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Sequence based model using 
deep neural network and hybrid 
features for identification 
of 5‑hydroxymethylcytosine 
modification
Salman Khan 1, Islam Uddin 1, Mukhtaj Khan 2, Nadeem Iqbal 1, Huda M. Alshanbari 3, 
Bakhtiyar Ahmad 4* & Dost Muhammad Khan 5

RNA modifications are pivotal in the development of newly synthesized structures, showcasing a 
vast array of alterations across various RNA classes. Among these, 5-hydroxymethylcytosine (5HMC) 
stands out, playing a crucial role in gene regulation and epigenetic changes, yet its detection through 
conventional methods proves cumbersome and costly. To address this, we propose Deep5HMC, a 
robust learning model leveraging machine learning algorithms and discriminative feature extraction 
techniques for accurate 5HMC sample identification. Our approach integrates seven feature 
extraction methods and various machine learning algorithms, including Random Forest, Naive Bayes, 
Decision Tree, and Support Vector Machine. Through K-fold cross-validation, our model achieved a 
notable 84.07% accuracy rate, surpassing previous models by 7.59%, signifying its potential in early 
cancer and cardiovascular disease diagnosis. This study underscores the promise of Deep5HMC in 
offering insights for improved medical assessment and treatment protocols, marking a significant 
advancement in RNA modification analysis.
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A single-stranded molecule called RNA is vital in producing cellular proteins and acts as a carrier of genetic 
information. RNA molecules exist in all living things, and they are fundamentally composed of a complex 
collection of molecules that carries genetic information and instructions that are essential for the development 
and maintenance of organisms1. The RNA molecules also move genetic information and instruction through 
certain viruses2. Several studies reported that more than 100 types of RNA alterations have been identified that 
have changed the structure and functions of RNA molecules2–4. For example, N6-Methyladenosine modifications 
and N7-Methylguanosine have been found in mRNA, and both control every phase of the lifecycle of the mRNA 
molecule5. Similarly, 5-methylcytosine and N1-methyladenine RNA modifications have been found in transfer 
RNA(tRNA) and ribosomal RNA (rRNA) molecules6,7. Another type of modification is 5HMC, which is produced 
through TET oxidation8.

The initial identification of the 5HMC alteration came from the study of wheat seeds, revealing a profound 
discovery that transcends the limitations of life, manifesting across a wide range of species and diverse domains 
with remarkable breadth and depth. The 5HMC alteration’s pervasive influence has shed light on its pervasive 
influence, permeating the fabric of biological existence and heralding a new era of understanding in the intricate 
tapestry of genetic phenomena9. Furthermore, the 5HMC modification is also present in various tissues of 
both humans and mice, exerting a significant role in numerous genetic processes, including RNA splicing, 
RNA translation, and RNA decay. The 5HMC modification’s influence extends across different biological 
contexts, underscoring its relevance in the intricate mechanisms governing genetic regulation and expression10. 
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Similarly, the complex environment of 5hmC modifications intertwines with various human ailments, forging 
consequential links to multiple disorders that plague our species, including the formidable realms of cancer, 
diabetes, and cardiovascular disease. These findings highlight the significant vital role of 5hmC modifications 
in the complex web of human health, beckoning the pursuit of transformative insights for medical knowledge 
advancement and the development of targeted therapeutic interventions11. Detecting 5hmC involves a variety of 
methodological approaches in biochemistry and chemical properties, including chromatography (LC–MS/MS, 
HPLC, TLC)12. These techniques shed light on the enigmatic presence of 5hmC with precision. PCR amplification 
complements chromatography in illuminating the intricate tapestry of 5hmC. Together, these methods empower 
the scientific community to explore 5hmC, unravel its mysteries, and shape biological understanding13. Even 
though they yield effective results, they are highly costly and time-consuming for identifying 5hmC.

In recent years, there has been a significant increase in studies suggesting different techniques based on 
machine learning for identifying and describing the elusive 5HMC sites. For instance, Liu et al.14 presented a 
novel machine-learning approach that supports vector machine (SVM) algorithms, a newly developed sequence-
based feature extraction technique, and other sophisticated methods. The classification of 5 hmC sites was 
revolutionized by this cutting-edge approach, which also gave previously unattainable insights into the intricate 
world of epigenetic modifications. Similarly, Ahmed et al.12 proposed developing the iRNA5hmC-PS. This model 
combined the most advanced Position-Specific Gapped k-mer (PSG k-mer) technique for feature extraction with 
the robust Logistic Regression algorithm for classification. Although the models outlined previously have shown 
promising results, it is important to remember that they rely on traditional learning processes. Because of their 
surprising resemblance, these models fail to predict 5hmC sequences correctly. Extracting the dominant features 
necessitates extensive human expertise and computational capabilities, adding to the task’s complexity12,14. In 
a recent research study, Ali et al.15 proposed a revolutionary iRhmC5CNN model that employs Convolutional 
Neural Networks (CNNs) for efficient 5hmC identification. The authors used a one-hot-encoding technique 
within the CNN model to extract significant features. However, when applied to image datasets, this CNN-based 
model achieved outstanding performance, demonstrating its versatility and potential in the field.

Based on the above previous studies, this study presents a novel and accurate model, utilizing Chou’s 
comprehensive 5-step rules and regulations, discriminative feature methods, and the powerful Deep Neural 
Network (DNN) algorithm. The main objective of this research is to enhance the robustness and prediction 
accuracy of the model16,17. The intuition of the suggested model to improve the prediction accuracy of 5HMC 
modification. The workflow of the proposed model is depicted in Fig. 1. Firstly, the Deep5HMC employs seven 
different feature extraction methods to formulate RNA sequences into feature vectors. Secondly, a composite 
feature vector is constructed by combining all the feature vectors. Thirdly, it employs an unsupervised PCA 
method to select optimum features while removing irrelevant and repeated features. Finally, the computational 
model presented in this study employs a deep learning algorithm, suggesting a significant advancement in 
the field. Deep5HMC performance has been completely evaluated, with robust K-fold cross-validation tests 
used to establish the reliability of the study outcomes. The experimental results unambiguously demonstrate 
the proposed model’s advantage in existing prediction models, as it demonstrates exceptional accuracy and 
consistently outperforms other performance measurement parameters by a significant margin, establishing its 
position as a leading solution in computational simulation. This study’s benchmark datasets and feature vectors 

Figure 1.   The architecture of the suggested predictor.
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are easily accessible via the following GitHub link: https://​github.​com/​salman-​khan-​mrd/​Deep5​HMC. This 
archive is a comprehensive resource for researchers and practitioners interested in diving into the complexities 
of Deep5HMC and its potential applications.

The remainder of this paper is organized in the following order: Section “Material and methods” describes 
the suggested model materials and methods in detail. Section “Feature extraction methodology” presents the 
paper various evaluation metrics. Section “Hybrid feature extraction” addresses the paper’s experimental results, 
and Section “Criteria for performance evaluation” provides the paper conclusion and future work.

Material and methods
Benchmark dataset
It is imperative to have a comprehensive benchmark dataset containing training and test samples, each with 
a specific purpose to establish a highly effective learning model. The training samples are used to train the 
learning model, while the test samples are utilized to evaluate and validate the proposed model’s performance. 
This study used a publicly available benchmark dataset18 with diverse samples. Equation (1) represents the 
mathematical formulation of this benchmark dataset, which includes both positive and negative examples, 
providing an excellent basis for our research

where H1 denoted the total number of RNA samples that contain positive samples H+
1  and negative samples H−

1  . 
U is a mathematical operator representing the union of the 5-hmC positive and 5-hmCnegative samples. We 
also used CD-HIT software to remove pairwise sequences with greater than 20% similarity. Finally, the utilized 
benchmark dataset in this study comprises 1324 samples, divided into two categories: 662 positive samples 
that represent 5hmC sequences and 662 negative samples that represent non-5hmC sequences. Additionally, 
to ensure proper stratification, after randomly selecting 10% of the samples from our initial dataset, we built an 
independent dataset. The remaining 90% of the samples were employed to construct and evaluate the proposed 
model. The formulation of this independent benchmark dataset is mathematically captured by Eq. (2), thereby 
encapsulating the essence of our research findings and contributing significantly to a profound understanding 
of the proposed model.

where, H2 represents a test dataset that contains positive samples H+
2  and negative samples H−

2  . The test 
dataset contains 132 samples in total, providing a substantial and representative collection of data points for 
comprehensive evaluation and analysis.

Feature extraction methodology
Processing biological samples with varying lengths or non-numeric formats, such as the FASTA format, presents 
a challenge due to the specific nature of statistical and machine learning models designed to handle numerical 
data. Consequently, a crucial pre-processing step becomes necessary to convert RNA samples into feature vectors, 
representing discrete or numeric representations. This conversion ensures compatibility with learning models. 
It should be noted that the initial arrangement sequence or pattern of biological sequences might change during 
the transformation process. Several techniques for addressing this issue have been offered in prior studies. 
These approaches are intended to accelerate converting RNA samples into feature vectors while retaining the 
samples’ organic patterns and structures. For this investigation, we successfully turned RNA samples into their 
corresponding feature extraction vectors using seven unique feature extraction methodologies.

Descriptor K‑mer
In the K-mer descriptor approach19, the average frequencies of the K-neighbouring nucleic acids are employed 
to encode the RNA samples. This method entails the data being encoded in a K-mer description, emphasizing 
the case where k = 3. To provide a mathematical expression of this concept, we articulate the K-mer descriptor 
in the following:

where R(t) represents the whole number of K-mer types, t  represents a particular K-mer sequence, and R 
indicates the total number of sequences and the average number of the K-mer sequence.

Reverse complement K‑mer (RC‑Kmer)
The RC-Kmer descriptor20 is a different approach to the K-mer description that dismisses the exact positioning 
of the strands. For example, there are 16 types of 2-mers AA,AC,AG...,UU  that act as a reverse complement 
to the letters AA in an RNA sample. After removing these reverse complement k-mers, we are left with only 
ten different reverse complement k-mers AC,CC,GC,AG,CG, andAU . The reverse complement K-mer can be 
expressed mathematically using Eq. (4).

(1)H1 = H+
1 ∪H−

1

(2)H2 = H+
2 ∪H−

2

(3)RKmer = f (t) ∗
R(t)

R
, t ∈ {AAA,AAC,AAG, ...,AAU}

(4)RRcKmer(r, s, t)
Rr,s,t

R − 2
, r, s, t ∈ {A,C,G,U}

https://github.com/salman-khan-mrd/Deep5HMC
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Pseudo K‑tuple nucleotide composition (PseKNC)
In computational biology, the popular feature extraction technique Pseudo K-Tuple Nucleotide Composition 
(PseKNC) allows RNA and DNA sample modification21. We used PseKNC with two different values of K 
to convert RNA samples into feature vectors: PseDNC(K = 2) and PseTNC(K = 3) . PseDNC generates a 
16-dimensional feature vector from RNA samples represented as pairs of subsequent nucleotides21,22. PseTNC, on 
the other hand, represents the RNA sequence with three consecutive nucleotides, resulting in a 64-dimensional 
feature vector. It is also mathematically expressed as follows:

where,

Tri‑nucleotide‑based auto covariance (TAC)
A relevant encoding strategy is tri-nucleotide-based autocovariance (TAC), which is employed to examine the 
relationship between two tri-nucleotides. These tri-nucleotides are separated by a specified lag L of nucleic acids 
along the sequence23. The total allowed capacity (TAC) is calculated using the following mathematical expression:

Tri‑nucleotide‑based cross covariance (TCC)
Using a combination of tri-nucleotides separated by a predefined lag L of nucleic acids throughout the sequence, 
the Tri-nucleotide-based Cross Covariance (TCC) encoding approach evaluates the connection between two 
different physicochemical parameters. TCC encoding may be calculated using the following equation:

Dinucleotide‑based cross covariance (DCC)
The relationship between two different physicochemical qualities encompassing a variety of di-nucleotides spaced 
by a specific nucleic acid lag L within the sequence is investigated using DCC encoding19. Important details may 
be found in the text below that can be utilized to calculate DCC encoding:

The mathematical formula R(R1) , LAG determines the feature vector connected to the DCC dimension. R is 
the number of physicochemical parameters, and LAG signifies the most important lag value (lag = 1, 2…, LAG). 
This equation, which considers numerous physicochemical characteristics and lag values, accurately estimates 
the feature vector’s size. This equation may be used to precisely assess the dimensions of the feature vector, which 
include the numerous extended lag values and physicochemical indices studied.

Hybrid feature extraction
In this study, we used a variety of seven feature extraction techniques to represent the 5hmC sequence precisely 
as a numerical feature vector. The summarized results in Table 1 provide specific details on the feature numbers 
achieved for each method. We effectively combined all seven feature vectors, leading to the creation of an 
expanding hybrid feature vector by using Eq. (11), as well as the smooth integration of Eqs. (3)–(4) and (6)–(10). 

(5)R = [f
K−tuple
1 f

K−tuple
2 . ...... f

K−tuple
i . ....... f

K−tuple

4k
]T

(6)RPseDNC = |f
2−Tuple
j=1,...16D f → (AA,CC,GG,UU)

(7)RPseTNC = |f
3−Tuple
j=1,...64D f → (AAA,CCC,GGG,UUU)

(8)RTAC =
∑L−2

j=1

Rj + 2

L− 2

(9)RTCC =
∑L−2

j=1

Rj + 2

L− 2

(10)RDCC =
∑L−1

j=1

RjRj + 1

L− 1

Table 1.   Number of features of each feature extraction method.

Methods Number of features

Kmer 16

RC-Kmer 10

PseDNC 16

PseKNC 64

TAC​ 04

TCC​ 04

DCC 60
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This thorough rendering captures the core of the 5hmC sequence and makes it easier to analyze it in terms of 
numerical components.

Feature selection using principal component analysis (PCA)
The feature vector’s presence of noisy, duplicated, or irrelevant information may severely impact the classifier’s 
performance. Therefore, we use the Principal Component Analysis (PCA) technique for feature selection. The 
PCA algorithm is a multivariate data processing technique that computes eigenvectors and covariance matrices 
to decrease the dimensionality of feature vectors. In this study, PCA is used to improve the precision of the 
selected feature vectors taken from RNA sequences used by Deep5HMC for model training. PCA reduces the 
dimensionality from the original high-dimensional feature space to a refined subspace of lower dimensions in 
which it still retains the most significant features but eliminates most of the redundant and noisy information. 
This process, in turn, allows for a more declarative representation of the data, which tends to avoid complexity 
and the risk of fitting too much. Significantly, in our methodology, feature vectors formed from the extraction 
method of 7 different hybridized techniques are sent through the PCA unsupervised selection procedure, and 
optimum features are chosen. Using the PCA technique, we successfully reduced the size of the hybrid feature 
vector from 174 × 1324 to 75 × 1324, resulting in a clearer and more effective representation. These things yield 
feature vectors that still have important data, and so the Deep5HMC model has high accuracy and interpretability 
in the 5HMC modification using RNA patterns as predictors.

Deep neural network
Deep Neural Network (DNN), a novel learning algorithm inspired by the intricate intricacy of the human 
neuron system, has emerged as an extremely powerful framework24,25. As shown in Fig. 2, this complete model 
includes three important processing levels: the input, hidden, and output layers. Hidden layers in the DNN 
model are important for the complicated learning process26–28. It is important to carefully consider the possible 
disadvantages of using a full-layer architecture, such as increased computational costs, increased complexity 
of the model, and the possibility of over-fitting, even though the number of hidden layers has an inherent 
impact on model performance29. Several studies have consistently shown that the DNN model performs better 
than classical learning techniques, especially when faced with various challenging classification problems30. 
Additionally, the DNN model has proven to be incredibly successful in a variety of fields, including advanced 
biological engineering developments31, advanced image recognition systems32, revolutionary speech recognition 
technologies33, and even modern natural language processing methods. The DNN model is an important tool in 
contemporary applications because of its adaptability and excellent performance.

The inspiration arises from the excellent outcomes of deep learning models across various fields when tackling 
complex classification problems. This study investigates the potential of the DNN model in predicting 5hmC sites 
using a benchmark dataset. Alongside the input and output layers, the proposed DNN model incorporates three 
hidden layers, as depicted in Fig. 2. Neurons are the fundamental processing units within each model layer, and 
their numbers vary. Initially, a feature vector (Xx1, x2, x3, , ...xn) . The weight vector Wi , and the bias vector Bi is 
inputted into the input layer, producing the output Y  as described in Eq. (12). The first hidden layer receives the 
output from the input layer, creating a new output. Until the output layer has been reached, the initial hidden 
layer’s output is used as the input for each subsequent hidden layer. Binary data is generated by the output layer, 
with 1 denoting the existence of 5-hmC samples and 0 denoting their absence.

(11)RHFV = RKmer ∪ RRcKmer ∪ RPseDNC ∪ RPseTNC ∪ RTAC ∪ RTCC ∪ RDCC

Figure 2.   The configuration of the proposed DNN Mode circle represents processing nodes.
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The learning model weight vector is built using a He-uniform initialization procedure and is one of its most 
important parameters. The weight vector is optimized using a backpropagation method and a stochastic gradient. 
We have used dropped-out and regularization approaches in the suggested model to improve the model’s results 
further and address the problem of model overfitting. Based on its determined values, the activation function 
is crucial in identifying each neuron’s degree of activity. It is an important part of the model. There are several 
activation functions to select from in the extensive literature. But in this work, the hidden layers used the 
hyperbolic tangent (Tanh) function, whereas the output layer used the sigmoid function. This purposeful choice 
was taken to provide a fair and ideal result from the model34.

Activation functions
The activation functions play a critical role in the study and are components for nodes in a neural network; they 
determine how the output is received and, thus, the model’s ability to learn the connected relationships in the 
data set. The Tanh activation function is utilized in the hidden layers of the study under review, and the output 
layer is composed of the use of the sigmoid function.

The hyperbolic tangent function, Tanh, is the scale layers’ hidden layer selection point because of its 
symmetrical properties, mapping the input values to a range of [− 1, 1]. This feature is suitable for overcoming 
the vanishing gradient phenomenon since it offers a way to find both positive and negative relationships, which 
are essential in big data. The work of study is predefined due to the expressive power of Tanh in the deep 
internal layers of the Deep Neural Network (DNN). This is so because it enlarges the capability of the model 
to discover complex patterns and representations. On the output layer, the sigmoid activation function is used, 
which is part of the model with the nature of binary classification underlying the task at hand. The macro 
function sigmoid(x) compresses outputs within the range [0, 1], normalizing the results to fit the interpretation 
of probability for binary outputs. Such selection is especially important when it comes to detecting 5HMC 
modifications, for instance, where the aim is always a binary classification. Nevertheless, this paper does not 
deepen the understanding of why these functions were chosen for the particular task, and there needs to be 
discussion about the alternative functions that could potentially be more efficient for the job. In view of the 
importance that activation functions play in the performance of the model, more exploration or a clearer 
articulation of that selection could improve the understanding and clarity of the present study. Debating these 
options, such as ReLU and Leaky ReLU, together with when and why they should be utilized, would increase the 
completeness of understanding the implications of the activation function selection in the context of the work.

Gird search techniques
Grid search is one of the most popular hyperparameter optimization methods in the data science context, and 
the use of this method to check out the combination of hyperparameters for a given model is called grid search. 
Within the historical investigation, the DNN model used the grid-search method to improve the parameters 
of the system. The procedure will first target selecting a number of various points for every hyperparameter 
in the query, then proceed with recommending a set of combinations that have been exhaustively evaluated 
in terms of the model’s performance. The end is to pick the best pair of hyperparameter values that will give 
the most accurate result on a dataset, which is either called ’loss’ or ’accuracy’ on a validation dataset. The 
study of naive power or traditional fuel in electricity generation. While the study mentions the use of grid 
search, it does not provide the specific hyperparameters considered or the range of values explored. Concretely, 
hyperparameters in a DNN contain learning rate, batch size, number of hidden layers, number of neurons in each 
layer, activation functions, and regularization parameters. As a way to increase the credibility of the study, the 
hyperparameter grid search range should be fully mentioned, and the optimized values should then be reported. 
Such supplementary information will clarify the optimization process details, which other researchers can further 
use in their extended research with similar parameter search space.

Criteria for performance evaluation
The following measures have been employed in this study to evaluate the performance of the proposed model: 
An evaluation of a learning model’s performance may be done using a variety of indicators.

Accuracy Eq. (13) may be used to calculate the accuracy of a learning model.

Sensitivity The number of genuine positive classes a classifier recognizes is measured by sensitivity, derived 
using Eq. (14) and shown as a positive score.

(12)Y = f (XWi + Bi)

(13)Acc =
T+ + T−

T+ + F+ + F− + T−
(100)
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Specificity Using Eq. (15), specificity may be calculated and indicates the negative rate.

Mathew’s correlation coefficient The MCC assesses a binary classifier’s reliability and corresponds to the:

Recall The F1 score serves as a widely employed tool in the binary classification problem domain to evaluate 
the model’s accuracy. It combines the two at a time and briefly summarizes them, called the F1 score. Eventually, 
remember that sensitivity (actual positive rate) is a ratio between accurate, optimistic predictions and total real 
positives. It evaluates the percentage of positive outcomes that a model has recognized as such:

where, T+ represents true positive 5hmC samples, while T− , represents true negative 5hmC samples F+ stands 
for false positives in 5hmC samples, while F− , stands for false negatives in 5hmC samples.

Experimental results and discussion
In this work, we thoroughly evaluated the complete discussion and in-depth analysis of the outcomes produced 
by the suggested model. Our evaluation considers a wide range of significant elements contributing to its overall 
success, such as:

(1)	 We meticulously changed the DNN model’s setup settings and optimized its performance. This optimization 
was carried out using an efficient grid search method.

(2)	 We used a variety of feature extraction approaches to objectively assess the model’s performance and provide 
useful insights into its strengths and limitations.

(3)	 We thoroughly evaluated the DNN model’s performance compared to popular machine learning models 
to assess its competitiveness and potential benefits.

(4)	 We meticulously compared the outcomes obtained by Deep5HMC with those of other existing models, 
enhancing our understanding of its unique contributions and distinguishing characteristics.

(5)	 Finally, we meticulously evaluated the performance of the proposed model by applying it to an independent 
dataset, ensuring the utmost accuracy and robustness of our evaluation results.

Optimization of model hyper‑parameters
Several parameters need to be configured during the model configuration. These parameters are hyper-
parameters and significantly impact the learning model’s outcome35–37. This study considered the influential 
parameters presented in Table 2 for optimization. A grid search methodology is adopted to find optimum values 
of the significant parameters.

Initially, experiments were carried out to investigate the learning rate’s and activation function’s impact. 
Table 3 contains a summary of the experimental results. Analyzing the data in Table 3 reveals that the DNN 
classifier achieved the highest accuracy of 84.07% when ReLU was used as the activation function and the 

(14)Sn =
T+

T+ + F−
(100)

(15)Sp =
T−

T− + F+
(100)

(16)Mcc =
(T−XT+)− (F+XF−)

√

(T+ + F+)
(

T+ + F−
)

(T− + F+)
(

T− + F−
)

(17)Recall
T+

T+ + F−

Table 2.   Detailed configuration of proposed DNN Model.

Parameter’s variables Optimal parameter values

Optimizer Adam

Dropout 0.4

Regularization L2 0.0001

Number of hidden layers 4

Learning rate 0.01

Seed 1234L

Activation functions ReLU, Tanh, Sigmoid

Reliable for initializing the weight function He_Unifrom

Epochs 700

The total number of neurons present in the hidden layers 64, 32, 16, 8
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learning rate was set to 0.01. It is worth noting that lowering the learning rate helps to improve model efficiency; 
however, reducing it further to 0.01 did not significantly improve the model’s performance. As a result, we 
concluded that ReLU and 0.01, respectively, are the best choices for the activation function and learning rate.

Secondly, a comprehensive evaluation of the DNN model’s performance was carried out by experimenting 
with different numbers of training epochs. Figure 3 depicts the visual results of this experiment. The figure shows 
that as the number of training epochs increased, the error losses consistently decreased across all scenarios. The 
DNN model demonstrated an error loss of 0.8% at the first epoch, which gradually reduced to a remarkable 
0.08% as the number of epochs approached 700. However, as the epochs increased, the error losses stabilized, 
indicating that 700 iterations were the optimal number for achieving the desired result.

Performance analysis using different sequence formulation methods
This research paper evaluated the proposed DNN model using various feature formulation methods. These 
methods include Kmer, RC-Kmer, PseDNC, PseTNC, TAC, TCC, and DCC, as displayed in Table 4. The results 
presented in Table 4 show that the DNN model exhibited superior performance when processing hybrid 
feature sequences compared to individual feature sequences. For instance, the DNN model achieved an average 

Table 3.   The DNN model accuracy is evaluated based on activation functions and learning rates. Significant 
values are in bold.

Learning rate ReLU Tanh

0.008 84.05 81.34

0.009 84.02 81.24

0.01 84.07 81.44

0.02 83.08 81.28

0.03 83.38 81.18

0.04 83.09 81.12

0.05 81.19 80.14

0.06 82.70 80.70

0.07 81.76 79.80

Figure 3.   The DNN model error losses across various epochs when using the ReLU activation function.

Table 4.   The DNN model performance was completely evaluated using different techniques for sequence 
formulation.

Methods Acc% Sn% Sp% F1 score MCC

Kmer 65.13 71.34 63.23 52.14 0.303

RC-Kmer 67.34 65.43 70.65 53.78 0.294

PseDNC 68.09 67.32 69.33 55.21 0.353

PseTNC 70.94 80.79 69.84 70.03 0.378

TAC​ 68.95 79.65 67.83 69.08 0.344

TCC​ 66.32 69.54 73.43 59.92 0.312

DCC 67.87 74.23 63.67 63.80 0.324

Hybrid feature (without feature selection) 76.87 75.75 84.86 76.29 0.584

Hybrid feature (with feature selection) 84.07 90.29 83.07 84.64 0.736
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success rate of 76.87% when utilizing hybrid features, whereas the highest success rate using the specific feature 
vector (i.e., PseTNC) was 70.94%. The DNN model’s improved performance on the hybrid feature vector is 
its composition of various features, encompassing both local and global correlation information and valuable 
internal structural information that aids accurate prediction and classification.

In addition, we used a feature selection technique as part of our methodology to reduce the dimensionality of 
the feature vector. This technique removes unnecessary and noisy features, resulting in a more streamlined and 
efficient representation. This approach ensures that the selected features are highly informative and contribute 
significantly to the model’s overall performance. This process further improved the DNN efficiency, as shown in 
Table 4. For example, by using the feature selection method, the model’s accuracy significantly improved from 
76.87 to 84.07%. Similarly, the other measurement matrices, such as sensitivity (90.29%), specificity (83.07%), 
and MCC (0.736), also significantly improved, as shown in Table 4. Furthermore, we have adopted the graphical 
analysis to examine the usefulness of our proposed model, as it is most useful and presented in recent studies of 
complicated biological systems37,38. The value of the receiver operating characteristic (ROC) Curve reflects the 
model’s efficiency so that the higher the value, the better the output. Figure 4 shows the graph of the ROC curve 
(AUC). As shown in Fig. 4, the proposed classifier using a hybrid feature (with feature selection) has a remarkably 
larger ROC value, i.e., 0.865, compared with the single feature extraction method. This statistic indicates that the 
proposed model has more than 86% capability to discriminate between positive and negative classes accurately.

Performance comparison of different classifiers
In this paper, we examined the proposed predictor’s effectiveness in-depth by comparing its performance to 
that of widely used classifiers38,39. A hybrid features vector was used in the evaluation. It used well-known 
classifiers like KNN40,41, Random Forest (RF)42, Naive Bayes (NB)43, and Support-Vector-Machine (SVM)44. 
Table 5 displays the results of this comparative analysis, highlighting the performance of each learning classifier. 
Additionally, our proposed DNN model outperformed all other classifiers, with an average accuracy of 84.07%. 
Among the classifiers mentioned, KNN had the second-highest accuracy at 79.89%, while the RF classifier 
had the lowest accuracy at 62.30%. A careful examination of these results led us to conclude that our proposed 
model’s exceptional performance can be attributed to its ability to process complex and highly nonlinear datasets 
effectively using its multi-stack processing capabilities.

Figure 4.   The area under the ROC curve uses different formulation techniques and a hybrid features vector.

Table 5.   A comparative analysis assessed the proposed model performance compared to various learning 
classifiers.

Learning classifiers NB SVM KNN RF DT DNN

ACC% 72.24 63.94 79.89 62.3 77.08 84.07

SN% 78.8 61.24 72.82 61.51 74.34 90.29

SP% 68.4 63.73 85.15 58.08 84.5 83.07

F1 score 70.61 57.81 76.65 56.95 73.33 84.64

MCC 0.377 0.296 0.443 0.317 0.395 0.736
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Performance comparison with existing models
In this study, we have compared the performance of the suggested model with the existing methods, i.e.,45–49. 
Table 6 provides a comparison between the proposed model and the current models. It can be observed from 
Table 6 that the suggested model performed overwhelmingly better than the current model. The suggested 
predictor achieved the highest accuracy of 84.07% and Matthews correlation coefficient (MCC) of 0.736, 
respectively. These important metrics reflect the proposed predictor’s overall performance, robustness, and 
stability. The suggested model also yields much better performances in Sn (sensitivity) and Sp (specificity) 
comparable with the existing methods, i.e., 90.29% and 83.07%, respectively. The average accuracy improvements, 
i.e., 7.59%, illustrate the proposed model’s significance and self-evident comparison with existing predictors.

Analysis of learning hypotheses using independent dataset
We extensively evaluated using an independent dataset to ensure our groundbreaking model’s highest stability 
and unwavering reliability. The highly detailed and meticulously organized results in Table 7 provide a profound 
understanding of the hybrid feature set’s remarkable performance across diverse classifiers. It is especially 
noteworthy that our pioneering DNN classifier demonstrated unparalleled accuracy, achieving an astounding 
83.31%. Furthermore, it outperformed all other classifiers by performing an amazing 90.01% sensitivity and an 
exceptional 82.98% specificity. In addition, on the composite feature set, the KNN classification served well, 
attaining the second-highest accuracy and special MCC values of 78.49 and 0.438.

Conclusion
Several biological processes, such as gene regulation and epigenetic changes, necessitate the identification of 
5-hydroxymethylcytosine (5hmC) modifications. These alterations have been associated with conditions like 
diabetes, cardiovascular disease, and cancer, highlighting the importance of precisely defining 5HMC regions 
for early disease detection and diagnosis. The proposed Deep5HMC model offers a more efficient and cost-
effective alternative to traditional laboratory techniques for locating 5HMC samples, employing machine 
learning algorithms and discriminative feature extraction methodologies. This study introduces Deep5HMC as 
an effective and efficient learning model for identifying 5HMC samples, leveraging machine learning approaches, 
discriminative feature extraction methods, and deep neural networks to enhance prediction precision and 
robustness. The trials revealed a notable improvement in Deep5HMC’s prediction accuracy, reaching 84.07%, 
surpassing previous investigations’ recognition accuracy of 7.59%. These findings demonstrate the superior 
performance of the optimized DNN classification method. Exploring potential combinations of Deep5HMC with 
other computational or experimental techniques holds promise for enhancing RNA modification analysis. Future 
work directions aim to enhance Deep5HMC’s continuous improvement and practicality in RNA modification 
analysis using complementary computational methods.

Table 6.   The proposed and existing models were compared concerning performance.

Methods iRNA5hmC iRNA5hmC-PS iRhm5CNN Deep5hmC

Classifier SVM LR CNN DNN

ACC (%) 65.48 78.3 81 84.07

SN (%) 67.67 80 82 90.29

SP (%) 63.29 79.5 80 83.07

F1 score 65.01 76.41 78.21 83.94

MCC 0.31 0.56 0.62 0.736

Table 7.   The proposed model’s performance on an independent dataset was evaluated and analyzed.

Classifiers ACC (%) SN (%) SP (%) F1 score MCC

NB 70.32 77.22 67.55 73.26 0.372

SVM 61.41 60.11 62.31 59.25 0.293

DT 75.98 73.23 83.15 76.47 0.394

RF 60.21 61.01 56.89 60.92 0.316

KNN 78.49 73.27 80.21 77.73 0.438

DNN 83.31 90.01 83.98 85.57 0.732
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Data availability
The datasets used and/or analyzed during the current study are available on Github link. https://​github.​com/​
salman-​khan-​mrd/​Deep5​HMC.
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