2022-1. Desmond Molecular Dynamics System, D. E. Shaw Research (New York, NY, 2022).
	112.	 Irwin, R., Dimitriadis, S., He, J. & Bjerrum, E. J. Chemformer: A pre-trained transformer for computational chemistry. Mach. 

Learn. Sci. Technol. 3(1), 015022. https://​doi.​org/​10.​1088/​2632-​2153/​ac3ffb (2022).
	113.	 Zhou, N.-J. et al. Anti-hepatitis B virus active constituents from Swertia chirayita. Fitoterapia 100, 27–34. https://​doi.​org/​10.​

1016/j.​fitote.​2014.​11.​011 (2015).
	114.	 Huang, T.-J., Liu, S.-H., Kuo, Y.-C., Chen, C.-W. & Chou, S.-C. Antiviral activity of chemical compound isolated from Artemisia 

morrisonensis against hepatitis B virus in vitro. Antivir. Res. 101, 97–104. https://​doi.​org/​10.​1016/j.​antiv​iral.​2013.​11.​007 (2014).
	115.	 Zhao, Y. et al. Isolation, synthesis and anti-hepatitis B virus evaluation of p-hydroxyacetophenone derivatives from Artemisia 

capillaris. Bioorg. Med. Chem. Lett. 25(7), 1509–1514. https://​doi.​org/​10.​1016/j.​bmcl.​2015.​02.​024 (2015).
	116.	 Meewan, I. et al. Discovery of new inhibitors of hepatitis C virus NS3/4A protease and its D168A mutant. ACS Omega 4(16), 

16999–17008. https://​doi.​org/​10.​1021/​acsom​ega.​9b024​91 (2019).
	117.	 Hermawan, I. et al. Four aromatic sulfates with an inhibitory effect against HCV NS3 helicase from the Crinoid Alloeocomatella 

polycladia. Mar. Drugs https://​doi.​org/​10.​3390/​md150​40117 (2017).
	118.	 Portela, A. C. et al. Isosorbide-based peptidomimetics as inhibitors of hepatitis C virus serine protease. Bioorg. Med. Chem. Lett. 

27(16), 3661–3665 (2017).
	119.	 Lampa, A. K. et al. Novel peptidomimetic hepatitis C virus NS3/4A protease inhibitors spanning the P2–P1′ region. ACS Med. 

Chem. Lett. 5(3), 249–254. https://​doi.​org/​10.​1021/​ml400​217r (2014).
	120.	 Ganta, N. M. et al. A review on HCV inhibitors: Significance of non-structural polyproteins. Eur. J. Med. Chem. 164, 576–601. 

https://​doi.​org/​10.​1016/j.​ejmech.​2018.​12.​045 (2019).
	121.	 Tang, S. et al. Accelerating AutoDock Vina with GPUs. Molecules 27(9), 3041. https://​doi.​org/​10.​3390/​molec​ules2​70930​41 (2022).
	122.	 Lovett, G. C. et al. Efficacy and safety of tenofovir in chronic hepatitis B: Australian real world experience. World J. Hepatol. 

9(1), 48–56. https://​doi.​org/​10.​4254/​wjh.​v9.​i1.​48 (2017).
	123.	 Derstine, B. P. et al. An efficient synthesis of tenofovir (PMPA): A key intermediate leading to tenofovir-based HIV medicines. 

Org. Process. Res. Dev. 24(8), 1420–1427. https://​doi.​org/​10.​1021/​acs.​oprd.​0c000​78 (2020).
	124.	 Wassner, C., Bradley, N. & Lee, Y. A review and clinical understanding of tenofovir: Tenofovir disoproxil fumarate versus teno-

fovir alafenamide. J. Int. Assoc. Provid. AIDS Care 19, 2325958220919231–2325958220919231. https://​doi.​org/​10.​1177/​23259​
58220​919231 (2020).

	125.	 Lee, C. Daclatasvir: Potential role in hepatitis C. Drug Des. Dev. Ther. 7, 1223–1233. https://​doi.​org/​10.​2147/​DDDT.​S40310 
(2013).

	126.	 Badaeva, E. D. et al. A new insight on the evolution of Polyploid aegilops species from the complex Crassa: Molecular-cytogenetic 
analysis. Plant Syst. Evol. 307(1), 3. https://​doi.​org/​10.​1007/​s00606-​020-​01731-2 (2021).

	127.	 Tsunematsu, Y., Hirayama, Y., Masuya, T. & Watanabe, K. 115—Oxidative Modification Enzymes in Polyketide Biosynthetic 
Pathways. In Comprehensive Natural Products III (eds Liu Ben, H.-W. & Begley, T. P.) 479–505 (Elsevier, 2020).

	128.	 Mohebbi, A. et al. A fragment-based drug discovery developed on ciclopirox for inhibition of hepatitis B virus core protein: An 
in silico study. PLoS One https://​doi.​org/​10.​1371/​journ​al.​pone.​02859​41 (2023).

	129.	 Zlotnick, A., Johnson, J. M., Wingfield, P. W., Stahl, S. J. & Endres, D. A theoretical model successfully identifies features of 
hepatitis B virus capsid assembly. Biochemistry 38(44), 14644–14652. https://​doi.​org/​10.​1021/​bi991​611a (1999).

	130.	 Pawlotsky, J.-M. Retreatment of hepatitis C virus-infected patients with direct-acting antiviral failures. Semin. Liver Dis. 39(03), 
354–368. https://​doi.​org/​10.​1055/s-​0039-​16878​23 (2019).

	131.	 Ghany, M. G., Morgan, T. R., AASLD‐IDSA Hepatitis C Guidance Panel. Hepatitis C guidance 2019 update: American Associa-
tion for the Study of Liver Diseases-Infectious Diseases Society of America recommendations for testing, managing, and treating 
hepatitis C virus infection. Hepatology 71(2), 686–721 (2020).

	132.	 Romano Keith, P. et al. Molecular mechanisms of viral and host cell substrate recognition by hepatitis C virus NS3/4A protease. 
J. Virol. 85(13), 6106–6116 (2011).

Acknowledgements
The computational resources in this work were supported by the MUAI Center, Faculty of Information and Com-
munication Technology, Mahidol University, Thailand. We also would like to thank Dr. Matthew Phanchana for 
his assistance and for providing a Gigabyte W771 workstation for running the molecular dynamics simulation. 
Additionally, we acknowledge Dr. Watshara Shoombuatong for his invaluable advice on model training and 
interpretation.

Author contributions
IM: conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, project 
administration, resources, software, supervision, visualization, writing-original draft, and writing-review and 
editing. JP: formal analysis, investigation, methodology, resources, software, visualization, writing-original draft, 
and writing-review and editing. NP: formal analysis, investigation, methodology, resources, software, visualiza-
tion, writing-original draft, and writing-review and editing. PL: data curation, methodology, project administra-
tion, resources, software, writing-original draft, and writing-review and editing.

Funding
This project is funded by the National Research Council of Thailand (NRCT), Grant number N42A660985 to IM.

Competing interests 
The authors declare no competing interests.

https://doi.org/10.1002/jcc.21256
https://doi.org/10.1021/ci049958u
https://doi.org/10.1093/bioinformatics/btl150
https://doi.org/10.1002/cmdc.200700010
https://doi.org/10.1021/ml100164p
https://doi.org/10.1088/2632-2153/ac3ffb
https://doi.org/10.1016/j.fitote.2014.11.011
https://doi.org/10.1016/j.fitote.2014.11.011
https://doi.org/10.1016/j.antiviral.2013.11.007
https://doi.org/10.1016/j.bmcl.2015.02.024
https://doi.org/10.1021/acsomega.9b02491
https://doi.org/10.3390/md15040117
https://doi.org/10.1021/ml400217r
https://doi.org/10.1016/j.ejmech.2018.12.045
https://doi.org/10.3390/molecules27093041
https://doi.org/10.4254/wjh.v9.i1.48
https://doi.org/10.1021/acs.oprd.0c00078
https://doi.org/10.1177/2325958220919231
https://doi.org/10.1177/2325958220919231
https://doi.org/10.2147/DDDT.S40310
https://doi.org/10.1007/s00606-020-01731-2
https://doi.org/10.1371/journal.pone.0285941
https://doi.org/10.1021/bi991611a
https://doi.org/10.1055/s-0039-1687823


24

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9262  | https://doi.org/10.1038/s41598-024-59933-4

www.nature.com/scientificreports/

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​024-​59933-4.

Correspondence and requests for materials should be addressed to I.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

https://doi.org/10.1038/s41598-024-59933-4
https://doi.org/10.1038/s41598-024-59933-4
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	HBCVTr: an end-to-end transformer with a deep neural network hybrid model for anti-HBV and HCV activity predictor from SMILES
	Materials and methods
	Collection of SMILES and activity dataset
	SMILES preparation and tokenization
	Model architecture and training
	Evaluation criteria
	Model interpretation
	Virtual screening and pharmacokinetic properties prediction
	Molecular docking and molecular dynamics simulation

	Results and discussion
	Data preparation and analysis
	Training and evaluation of the HBCVTr model
	Virtual screening
	Molecular docking and molecular dynamics simulation of HBV and HCV drug candidates

	Conclusion
	References
	Acknowledgements


