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Eye movement function captured 
via an electronic tablet informs 
on cognition and disease severity 
in Parkinson’s disease
Nils A. Koch 1,3, Patrice Voss 2,3, J. Miguel Cisneros‑Franco 2, Alexandre Drouin‑Picaro 3, 
Fama Tounkara 1, Simon Ducharme 2,4, Daniel Guitton 2 & Étienne de Villers‑Sidani 2,3*

Studying the oculomotor system provides a unique window to assess brain health and function in 
various clinical populations. Although the use of detailed oculomotor parameters in clinical research 
has been limited due to the scalability of the required equipment, the development of novel tablet-
based technologies has created opportunities for fast, easy, cost-effective, and reliable eye tracking. 
Oculomotor measures captured via a mobile tablet-based technology have previously been shown to 
reliably discriminate between Parkinson’s Disease (PD) patients and healthy controls. Here we further 
investigate the use of oculomotor measures from tablet-based eye-tracking to inform on various 
cognitive abilities and disease severity in PD patients. When combined using partial least square 
regression, the extracted oculomotor parameters can explain up to 71% of the variance in cognitive 
test scores (e.g. Trail Making Test). Moreover, using a receiver operating characteristics (ROC) analysis 
we show that eye-tracking parameters can be used in a support vector classifier to discriminate 
between individuals with mild PD from those with moderate PD (based on UPDRS cut-off scores) 
with an accuracy of 90%. Taken together, our findings highlight the potential usefulness of mobile 
tablet-based technology to rapidly scale eye-tracking use and usefulness in both research and clinical 
settings by informing on disease stage and cognitive outcomes.

Neurodegenerative disorders have long been known to produce a broad variety of oculomotor alterations as a 
result of deteriorating brain health. Many of these have been previously described in Parkinson’s disease (PD) and 
include, but are not limited to, increased pro-saccade latency1, presence of multistep pro-saccades2,3, increased 
saccadic intrusions during fixation4, and increased antisaccade error rate1,5. Although primarily referred to as a 
motor neurodegenerative disorder, PD is a multisystem disorder that leads to several non-motor issues, including 
cognitive dysfunction, dementia, and depression, that contribute greatly to the overall disease burden6.

Cognitive dysfunction is one of the more frequent–up to six times more common in individuals with PD than 
in the healthy population7 –and debilitating non-motor symptoms of PD, as it significantly affects the patient’s 
quality of life8. Although it was traditionally believed that cognitive dysfunction does not emerge until the later 
stages of PD, recent evidence suggests that mild-to-moderate cognitive impairments are often present during 
the early disease stages, occurring in up to 35% of individuals with early-stage PD9. In fact, the onset of cogni-
tive decline appears to be highly unpredictable in PD individuals, which can occur a few years or decades after 
diagnosis as much as it can appear at the time of, or even prior to, PD diagnosis10.

The accurate diagnosis of cognitive impairment in individuals with PD is important for clinical management, 
and research, including trial selection. Although screening of cognitive function in patients with PD is not 
performed regularly, it has been argued that it should be part of routine clinical care11. The Montreal Cognitive 
Assessment (MoCA) is the most frequently used cognitive screening instrument in PD research and clinical 
practice, and the optimal cut-off point of 23/24 has a sensitivity of 0.41 and a specificity of 0.82, with 68% correct 
diagnoses of PD-MCI12. The main drawbacks of such a cognitive screening approach is the limited informa-
tion gleaned about the detailed cognitive profile and the reduced reliability compared with a comprehensive 
neuropsychological assessment. However, performing a full neuropsychological assessment is generally too 
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time-consuming to become part of the clinical practice standard of care. Inferring cognitive ability from analysis 
of oculomotor parameters shows great potential and promise in bridging this gap.

Indeed, a growing body of evidence suggests that eye-tracking data can serve as a viable marker of cognition 
and cognitive impairments13,14. Specifically, several oculomotor metrics measured in individuals with PD have 
been shown to correlate with measures of general cognition such as the Mini-Mental Status Exam (MMSE)15,16 
or the MoCA17,18. More recently, in a study of individuals with multiple sclerosis, we showed that several ocu-
lomotor parameters, when jointly considered, could account for a large proportion of the variance in cognitive 
test scores19.

Despite the promise of oculomotor analysis as a potential marker of cognition and disease severity, this has 
not previously been practical or scalable given the costs and operational limitations of the required equipment, 
such as infrared eye-tracking cameras. These limitations acted as important barriers to adoption of eye tracking 
in clinical practice. To address this critical technological gap, a novel gaze-tracking tool was recently developed 
and requires only the embedded camera of an iPad Pro (Eye-Tracking Neurological Assessment (ETNA™); Inno-
dem Neurosciences). This approach allows for the precise quantification of several eye movement parameters 
with a precision comparable to those of research-grade infrared eye tracking devices, such as the latency, veloc-
ity, accuracy of saccades, and the presence of saccadic intrusions during fixation. Using this novel technology, 
we recently replicated sets of well-known oculomotor findings in both individuals with MS19 and PD20, with 
the latter study having primarily focused on distinguishing individuals with PD from healthy controls on the 
basis of recorded eye movement parameters. The main objective of the present paper was to determine to what 
extent the oculomotor parameters extracted by this mobile eye-tracking tool could serve as viable markers of 
both disease stage (or severity) using standard PD clinical staging tools, and of cognition in individuals with 
PD. To address the question of cognition, we evaluated four of the cognitive domains outlined in the Movement 
Disorder Society Task Force Guidelines21 – using one cognitive test per cognitive domain: MoCA (global cogni-
tive), Trail Making Test (attention and working memory), Controlled Oral Word Association Test (COWAT) of 
verbal fluency (executive function), Hopkins Verbal Learning Test (HVLT; memory). Oculomotor parameters 
were measured during 5 visual tests that are typically used to reveal eye movement anomalies in various patient 
populations such as PD1,4,5,17: fixation task, pro-saccade task, anti-saccade task, smooth pursuit task, and opto-
kinetic nystagmus task.

In a first preliminary step, we investigated correlations between each cognitive/motor outcome measure of 
interest and all individual eye movement parameters. We hypothesized based on the known literature that several 
of these correlations would be of moderate strength (0.3 < r < 0.5), particularly for pro- and anti-saccade param-
eters. In a subsequent step, we used partial least squares (PLS) regression approaches to determine the extent of 
clinical score variance that could be explained using the eye movement features and hypothesized that although 
significant proportions of the variance of the cognitive test scores could be explained, that these proportions 
wouldn’t be as high as those observed for clinical motor scale scores, as we have previously shown in a sample 
of patients with MS19. Finally, we developed a support vector classifier to discriminate between individuals with 
mild PD from those with moderate PD (based on UPDRS cut-off scores). Given the strong relationship known 
to exist between several oculomotor parameters and the UPDRS scores and our own previously published data20, 
we hypothesized that we should be able to distinguish between both PD patient subgroups with a high level of 
accuracy. The overall aim of the study is to generate evidence that oculomotor parameters collected with a novel 
tablet-based technology can assist in clinical assessment and management of PD patients by informing on disease 
severity and cognitive abilities.

Methods
Study design and subject population
Patients with mild-to-moderate idiopathic PD were enrolled as a part of the Quebec Parkinson Network (QPN; 
https://​rpq-​qpn.​ca/) initiative22, which includes extensive clinical, neuroimaging, neuropsychological, and bio-
logical profiling of participants. A final sample of 65 consecutively recruited patients (age 64.14 ± 8.40, range 
45–89, 43/22 males/females) that consented to also undergo eye-tracking experiments were included in this 
study. No recruited patients were excluded from the dataset. All patients were diagnosed by a movement disorder 
specialist in the province of Quebec according to the MDS criteria or previously published criteria for patients 
who were recruited before the publication of the MDS criteria23 . All patients with PD were prescribed a stable 
dosage of antiparkinsonian medication with satisfactory clinical response prior to study enrollment. Patients 
were instructed to take their medication as prescribed before research visits, and thus all data were collected in 
the practically-defined “ON” state. Inclusion criteria were confirmed diagnosis of PD and sufficient corrected 
visual acuity to allow for the accurate reading of the on-screen visual task instructions (see Gaze-tracking experi-
mental setup below). Exclusion criteria included comorbid neurological or psychiatric conditions to avoid eye 
movement anomaly confounders. All participants provided written informed consent. This study was approved 
by and performed in accordance with the guidelines of the McGill University Health Centre Research Ethics 
Board Montreal Neurological Institute.

Clinical and cognitive assessments
To assess clinical status, all PD patients underwent the MDS-UPDRS24,25, which was developed to evaluate vari-
ous aspects of Parkinson’s Disease. Within the context of this study, only the UPDRS full score and the motor 
subscale (UPDRS part III) were used in data analyses. Patient staging was further performed with the Hoehn and 
Yahr Scale26. Cognitive assessments included the following: the MoCA27, the TMT A/B28, the HVLT29 (immediate 
recall only), and the COWAT-CFL30.

https://rpq-qpn.ca/
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Gaze‑tracking experimental setup
All eye-tracking tests were performed using a 12.9-inch iPad Pro tablet with the ETNA™ software installed, with 
which it is possible to simultaneously present visual stimuli on-screen and acquire video recordings of the eyes 
using the embedded front-facing camera at 60 frames per second. Gaze-tracking is performed in visible light 
with a deep neural network using four inputs and that produces a general gaze model: an image of the user’s face, 
an image of each of the user’s eyes, and the Euler angles of the head as head pose information. Apple’s ARKit was 
used to detect facial landmarks.

Prior to undertaking the visual tasks, all participants performed a brief calibration step whereby they track a 
slow-moving target on-screen. The calibration procedure itself trains an additional model, which is then incorpo-
rated into the general gaze model to produce the final individualized gaze-tracking model. The ETNA™ software’s 
gaze-tracking algorithms have an estimated average (over the entire screen) accuracy of 0.47 degrees (mean offset 
between the actual gaze position and the recorded gaze position) and precision of 0.33 degrees (as calculated 
via Root Mean Square (RMS) of the sampled points; an estimate of reliability of the gaze point estimate from 
one sample to the next, which are comparable values to those of research-grade infrared eye tracking devices.

All participants performed five oculomotor tasks in the predetermined following order: a fixation task, a 
pro-saccade task, an anti-saccade task, a smooth pursuit task and an optokinetic nystagmus (OKN) task (see 
below for a more detailed description of each task and Supp. Figure 1 for a visual task representations). All tasks 
and the calibration step were performed with the tablet screen placed vertically, camera side up, and secured at 
eye level using a tablet pole mount. The tablet was positioned approximately 45 cm in front of the participants, 
who were allowed to use their best-corrected visions, with glasses or lenses if necessary. Those who wore cor-
rective eyewear were required to wear them for the full duration of testing, including the calibration step. All 
participants were instructed to remain still as possible and to neither move their head nor torso for the duration 
of the eye-tracking tasks. No chin guard or movement restricting device was used to collect data in both a more 
user-friendly and ecological setting that would more closely mimic at-home testing. Safeguards within the gaze-
tracking software ensured the participant’s head was properly positioned in front of the camera and that the eyes 
were visible, at an acceptable angle and distance from the screen. Safeguards were also in place to ensure lighting 
conditions were within minimal and maximal thresholds. In the event that a patient fell out of alignment during 
a task, the application would stop the task and the patient would be required to start that specific task over again. 
The calibration step and all five tasks were completed in under 15 min.

Fixation task
Participants had to fixate a stationary target for 7 s, presented sequentially at five different locations (one central 
and 4 eccentric locations). The eccentric positions were located 10 degrees of visual angle left and right from the 
center and 14 degrees of visual angle up and down from the center (Supp. Figure 1a).

Pro‑saccade task
Participants had to initially fixate a central fixation cross, which disappeared after a random period of 1.0–3.5 s, 
after which a different target reappeared elsewhere on the screen at an eccentric location for 1.5 s either to the 
left or right, above, or below the central fixation point. Participants were instructed to move their gaze as quickly 
as possible to the new target location. Both Small (5° horizontal, 6o vertical) and Large (10° horizontal, 12° verti-
cal) amplitude eccentric target distances were used. Each target location was sampled 3 times, for a total of 24 
trials (Supp. Figure 1b).

Anti‑saccade task
Participants had to initially fixate a central fixation cross, which disappeared after a random period of 1.0–3.5 s, 
after which a different target reappeared elsewhere on the screen at an eccentric location (10°) either to the left 
or right from the center. Participants were instructed to move their gaze as quickly as possible in the opposite 
direction to the new target location. After being displayed for only 100 ms, the target disappeared, and the screen 
was left blank for a predetermined duration of time. Following the blank screen, a symbol appeared in the oppo-
site location of where the initial stimulus appeared (i.e., where the participant should be looking). This symbol 
consisted of a white square with an arrow inside oriented in one of 4 random directions: either left, right, up, or 
down. Three different difficulty levels were used, each comprising 8 trials. In the Slow trials, the blank screen 
period lasted 1,200 ms and the arrow symbol duration of 400 ms, in the Medium trials the blank screen period 
lasted 800 ms and the arrow symbol duration of 250 ms, and in the Fast trials the blank screen period lasted 
550 ms and the arrow symbol duration of 100 ms. After each trial, a screen was displayed for 5 s prompting the 
user to answer which symbol they saw by directing their gaze towards the arrow orientation corresponding to 
what they believe is the correct answer (Supp. Figure 1c). This task was inspired by an anti-saccade task used in 
a previous study31, whereby participants could only identify the second symbol had they performed the anti-
saccade task correctly (i.e., looked in the opposite direction of the initial target).

Smooth pursuit task
Participants here were first required to fixate a central fixation cross of variable duration (1–2 s). Once the fixation 
cross disappeared a moving target (that could either go up, down, left or right) appeared on screen for which 
the participants were instructed to follow with their gaze. Step–ramp paradigm of smooth pursuit at constant 
velocity was used, whereby the initial position of the moving target was positioned offset from the central fixation 
point, on the opposite side of the motion direction (Supp. Figure 1d). For instance, in a trial of rightward smooth 
pursuit, the motion target would first appear to the left of the central fixation point (i.e., the step) and then moved 
in the opposite direction (rightward) at a constant velocity (i.e., the ramp). The trial terminated when the target 
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reached the 10° position either left, right, above, or below center. A total of twelve trials were performed, three 
in each direction, with a target that moved at one of three constant velocities (Slow: 8.65°/s, with a step size of 
1.5°) (Medium: 17.1°/s, with a step size of 2.7°) (Fast: 25.9°/s, with a step size of 4.1°) (see also Supp. Figure 1d).

Optokinetic nystagmus task
Participants were first required to fixate a central cross for three seconds, after which a 100% contrast horizontally 
moving vertical square wave grating would appear on screen. The grating stimulus was presented full screen with 
a fundamental spatial frequency of one cycle per 2.5 degrees. Four different direction and velocity combinations 
were presented to each participant, each preceded by the fixation cross and each last for 15 s: 1) leftward motion 
at 4 degrees per second, 2) rightward motion at 4 degrees per second, 3) leftward motion at 8 degrees per second, 
and 4) rightward motion at 8 degrees per second.

Oculomotor parameter extraction
Eye movement parameter extraction was performed offline using ETNA™’s automatic proprietary analysis pipe-
line. Before parameter extraction, all gaze signals were processed and non-saccadic artifacts (e.g., blinks) were 
removed by the software’s analysis pipeline. Gaze signals were also denoised using Savitzky-Golay filters. An 
adaptive, velocity-based algorithm was used for saccade detection, based on the work of Schweitzer and Rolfs31. 
Saccade parameters were then obtained by fitting a parametric model for saccadic waveforms32, which reproduces 
the established relationship between peak saccadic angular velocity and saccadic amplitude (i.e., the saccadic 
main sequence) to the data acquired during the pro-saccade and anti-saccade tasks. This model fitting provides 
saccade parameters such as the saccade latency, amplitude and peak velocity.

Fixation parameters were averaged across all positions, resulting in a single set of fixation parameters. Pro-
saccades parameters were averaged across locations and dimensions, with the exception of the large amplitude 
downward saccades, which were removed from all analyses. This removal was done because data for these 
trials was often absent due to difficulty in detecting the eyes caused by the lowering of the eyelids during large 
downward saccades. This yielded two sets of prosaccade parameters: one for large amplitude saccades (excluding 
the data from the downward saccade trials) and one for small amplitude saccades. Anti-saccades parameters 
were averaged across directions (i.e. left and right), resulting in three sets of anti-saccade parameters, one per 
difficulty level. Smooth pursuit parameters were averaged across target directions for a given target velocity, 
resulting in three different parameter sets, one for each velocity used. Finally, OKN parameters were averaged 
across directions resulting in one parameter set per velocity used. The extracted oculomotor parameters included 
but were not limited to: saccadic intrusion frequency and amplitude (fixation), saccadic latency, velocity and 
precision (pro-saccades), direction-specific latency and directional success rate (anti-saccades), amplitude of 
drift and velocity of return saccade (optokinetic nystagmus), pursuit velocity and the quantification (e.g. count 
and amplitude) of catch-up saccades (smooth pursuit).

Correlation analyses
For all correlations between eye movement parameters and the clinical outcome measures of interest (UPDRS-
III, UPDRS, H&Y, MoCA, TMTA, TMTB, HVLT, and COWAT-CFL) the Spearman’s ρ correlation coefficient 
was calculated. For the n = 65 sample size, sensitivity analysis conducted in G*Power33 revealed that at α = 0.05 
the smallest effect size capable of detection at power = 0.8 is ρ = 0.33. Corrected p-values to adjust for the false 
discovery rate were computed using the Benjamini–Hochberg procedure evaluated at an alpha level of 0.0534.

Partial least square regression analysis
Partial least squares (PLS) regression was used to examine the relationship between the features and each clinical 
score (UPDRS-III, UPDRS, H&Y, MoCA, TMTA, TMTB, HVLT, and COWAT-CFL). One of the advantages of 
using PLS over regression analyses is that it accounts for multicollinearity between oculomotor parameters. A 
multi-step feature selection procedure was used for each model. The first step consisted in a correlation-based 
feature selection to determine the 20 most correlated features with the clinical score. Subsequently, an exhaus-
tive feature selection procedure was then used to select the parameter set of the final model, which involved 
sampling all possible combinations of those 20 oculomotor parameters (set sizes from 1 to 20) and subsequent 
model fitting. Parameters for which more than half of the participants had a structurally missing value were 
excluded. For each PLS regression model the number of latent variables maximizing the covariance between the 
independent and dependent variables was selected by minimizing the Bayesian information criterion35,36. For 
each model, standardized regression coefficients were computed by multiplying regression coefficients by the 
standard deviation of the predictor variable divided by the standard deviation of the dependent variable. The 
normalized absolute values of the standardized regression coefficients were used as a measure of oculomotor 
parameter contribution to the model. The coefficient of determination (R2) was used to assess multiple regres-
sion performance (both adjusted and non-adjusted values).

PD severity subgroup classification
A correlation-based feature selection to determine the 20 most correlated features with UPDRS-III used for 
training and classification. For the classification of mild (0–35; n = 46) and moderate (36–57; n = 12) UPDRS-III 
scores37, a fivefold stratified cross-validated support vector machine classification method with a radial basis func-
tion and ridge regression was used. An exhaustive feature selection procedure was used to select the parameter 
set of the final model using a balanced accuracy score as the selection metric. This procedure involved sampling 
all possible combinations of the 20 oculomotor parameters most correlated with UPDRS-III (set sizes from 1 
to 3) and subsequent model fitting with fivefold cross validation to determine radial basis function kernel (γ) 
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and the strength of regularization (C). Parameter sets with greater than half of patients having at least one miss-
ing oculomotor parameter value missing were excluded. The selected model uses three anti-saccade saccade 
parameters, relating to the time required to reach the target and the performance rate in accurately detecting the 
target, and one pro-saccade parameter, relating to mean saccadic velocity, eye-movement parameters as inputs, 
and has γ = 0.00077, C = 1.0. Receiver Operating Characteristics (ROC) analysis and a confusion matrix were 
used to assess the performance of the classifier. A classifier for mild, moderate and severe PD (UPDRS-III scores 
0–35, 36–57, and > 57 respectively) was selected in a similar manner, however with threefold cross-validation 
as the severe PD group had a sample size of 3. This classifier uses five different parameters as inputs: three anti-
saccade ones relating to the performance rate in accurately detecting the target and saccadic latency, and three 
pro-saccade parameters relating to mean saccade velocity, peak saccadic velocity and saccadic accuracy, and 
has γ = 0.0001, C = 0.1984.

Data analysis and visualization were performed using scipy 1.11.1, scikit-learn 1.3.0, matplotlib 3.7.1 and 
seaborn 0.11.2 in Python 3.10.6.

Results
Summary clinical statistics
The distributions of participant age, and scales (UPDRS-III, UPDRS, H&Y) and cognitive test scores (MoCA, 
TMTA, TMTB, HVLT, and COWAT-CFL) are shown in Fig. 1a–h respectively and summary statistics for each 
score are found in Table 1. We did not find any significant differences between males and females (see Supp. 
Figure 2 for further details). Also depicted in Fig. 1 are the magnitudes of the correlations between the different 
clinical scores (see Supp. Table 1 for details). Related test scores unsurprisingly correlated very highly such as 
the UPDRS-III and UPDRS (Spearman ρ = 0.7284, corrected p = 2.44*10–7) and TMTA and TMTB (Spearman 
ρ = 0.7450, corrected p = 5.34*10–9). In contrast, the motor scores (UPDRS and UPDRS-III) tended to correlate 
more poorly with the cognitive scores, such as those from the MoCA, the HVLT and the COWAT-CFL.

Correlations of eye‑tracking parameter with clinical scores
Spearman correlations between the extracted eye movement parameters and clinical outcome measures (UPDRS-
III, UPDRS, H&Y, MoCA, TMTA, TMTB, HVLT, COWAT-CFL) are shown in Table 2. The pattern of correlation 
for each clinical outcome measure is depicted in Fig. 2 after thresholding for correlations with ρ ≥ 0.33 based 
on the sensitivity analysis for n = 65 sample size at α = 0.05 and power = 0.8. UPDRS and UPDRS-III generally 
have stronger correlations with eye-movement parameters in the anti-saccade, pro-saccade and smooth pursuit 
tasks. Amongst those tasks, the parameters that showed the most robust correlations were those relating to 
movement initiation latency, movement velocity, and movement duration. TMTA and TMTB scores showed 
very similar correlation patterns to that of UPDRS and UPDRS-III. In contrast, MoCA, HVLT, COWAT-CFL 

Figure 1.   Distribution of participant age (a) and participants’ clinical scores: UPDRS-III (b), UPDRS (c), 
H&Y (d), MoCA (e), TMTA (f), TMTB (g), HVLT (h), and COWAT-CFL (i). Spearman correlations between 
participants’ clinical scores (j).
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and H&Y exhibited more modest correlations overall compared to the four other tests. H&Y showed similar 
(but weaker) correlation patterns to the UPDRS and UPDRS-III. After correction for multiple comparisons, 17 
eye-movement parameters were significantly correlated with UPDRS-III, 16 eye-movement parameters were 
significantly correlated with UPDRS, 2 eye-movement parameters were significantly correlated with H&Y, 2 eye-
movement parameters were significantly correlated with MoCA, 15 eye-movement parameters were significantly 
correlated with TMTA, 18 eye-movement parameters were significantly correlated with TMTB, 3 eye-movement 
parameters were significantly correlated with HVLT, and 8 eye-movement parameters were significantly cor-
related with COWAT-CFL. Select correlations for each clinical measure are depicted in Fig. 3. The relationships 
between oculomotor parameters and cognitive scores seen in Fig. 3d and e are further exemplified in Supp. 
Figure 4, which illustrates how individual pro-saccade and smooth pursuit gaze traces differ between individuals 
at opposite ends of cognitive score spectrums for the MoCA and the TMTA.

PLS regression analyses
To further assess the potential of using oculomotor parameters to estimate clinical outcome indicators, we 
performed multiple partial least squares (PLS) regression analyses for each clinical outcome measure. Results 
are presented in Fig. 4a–h and Table 3 and show that all models explain upwards of 56% of the variance of the 
clinical motor scales (up to 61% for the H&Y scale) and upwards of 40% for the cognitive test scores (up to 71% 
for TMTB). Specifically, the PLS regression model for UPDRS-III and UPDRS explain 56.23% and 59.32% of 
the variance in UPDRS-III and UPDRS scores respectively, with important contributions from anti-saccade 
and pro-saccade eye-movement parameters. The PLS model for H&Y can explain 61.11% of the variance, and 
has important contributions from anti-saccade, pro-saccade and smooth pursuit eye-movement parameters. 
In contrast, the MoCA PLS regression model can only explain 39.66% of the variance in MoCA scores with a 
significant contribution from a single anti-saccade task eye-movement parameter (percentage of trials that par-
ticipants accurately detected the anti-saccade target, at the easiest difficulty level). The PLS models for the trail 
making tests explain 61.98% of the variance for TMTA and 71.49% of the variance for TMTB scores, again with 
anti-saccade and pro-saccade eye-movement parameters the primary contributors. The PLS regression model 
for HVLT has contributions from a few parameters in every eye movement, which together explain 52.98% of 
the variance in HLVT scores. The model for COWAT-CFL has significant contributions from anti-saccade and 
fixation eye-movement parameters and can explain 43.41% of the variance in COWAT-CFL scores. Figure 4i 
further illustrates the relative contribution of each oculomotor parameter to each model predictor (see also Supp. 
Table 2). The mean absolute error for the UPDRS and UPDRS-III PLS regressions are 9.66 and 4.37 respectively 
(Table 3). In general, the inclusion of age as input into the PLS regression does not result in large changes in the 
amount of variance explained for all models (< 4% except for UPDRS-III (+ 13.76%); Supplementary Fig. 5).

Classification
The average Receiver Operating Characteristic curve for the support vector classifier is computed and the area 
under the curve (AUC) is 0.94 (95% CI [0.61–1.00]; Fig. 5a). The classifier has a sensitivity of 0.90 (95% CI 
[0.75, 1.00]) and specificity of 0.90 (95% CI [0.55–1.00]; Fig. 5b) for classifying mild PD from moderate PD on 
the basis of UPDRS-III scores (0–35 and 36–57, respectively). The classifier for mild, moderate and severe PD 
(UPDRS-III scores 0–35, 36–57, and > 57 respectively) has a balanced accuracy of 0.84 with accuracy of 0.76 for 
mild, 0.75 for moderate and 1.0 for severe PD (Fig. 5c). Overall classifier performance does not change for either 
classification with the inclusion of age (Supplementary Fig. 6).

Discussion
The present study provides several clinically relevant lines of evidence supporting the usefulness of monitoring 
the oculomotor system as a means to assess both disease severity and cognitive function in PD. First, our findings 
confirm those from our previous study20 using the same technology with PD patients, that several oculomotor 
parameters strongly correlated with measures of disease stage and severity such as the UPDRS-III score. Second, 

Table 1.   Participant demographic data and PD-related clinical and cognitive test scores. UPDRS (Unified 
Parkinson’s Disease Rating Scale); H&Y (Hoehn and Yahr Scale); MoCA (Montreal Cognitive Assessment); 
TMT-A/B (Trail Making Test—A/B); HVLT (Hopkins Verbal Learning test); COWAT (Controlled Oral Word 
Association Test).

n Mean (SD) Median (IQR) Min–max

Age 65 64.14 (8.40) 65 (59, 69) 45–89

UPDRS-III 61 28.98 (13.43) 28 (19, 35) 7–65

UPDRS 43 49.42 (21.07) 43 (33.5, 62.5) 14–92

H&Y 59 2.15 (0.69) 2 (2,2.5) 1–4

MoCA 36 26.39 (2.84) 27 (24, 29) 20–30

TMTA (s) 50 39.52 (15.31) 33 (26.25, 48.25) 20–79

TMTB (s) 49 97.49 (56.6) 78 (59,107) 41–294

HVLT 50 23.36 (5.35) 23 (20, 26.75) 11–34

COWAT-CFL 48 36.56 (11.03) 35 (29.75, 42) 17–69
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Task Feature

UPDRS-III H&Y UPDRS MoCA HVLT TMTA TMTB p-value COWAT-CFL

ρ p-value p-value p-value p-value p-value p-value p-value p-value p-value p-value p-value p-value p-value ρ p-value

Anti-
Saccade 
Slow

Correct 
Direc-
tion 
Latency

0.216 0.226 0.250 0.217 0.218 0.261  − 0.103 0.627  − 0.202 0.285 0.524 0.001 0.470 0.004 − 0.384 0.039

Correct 
direc-
tion 
dura-
tion-
ampli-
tude 
ratio

0.214 0.226 0.314 0.164 0.203 0.261 − 0.454 0.043 − 0.412 0.018 0.391 0.011 0.286 0.090  − 0.237 0.243

Symbol 
Percent 
Correct

 − 0.280 0.122  − 0.231 0.217  − 0.280 0.115 0.378 0.092 0.287 0.092 − 0.494 0.001 − 0.566 0.000 0.354 0.039

Incor-
rect 
Direc-
tion 
Latency

0.079 0.656  − 0.099 0.655 0.079 0.656 0.319 0.187 0.100 0.599  − 0.150 0.353 0.012 0.941  − 0.191 0.371

Direc-
tion 
Percent 
Correct

0.027 0.835 0.049 0.712 0.033 0.800  − 0.107 0.627 0.137 0.465  − 0.217 0.179  − 0.223 0.146  − 0.034 0.821

Direc-
tion 
Percent 
Cor-
rected

0.079 0.656 0.172 0.362 0.079 0.656 0.000 0.998 0.007 0.963  − 0.145 0.353  − 0.240 0.146 0.139 0.513

Time to 
Correct 0.174 0.453  − 0.083 0.703 0.174 0.453  − 0.295 0.325 − 0.529 0.012 0.519 0.004 0.477 0.012  − 0.114 0.617

Time to 
Target 0.346 0.054 0.175 0.362 0.346 0.050  − 0.131 0.627  − 0.325 0.061 0.472 0.002 0.448 0.004 − 0.365 0.039

Anti-
Saccade 
Medium

Correct 
Direc-
tion 
Latency

0.464 0.001 0.252 0.175 0.453 0.001  − 0.239 0.694  − 0.294 0.189 0.382 0.025 0.494 0.001  − 0.240 0.250

Correct 
direc-
tion 
dura-
tion-
ampli-
tude 
ratio

0.047 0.853 0.070 0.834 0.044 0.811  − 0.012 0.947 0.067 0.877 0.153 0.623 0.021 0.890  − 0.045 0.854

Symbol 
Percent 
Correct

− 0.464 0.001 − 0.410 0.012 − 0.470 0.001 0.371 0.248 0.296 0.189 − 0.371 0.025 − 0.507 0.001 0.322 0.231

Incor-
rect 
Direc-
tion 
Latency

0.320 0.042 0.004 0.976 0.303 0.055 0.036 0.947  − 0.175 0.428 0.104 0.817 0.211 0.361  − 0.244 0.250

Direc-
tion 
Percent 
Correct

0.024 0.853  − 0.065 0.834 0.031 0.811  − 0.096 0.772  − 0.037 0.902  − 0.053 0.817  − 0.157 0.452  − 0.027 0.854

Direc-
tion 
Percent 
Cor-
rected

0.068 0.853 0.038 0.905 0.075 0.811 0.175 0.694  − 0.020 0.902 0.074 0.817  − 0.038 0.890 0.033 0.854

Time to 
Correct  − 0.045 0.853  − 0.267 0.176  − 0.050 0.811 0.213 0.694  − 0.244 0.303 0.007 0.970 0.046 0.890  − 0.054 0.854

Time to 
Target 0.502 4.0E− 4 0.247 0.175 0.488 0.001  − 0.104 0.772  − 0.253 0.220 0.391 0.025 0.487 0.001  − 0.240 0.250

Continued
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Task Feature

UPDRS-III H&Y UPDRS MoCA HVLT TMTA TMTB p-value COWAT-CFL

ρ p-value p-value p-value p-value p-value p-value p-value p-value p-value p-value p-value p-value p-value ρ p-value

Anti-
Saccade 
Fast

Correct 
Direc-
tion 
Latency

0.163 0.380 0.232 0.287 0.157 0.405 0.124 0.783  − 0.025 0.964 0.086 0.696 0.335 0.056  − 0.238 0.325

Correct 
direc-
tion 
dura-
tion-
ampli-
tude 
ratio

0.268 0.132 0.031 0.987 0.266 0.133  − 0.134 0.783 0.053 0.964 0.266 0.324 0.052 0.741 0.035 0.946

Symbol 
Percent 
Correct

− 0.483 0.001 − 0.388 0.028 − 0.485 0.001 0.470 0.053 0.306 0.265 − 0.469 0.007 − 0.502 0.003 0.343 0.169

Incor-
rect 
Direc-
tion 
Latency

0.384 0.023 0.037 0.987 0.382 0.023  − 0.055 0.783  − 0.062 0.964 0.045 0.785 0.123 0.513 0.037 0.946

Direc-
tion 
Percent 
Correct

 − 0.001 0.992  − 0.063 0.987 0.003 0.982  − 0.079 0.783 0.115 0.964  − 0.162 0.580  − 0.275 0.075  − 0.086 0.894

Direc-
tion 
Percent 
Cor-
rected

 − 0.089 0.721  − 0.002 0.987  − 0.097 0.663  − 0.069 0.783 0.293 0.265  − 0.115 0.696 − 0.371 0.049 0.006 0.969

Time to 
Correct  − 0.074 0.741 0.018 0.987  − 0.074 0.741  − 0.205 0.783  − 0.074 0.964 0.094 0.696 0.355 0.074  − 0.261 0.325

Time to 
Target 0.178 0.370 0.219 0.287 0.169 0.405 0.133 0.783  − 0.007 0.964 0.158 0.580 0.411 0.018  − 0.212 0.325

Fixation

BCEA 
95 0.149 0.433 0.055 0.964 0.144 0.429  − 0.385 0.184  − 0.300 0.094 0.198 0.365 0.221 0.229 − 0.366 0.035

Stand-
ard 
error 
of the 
horiz. 
gaze 
drift

0.255 0.429 0.215 0.458 0.250 0.418  − 0.273 0.273  − 0.260 0.103 0.286 0.178 0.328 0.158 − 0.388 0.035

Stand-
ard 
devia-
tion of 
horiz. 
gaze

0.184 0.433 0.038 0.964 0.176 0.429  − 0.219 0.273  − 0.290 0.094 0.183 0.365 0.226 0.229 − 0.356 0.035

Mean 
Fixation 
Dura-
tion

 − 0.138 0.433  − 0.007 0.964  − 0.138 0.429 0.247 0.273 0.102 0.582  − 0.023 0.986  − 0.082 0.646  − 0.069 0.641

SI peak 
velocity 0.161 0.433  − 0.006 0.964 0.158 0.429  − 0.219 0.273  − 0.098 0.582 0.311 0.178 0.238 0.229  − 0.079 0.641

SI rate 0.063 0.721 0.226 0.458 0.062 0.723  − 0.115 0.503 0.035 0.810 0.002 0.988 0.035 0.811 0.272 0.079

Percent 
within 4 
degree 
radius

 − 0.215 0.429  − 0.183 0.497  − 0.215 0.418 0.187 0.310 0.261 0.103  − 0.268 0.178  − 0.302 0.158 0.288 0.071

Stand-
ard 
error of 
the vert. 
gaze 
drift

0.047 0.721  − 0.085 0.964 0.047 0.723  − 0.217 0.273  − 0.322 0.094 0.131 0.541 0.156 0.428 − 0.336 0.035

Stand-
ard 
devia-
tion of 
vert. 
gaze

0.049 0.721  − 0.018 0.964 0.046 0.723  − 0.337 0.200  − 0.289 0.094 0.116 0.541 0.137 0.448 − 0.340 0.035

Continued
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Task Feature

UPDRS-III H&Y UPDRS MoCA HVLT TMTA TMTB p-value COWAT-CFL

ρ p-value p-value p-value p-value p-value p-value p-value p-value p-value p-value p-value p-value p-value ρ p-value

OKN 
fast

OKN 
ampli-
tude

 − 0.066 0.704  − 0.041 0.947  − 0.060 0.731 0.100 0.867  − 0.021 0.889  − 0.035 0.955  − 0.104 0.789 0.088 0.967

OKN 
drift 
gain

 − 0.148 0.466  − 0.228 0.337  − 0.142 0.496 0.093 0.867 0.058 0.772  − 0.102 0.955  − 0.141 0.690  − 0.012 0.967

Fast 
Phase 
Final 
Offset

0.155 0.466  − 0.038 0.947 0.144 0.496  − 0.215 0.766  − 0.237 0.209  − 0.048 0.955 0.159 0.690 0.068 0.967

OKN 
fast 
phase 
dura-
tion

 − 0.193 0.466 0.020 0.947  − 0.195 0.496 0.276 0.599 0.250 0.209  − 0.151 0.955  − 0.281 0.555 0.180 0.967

OKN 
fre-
quency

 − 0.151 0.466  − 0.263 0.337  − 0.146 0.496 0.110 0.867 0.241 0.209  − 0.017 0.955  − 0.171 0.690 0.006 0.967

OKN 
slow

OKN 
ampli-
tude

0.067 0.704 0.238 0.337 0.073 0.731  − 0.036 0.998  − 0.110 0.649  − 0.010 0.955  − 0.072 0.803 0.034 0.967

OKN 
drift 
gain

0.122 0.550  − 0.010 0.947 0.128 0.511 0.000 0.998  − 0.104 0.649  − 0.009 0.955  − 0.035 0.912 0.048 0.967

Fast 
Phase 
Final 
Offset

0.229 0.466 0.153 0.570 0.219 0.496  − 0.336 0.599  − 0.258 0.209 0.065 0.955 0.092 0.789 0.044 0.967

OKN 
fast 
phase 
dura-
tion

 − 0.161 0.466 0.070 0.947  − 0.165 0.496  − 0.002 0.998 0.099 0.649 0.076 0.955  − 0.010 0.951 0.035 0.967

OKN 
fre-
quency

 − 0.014 0.914  − 0.144 0.570  − 0.012 0.925 0.124 0.867 0.263 0.209  − 0.017 0.955  − 0.184 0.690 0.082 0.967

PS Large

Saccade 
Final 
Gain

 − 0.270 0.053  − 0.196 0.297  − 0.253 0.071 0.079 0.730 0.032 0.892  − 0.181 0.249  − 0.203 0.194 0.045 0.958

Saccade 
Final 
Gain Av. 
Error

0.318 0.023 0.072 0.645 0.320 0.022  − 0.296 0.292  − 0.158 0.379 0.317 0.075 0.319 0.051 0.038 0.958

First 
Saccade 
Gain

− 0.378 0.014  − 0.254 0.231 − 0.357 0.022 0.203 0.409 0.245 0.267 − 0.413 0.014 − 0.379 0.026 0.143 0.958

First 
Saccade 
Gain Av. 
Error

0.403 0.013 0.154 0.354 0.401 0.022  − 0.255 0.292  − 0.205 0.267 0.411 0.014 0.358 0.030  − 0.091 0.958

Latency 0.212 0.121  − 0.024 0.856 0.196 0.153  − 0.126 0.640  − 0.087 0.656 0.098 0.529 0.176 0.227 0.015 0.993

Mean 
Veloc-
ity

− 0.365 0.014  − 0.224 0.231 − 0.344 0.022 0.027 0.929 0.223 0.267  − 0.298 0.080  − 0.193 0.207 0.040 0.958

Peak 
Veloc-
ity

 − 0.243 0.082  − 0.132 0.410  − 0.233 0.095  − 0.009 0.959 0.217 0.267  − 0.241 0.127  − 0.308 0.056  − 0.059 0.958

Number 
of Sac-
cades to 
Reach 
Target

0.219 0.115 0.166 0.340 0.216 0.117  − 0.153 0.559  − 0.309 0.267 0.366 0.033 0.264 0.110 0.001 0.993

Time To 
Target 0.367 0.014 0.186 0.297 0.353 0.022  − 0.263 0.292  − 0.272 0.267 0.259 0.113 0.213 0.181  − 0.056 0.958

Continued
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Task Feature

UPDRS-III H&Y UPDRS MoCA HVLT TMTA TMTB p-value COWAT-CFL

ρ p-value p-value p-value p-value p-value p-value p-value p-value p-value p-value p-value p-value p-value ρ p-value

PS Small

Saccade 
Final 
Gain

 − 0.172 0.208  − 0.091 0.594  − 0.154 0.261 0.104 0.653 0.120 0.524  − 0.216 0.170 − 0.330 0.047 0.038 0.958

Saccade 
Final 
Gain Av. 
Error

0.317 0.023 0.254 0.231 0.314 0.023  − 0.247 0.292  − 0.214 0.267 0.483 0.006 0.482 0.007  − 0.151 0.958

First 
Saccade 
Gain

 − 0.150 0.265  − 0.183 0.297  − 0.132 0.324 0.247 0.292 0.193 0.267  − 0.248 0.124 − 0.371 0.026 0.068 0.958

First 
Saccade 
Gain Av. 
Error

0.330 0.021 0.233 0.231 0.330 0.022  − 0.284 0.292  − 0.238 0.267 0.465 0.006 0.463 0.007  − 0.067 0.958

Latency 0.354 0.015 0.068 0.645 0.335 0.022  − 0.397 0.103  − 0.194 0.267 0.268 0.108 0.392 0.024  − 0.155 0.958

Mean 
Veloc-
ity

− 0.306 0.027  − 0.230 0.231 − 0.298 0.031 0.197 0.409 0.012 0.933  − 0.073 0.614  − 0.247 0.131  − 0.003 0.993

Peak 
Veloc-
ity

− 0.333 0.021  − 0.326 0.212 − 0.322 0.022 0.114 0.653  − 0.029 0.892  − 0.300 0.080  − 0.180 0.227  − 0.102 0.958

Number 
of Sac-
cades to 
Reach 
Target

0.088 0.500 0.223 0.231 0.082 0.526  − 0.395 0.103  − 0.202 0.267 0.168 0.273 0.240 0.133  − 0.063 0.958

Time To 
Target 0.399 0.013 0.150 0.354 0.378 0.022 − 0.526 0.018  − 0.278 0.267 0.274 0.108 0.437 0.010  − 0.202 0.958

SP 
Velocity 
Fast

First 
Saccade 
Latency

0.098 0.830 0.020 0.977 0.100 0.856  − 0.155 0.879 0.161 0.854  − 0.154 0.863 0.155 0.656  − 0.002 0.993

Initial 
pursuit 
Veloc-
ity

 − 0.191 0.830  − 0.305 0.877  − 0.187 0.856 0.385 0.630 0.260 0.717  − 0.296 0.387  − 0.214 0.570 0.043 0.879

Num-
ber of 
Catch-
up Sac-
cades

 − 0.078 0.830  − 0.004 0.977  − 0.078 0.856  − 0.095 0.879 0.194 0.854  − 0.018 0.954  − 0.377 0.279 0.202 0.752

Pursuit 
Onset 
Latency

 − 0.102 0.830  − 0.089 0.885  − 0.098 0.856 0.137 0.879  − 0.139 0.854  − 0.069 0.863 0.026 0.919  − 0.061 0.872

Propor-
tion of 
Time in 
Pursuit

0.084 0.830  − 0.138 0.877 0.091 0.856 0.299 0.630 0.033 0.993  − 0.077 0.863 0.280 0.570  − 0.115 0.803

Pursuit 
gain  − 0.111 0.830  − 0.254 0.877  − 0.101 0.856 0.226 0.815 0.032 0.993  − 0.360 0.344  − 0.063 0.919 0.033 0.888

Pursuit 
Lag  − 0.035 0.855 0.157 0.877  − 0.034 0.856 0.069 0.912 0.019 0.993  − 0.106 0.863 0.047 0.919  − 0.103 0.803

Total 
Ampli-
tude of 
Catch-
up Sac-
cades

 − 0.168 0.830  − 0.222 0.877  − 0.163 0.856 0.099 0.879 0.142 0.854  − 0.094 0.863  − 0.256 0.570 0.181 0.752

Continued
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in line with previous publications in the literature we provide confirmatory evidence that individual oculomotor 
motor parameters significantly correlate with various measures of cognitive function in individuals with PD. 
Third, using regression analysis approaches that were implemented in a recent analysis of the same technology in 
a cohort of multiple sclerosis patients19, we show that combining the information of several oculomotor param-
eters can explain upwards of 56% of the variance of the clinical motor scales (up to 61% for the H&Y scale) and 
upwards of 40% for the cognitive test scores (up to 71% for TMTB). Finally, we show that all of these findings can 
be obtained using a novel mobile tablet-based eye tracking system, which has the potential to both optimize clini-
cal care of patients with PD, as well as accelerate eye movement research by being both an affordable and scalable 
solution to help characterize disease status, monitor disease progression, and track changes in cognitive ability.

Task Feature

UPDRS-III H&Y UPDRS MoCA HVLT TMTA TMTB p-value COWAT-CFL

ρ p-value p-value p-value p-value p-value p-value p-value p-value p-value p-value p-value p-value p-value ρ p-value

SP 
Velocity 
Medium

First 
Saccade 
Latency

0.051 0.855 0.166 0.877 0.052 0.856 0.168 0.879 0.040 0.993  − 0.137 0.863  − 0.201 0.656 0.349 0.556

Initial 
pursuit 
Veloc-
ity

0.079 0.830 0.102 0.885 0.072 0.856 0.269 0.630 0.532 0.017  − 0.046 0.939  − 0.212 0.570 0.184 0.752

Num-
ber of 
Catch-
up Sac-
cades

0.120 0.830 0.075 0.885 0.113 0.856  − 0.052 0.921  − 0.025 0.993 0.091 0.863 0.036 0.919 0.335 0.556

Pursuit 
Onset 
Latency

 − 0.092 0.830  − 0.157 0.877  − 0.087 0.856  − 0.038 0.921 0.037 0.993  − 0.119 0.863 0.074 0.919  − 0.198 0.752

Propor-
tion of 
Time in 
Pursuit

 − 0.067 0.830  − 0.105 0.885  − 0.064 0.856 0.105 0.879 0.114 0.854  − 0.146 0.863  − 0.172 0.656  − 0.114 0.803

Pursuit 
gain 0.144 0.830 0.047 0.956 0.149 0.856 0.175 0.879 0.006 0.993  − 0.038 0.939 0.002 0.990 0.064 0.872

Pursuit 
Lag 0.062 0.830 0.126 0.885 0.070 0.856 0.042 0.921  − 0.123 0.854 0.026 0.954 0.216 0.570  − 0.206 0.752

Total 
Ampli-
tude of 
Catch-
up Sac-
cades

0.040 0.855 0.179 0.877 0.044 0.856  − 0.375 0.630  − 0.382 0.328 0.550 0.048 0.440 0.279  − 0.126 0.803

SP 
Velocity 
Slow

First 
Saccade 
Latency

 − 0.121 0.830  − 0.125 0.885  − 0.091 0.856  − 0.196 0.879 0.002 0.993  − 0.092 0.863  − 0.182 0.656  − 0.132 0.803

Initial 
pursuit 
Veloc-
ity

 − 0.218 0.830  − 0.155 0.877  − 0.216 0.856 0.010 0.959 0.012 0.993  − 0.295 0.387  − 0.246 0.570 0.242 0.752

Num-
ber of 
Catch-
up Sac-
cades

 − 0.334 0.318 0.063 0.914  − 0.334 0.300  − 0.115 0.879  − 0.179 0.854 0.233 0.590 0.251 0.570  − 0.293 0.556

Pursuit 
Onset 
Latency

 − 0.021 0.893 0.028 0.977  − 0.021 0.893  − 0.325 0.630  − 0.134 0.854  − 0.010 0.954 0.147 0.656  − 0.115 0.803

Propor-
tion of 
Time in 
Pursuit

0.431 0.085 0.012 0.977 0.428 0.080 0.080 0.912 0.140 0.854  − 0.117 0.863  − 0.136 0.656 0.298 0.556

Pursuit 
gain  − 0.062 0.830 0.025 0.977  − 0.057 0.856  − 0.105 0.879  − 0.200 0.854 0.316 0.387 0.168 0.656  − 0.046 0.879

Pursuit 
Lag 0.295 0.413 0.078 0.885 0.297 0.380  − 0.281 0.630  − 0.107 0.854 0.259 0.508  − 0.030 0.919  − 0.134 0.803

Total 
Ampli-
tude of 
Catch-
up Sac-
cades

0.084 0.830  − 0.177 0.877 0.060 0.856 0.036 0.921  − 0.449 0.328 0.269 0.645 0.062 0.919 0.121 0.803

Table 2.   For each eye-tracking parameter, parameter-clinical score correlations are shown. ρ, Spearman’s rho. 
p-values for two-sided t-tests are reported after FDR correction (Benjamini–Hochberg procedure, α = 0.05). PS: 
pro-saccade, SP: smooth pursuit, OKN: Optokinetic nystagmus. Correlations with p ≤ 0.05 are in bold.



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9082  | https://doi.org/10.1038/s41598-024-59750-9

www.nature.com/scientificreports/

With our previous study20 having primarily focused on distinguishing individuals with PD from healthy 
controls on the basis of recorded eye movement parameters, one of the main objectives of the present paper was 
to determine to what extent the oculomotor parameters extracted by this mobile eye-tracking tool could serve as 
a viable marker of cognition in individuals with PD. More specifically, here we investigated the extent to which 
oculomotor parameters could be used to infer cognitive ability as measured by specific neuropsychological tests.

Link between oculomotor parameters and cognitive domains
Although there is ample evidence demonstrating the existence of alterations of eye movements (and associated 
oculomotor parameters) in PD patients1,2,4,38,39, a smaller body of work points to relationships between some of 
these parameters and cognitive test scores. For instance, several parameters of fixation stability were shown to 
correlate with MMSE test scores16, a test of cognitive screening similar to the MoCA. MoCA test scores have been 
shown to correlate with pro-saccade parameters of latency17,39 and accuracy17, and anti-saccade latency1. In a sam-
ple of essential tremor patients, the presence of pro-saccade, anti-saccade and smooth pursuit impairments (rela-
tive to healthy controls) strongly correlated with low MMSE scores and impaired verbal fluency40. Similarly, van 
Stockum et al.41 identified a link between verbal fluency ability and anti-saccade latency in individuals with PD.

Figure 2.   Correlations between eye-tracking parameters and clinical scores. Features with Spearman rho 
correlation coefficient greater than 0.33 for one clinical outcome measure are shown. Spearman rho correlation 
coefficient below this threshold of 0.33 are not shown. For a complete correlation matrix see Table 2 and 
Supplementary Fig. 3. Eye-tracking parameter label colors indicate different oculomotor tasks. PS: pro-saccade, 
SP: smooth pursuit, OKN: Optokinetic nystagmus.
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To determine to what extent the oculomotor parameters when combined could serve as a viable marker of 
cognition in individuals with PD, we used a partial least squares (PLS) regression, which accounts for multicollin-
earity among the predictor variables (oculomotor parameters). This approach yielded adjusted R-squared values 
between 0.3966 (MoCA) and 0.7149 (TMTB). On the whole, adjusted R-squared values were lower for measures 
of general cognition (MoCA), verbal fluency (COWAT-CFL) and verbal memory (HVLT) (between 0.4341 and 
0.5298). That we were able to explain less of the observed variance in these tests is perhaps not surprising given 
that the MoCA is a multi-domain metric and both the HVLT (verbal memory) and COWAT-CFL (verbal fluency) 
tap into cognitive processes that have less obvious links to the oculomotor system, which is primarily assessed 
via eye movement parameters of latency, velocity and duration. Interestingly, the MoCA and the HVLT tasks 
were those whose PLS models had a more even distribution of contributions from the different eye-movement 
tasks (as opposed to a strong bias towards pro-saccade and anti-saccade tasks as for most of the other clinical 
score scales). This finding further highlights the multi-domain nature of these cognitive tests.

In contrast, higher adjusted R-squared values for the UPDRS and UPDRS-III (0.5623 and 0.5932, respectively) 
were expected given that their measures are strongly biased towards motor impairments (particularly for the 
UPDRS-III). As seen in Fig. 4, there is a far greater number of contributing parameters to the PLS models from 
the anti-saccade and pro-saccade tasks. In fact, the best models for UPDRS and UPDRS-III are almost exclu-
sively composed of parameters from the two saccade tasks. For the anti-saccade task, almost all the contribut-
ing parameters were related to timing, latency and duration of saccadic eye movements and processes. For the 
pro-saccade task, the contributing factors were a mix of timing, accuracy and velocity parameters. The findings 
are in line with the observation that PD significantly affects the timing and accuracy of movements in general42.

Indeed, although the high adjusted R-squared values for the TMTA and TMTB tasks (0.6198 and 0.7149, 
respectively) were less expected initially, upon closer investigation they were not without precedent from neither 
a cognitive perspective nor a motor perspective. For instance, the vast majority of contributing parameters to 
the TMTA and TMTB models were parameters from the anti-saccade and pro-saccade tasks (see Fig. 4, panel 
i), which, in fact, significantly overlapped with the contributing factors for UPDRS/UPDRS-III models. This 
finding is less surprising when looking at the correlation matrix in Fig. 1, which illustrates that both TMTA and 
TMTB scores strongly correlate with UPDRS/UPDRS-III scores (all r > 0.48). In fact, those correlation coefficients 

Figure 3.   Correlations between select eye-tracking parameters and clinical scores UPDRS-III (a), UPDRS (b), 
H&Y (c), MoCA (d), TMTA (e), TMTB (f), HVLT (g), and COWAT-CFL (h). All Spearman’s rho correlation 
values were calculated using the raw data. Linear regressions with 95% confidence intervals are shown for 
visualization purposes only. PS: pro-saccade, SP: smooth pursuit.
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with UPDRS/UPDRS-III are not only higher than for any other cognitive test but are also higher than for the 
H&Y stage. The relationship between UPDRS/UPDRS-III and TMTA/TMTB likely stems from the important 
psychomotor execution and planning components required to adequately perform the trail making tests.

From a cognitive perspective, anti-saccade parameters, such as those related to error rate and reaction time, 
have been shown in the past to correlate with several measures of executive function, particularly on tasks that 
involve psychomotor speed, visual search, attention task-switching, and inhibition, such as the TMTA and TMTB 

Figure 4.   (a-h) Scatterplots of the relationship between the study participants’ clinical scores and the 
corresponding predicted value obtained by partial least squares regression analysis using the oculomotor 
parameters as predictors. (i) Heatmap visualization of the relative contribution (normalized absolute value of 
standardized regression coefficients) of each oculomotor parameter to each partial least squares regression 
predictor. Dark squares indicate lesser contributions to the model whereas lighter/yellow squares indicate 
greater contributions. Absent squares indicate that the parameter was not used in the final model. Eye-tracking 
parameter label colors indicate different oculomotor tasks. PS: pro-saccade, SP: smooth pursuit, OKN: 
Optokinetic nystagmus.
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tests43,44, supporting the notion that the anti-saccade task taps into several executive and frontal cognitive pro-
cesses, including but not limited to cognition inhibition45–47. Further supporting this hypothesis of tapping into 
multiple cognitive processes is the fact that the anti-saccade task is the only one of the five for which parameters 
contribute to every cognitive test PLS model, highlighting the potential usefulness of anti-saccade task parameters 
to serve as a marker for several cognitive processes.

These saccadic findings as a whole are also consistent with the findings of a recent study that used a clus-
ter analysis to identify different patterns in saccade abnormalities in PD and their relationship with cognitive 
phenotypes48. The authors identified three clusters, one of which was defined by a general disinhibition of 
reflexive saccades (i.e. antisaccade errors) and executive dysfunction. A second cluster consisted of individuals 
with multi-domain impairment accompanied by high antisaccade error rates, prolonged saccadic latencies and 
pronounced saccadic hypometria, consistent with our findings that these parameters were found to contribute 
to the explanatory models of several cognitive tests.

Group classifications based on oculomotor parameters
Using a support vector classifier, we were able to separate individuals with mild PD from those with moderate 
PD (determined on the basis of their UPDRS-III scores) using oculomotor parameters with a sensitivity of 0.90 
and specificity of 0.90, and an AUC of 0.94. Mild, moderate, and severe PD (likewise based on UPDRS-III scores) 
could be classified with an accuracy of 0.84. The classifier performances are comparable to that of a recent study 
that used saccade, blink and pupil parameters to separate PD patient subgroups with distinct cognitive deficits 
(e.g. PDD, PD-MCI) from healthy controls49. They found an overall AUC of 0.88 (sensitivity of 83% and a speci-
ficity of 78%), with the subgroups showing a progressive increase of the AUC with progressing cognitive deficits 
and the AUC of PDD alone being 0.95. Although we did not include healthy controls in our analysis, the fact 
that we were able to separate subsets of PD patients from one another based on disability suggests that a classifier 
with a high accuracy could have been built with healthy controls included as well. However, our goal here was 
not to evaluate to what extent we could detect PD in an individual, but rather if we could identify oculomotor 
parameters whose values are tied to disease severity, with the long-term goal of potentially being able to track 
progression of both motor and cognitive disability.

Other previous work has also demonstrated the usefulness of eye movement metrics to develop classifiers 
that can distinguish between PD patients and healthy controls, such as in Tseng et al.50 (89.6% accuracy, 85% 
sensitivity and 93% specificity), Tsitsi et al.16 (82% accuracy). Overall, our findings demonstrate that it is possible 

Table 3.   Mean absolute error (MAE), non-adjusted and adjusted coefficient of determination (R2 and Adj. 
R2) as well as the F-statistic and associated p-value for the UPDRS-III, UPDRS, H&Y, MoCA, TMTA, TMTB, 
HVLT, and COWAT-CFL partial least squares regression models in Fig. 4.

MAE R2 Adj. R2 F p value

UPDRS-III 4.372 0.7812 0.5623 F (18, 16) 3.1731 2.97E− 05

UPDRS 9.659 0.7008 0.5932 F (10, 24) 5.6227 1.03E− 06

H&Y 0.313 0.7477 0.6111 F (14, 23) 4.8692 2.91E− 05

MoCA 1.563 0.5286 0.3966 F (8, 24) 3.3635 6.59E− 04

TMTA 6.587 0.7368 0.6198 F (13, 26) 5.5985 6.47E− 06

TMTB 20.720 0.8129 0.7149 F (12, 20) 7.2420 6.23E− 05

HVLT 2.383 0.6767 0.5298 F (11, 21) 3.9968 2.03E− 05

COWAT-CFL 5.408 0.6227 0.4341 F (12, 21) 2.8885 2.71E− 04

Figure 5.   Performance of the support vector classifier. (a) Mean ROC curve for the logistic regression classifier 
across fivefold cross validation. Grey lines represent each fold. (b) Confusion matrix for classification of mild 
(UPDRS-III 0–35) and moderate (UPDRS-III 36–57) Parkinson’s Disease using eye tracking parameters. 
(c) Confusion matrix for classification of mild (UPDRS-III 0–35), moderate (UPDRS-III 36–57) and severe 
(UPDRS-III > 57) Parkinson’s Disease using eye tracking parameters.
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to develop accurate classifiers that are highly comparable to those developed in prior studies while using param-
eters captured via an electronic tablet.

Potential clinical uses for a mobile tablet‑based eye‑tracking device
The present findings suggest that collecting eye-tracking data with mobile technology has the potential to provide 
precise information on both the disease stage and cognitive ability of PD patients, which could prove useful to 
clinicians and researchers alike. We believe the current findings to be a promising first step in the development of 
a mobile tool that could move beyond correlations and explained variance towards clinical score estimation. As 
additional data continues to be collected, more sophisticated and multi-layered machine-learning algorithms can 
be developed to estimate or predict clinical scale or cognitive test scores (within an acceptable range of accuracy) 
based on the various eye-movement parameters extracted with the mobile gaze-tracking software. Following 
proper validation studies, we believe such a predictive tool could have a significant impact on clinical manage-
ment and drug discovery by enabling quick disease staging (< 10 min) without the need for a lengthy clinical 
examination. Indeed, a full assessment to characterize a PD patient’s cognitive and motor function generally 
takes upwards of an hour. In addition to potentially aiding and accelerating clinical management, such a tool 
could be used as a quick pre-screening aid for clinical trial enrollment. It could also serve as disease monitoring 
aid to assess progression and response to treatment and could even be performed at home—reducing the need 
for in-clinic visits only when changes are detected in the eye-tracking data. Current ongoing clinical trials in 
MS patients support the notion that at-home testing using a tablet-based tablet-based eye-tracking device for 
monitoring progression is not only viable but also clinically useful51.

Not all tracking tests used in the present study contribute equally to motor and cognitive score estimation. 
Indeed, anti-saccade and pro-saccade parameters were the largest contributors to most PLS models. The most 
relevant pro-saccades parameters were those related to saccade latency or duration, velocity, and accuracy, 
whereas the most relevant anti-saccade parameters were those related to latency and timing, correctly performing 
the anti-saccade trial and correctly identifying the final target. Overall, our data suggest that it may be possible 
to remove some eye-tracking tasks with little penalty in terms of estimation accuracy, depending on the desired 
output metrics, while significantly cutting down on the time required to conduct the eye-tracking testing (which 
already only takes 10–15 min). In particular, the smooth pursuit and OKN tasks did not contribute significantly 
to the different PLS models used.

Study limitations
One potential study limitation is that we limited the patient sample to PD patients. Current evidence suggests 
that related parkinsonion syndromes tend to exhibit certain eye movement differences with PD patients, and this 
appears to be particularly true of individuals with inherited parkinsonisms52, PSP-parkinsonism53, Parkison’s 
disease dementia (PDD) and dementia with Lewy bodies (DLB)54. Future studies could benefit from the inclu-
sion of other parkinsonian phenotypes to increase the generalizability of the findings. Along the same line, our 
study sample was primarily composed of individuals situated on the mild-to-moderate spectrum of the disease 
(based on their UPDRS-III scores and the H&Y stages), thus it remains unclear to what extent the oculomotor 
parameters identified in the present study would enable proper classification of individuals with more advanced 
PD. Finally, although we did investigate some cognitive domains, not all of them were sampled and stronger 
relationships with oculomotor parameters could have been observed with neuropsychological tests that are not 
investigated in this present study.

Among the present study limitations is the small sample size, which was only powered to detect significant 
correlations for correlation coefficients above rho = 0.33. Nonetheless, we were still able to identify numerous 
correlations that survived multiple comparison corrections. The sample size is also a limitation of the group clas-
sification analysis, as the small sample size gives rise to a heightened risk of overfitting, however the use of fivefold 
(and threefold) stratified cross-validation are used to minimize this risk and to maximize generalizability. The 
inclusion of the small sample size (n = 3) of severe PD patients decreases the performance of the classifier from 
a balanced accuracy of 0.9 to 0.84, in large part due to data imbalance that may be rectified by larger samples 
of severe patients and a more balanced dataset. Although here we show very promising results via the partial 
least squares regression analyses that suggest that it may be possible to do so, such analyses produce inference 
models, which do not guarantee strong predictive abilities. Indeed, to be able to confidently claim that we can 
estimate disease cognitive ability in a single individual, predictive models would need to be validated with an 
independent dataset.

Another limitation of the present study is that all data were gathered in supervised settings. Although, as 
we mentioned above, there is evidence from an ongoing clinical trial in MS patients using the same device that 
suggests the data collected at home is equivalent to that collected in supervised settings, this has yet to be quan-
titatively analyzed and published in a peer-reviewed journal. Finally, another limitation relates to the camera 
position relative to the tablet, which leads to difficulty in accurately detecting the eyes when they are looking at 
the bottom of the screen. As a result, we had to remove data collected from large amplitude downward saccades 
from all analyses.

Conclusion
The present findings support the general view that in-depth oculomotor examination can be of clinical use for a 
variety of disorders55. More specifically, we have shown that when several key relevant oculomotor parameters are 
combined together, they can explain large proportions of cognitive test score variance in PD patients. Moreover, 
we provide evidence that these eye-tracking data can be leveraged to build classifiers that can reliably discriminate 
between population sets, in this case patients with mild PD patients and those with moderate PD. Taken together, 
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these findings suggest that with continued data collection and algorithmic refinement, tablet-based eye-tracking 
tools have the potential to at the very least become a critical part of the standard clinical assessment of various 
patient populations, if not one day replace some of the current standard of care practices that are often more 
time consuming and less objective.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.

Code availability
The underlying code for this study [and training/validation datasets] is not publicly available but may be made 
available to qualified researchers on reasonable request from the corresponding author.
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