
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8992  | https://doi.org/10.1038/s41598-024-59720-1

www.nature.com/scientificreports

A novel flexible exponent 
power‑X family of distributions 
with applications to COVID‑19 
mortality rate in Mexico 
and Canada
Zubir Shah 1, Dost Muhammad Khan 1, Imad Khan 1, Bakhtiyar Ahmad 2*, Mouna Jeridi 3 & 
Sanaa Al‑Marzouki 4

This paper aims to introduce a novel family of probability distributions by the well‑known method of 
the T–X family of distributions. The proposed family is called a “Novel Generalized Exponent Power 
X Family” of distributions. A three‑parameters special sub‑model of the proposed method is derived 
and named a “Novel Generalized Exponent Power Weibull” distribution (NGEP‑Wei for short). For the 
proposed family, some statistical properties are derived including the hazard rate function, moments, 
moment generating function, order statistics, residual life, and reverse residual life. The well‑known 
method of estimation, the maximum likelihood estimation method is used for estimating the model 
parameters. Besides, a comprehensive Monte Carlo simulation study is conducted to assess the 
efficacy of this estimation method. Finally, the model selection criterion such as Akaike information 
criterion (AINC), the correct information criterion (CINC), the Bayesian information criterion (BINC), 
the Hannan–Quinn information criterion (HQINC), the Cramer–von‑Misses (CRMI), and the ANDA 
(Anderson–Darling) are used for comparison purpose. The comparison of the NGEP‑Wei with other 
rival distributions is made by Two COVID‑19 data sets. In terms of performance, we show that the 
proposed method outperforms the other competing methods included in this study.

Keywords Novel Generalized Exponent Power X family, Monte Carlo simulation, Weibull distribution, 
COVID-19 data, Maximum likelihood estimation

In the literature on distribution theory, the researchers have proposed many probability distributions for ana-
lyzing and predicting real-world phenomena but the real-world phenomena are complex and complicated. 
Therefore, no particular probability distribution is yet proposed to handle (for analyzing and predicting) every 
phenomenon. Similarly, in the literature of distribution theory, the exponential and Rayleigh distributions are 
the most popular and well-known distributions and are widely used in lifetime analysis. However, when the 
real-life phenomena are complex then these probability distributions are not suitable for accurate representation 
of the data. For example, the exponential distribution is concerned with describing data with only a constant 
failure (or hazard) rate function. On the other hand, the Rayleigh distribution is used to model data that have 
only an increasing failure rate function. Furthermore, the Weibull distribution is also considered one of the most 
important lifetime distributions, which has both the capability of the exponential and Rayleigh distributions 
and offers data modeling that has increasing, decreasing, and constant failure rate functions. However, in many 
applied fields, especially, in biomedical and engineering areas the behaviour of hazard function changes with 
time non-monotonically. So, in such phenomena, the Weibull distribution is not a suitable choice to implement; 
see (Almalki and  Yuan1) for more reading. To deal with such difficulties, generalized versions of these classical 
models are needed. To this end, the researchers are trying to derive new methods (new family of distributions) to 
obtain the generalized version of the classical distributions with greater distributional flexibility. Most of the new 
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methods in the literature are developed by adding one or more additional parameters to the baseline distributions 
(or existing distributions) to obtain new updated versions of these existing distributions that are analytically more 
flexible in modeling as a practical viewpoint; see (Usman et al.2) for more reading. In the recent past, several 
families of probability distributions have been proposed in the literature of distributions theory, for example, 
Mudholkar and  Srivastava3 proposed a very simple approach called the Exponentiated family of distributions. 
The proposed method is based on inserting only one additional parameter into the baseline distributions. The 
CDF (cumulative distribution function) of the exponentiated family is given by

where, φ > 0 is an extra (or additional) shape parameter and A(x;µ) is the CDF of any baseline random variable 
depending on parameter vector µ . Marshal and  Olkin4 introduced a new method for obtaining the modified 
version of the existing distributions. Their suggested method is called, the Marshal and Olkin family of distribu-
tions. The CDF of the Marshal Olkin family is defined by

Using Eq. (2), Marshal and  Olkin4 derived two special sub-models namely, Marshal–Olkin exponential and 
Marshal–Olkin Weibull distributions. Latterly, the authors used Eq. (2), and several probability distributions have 
been proposed in the literature, see (Ghitany et al.5, Gui et al.6, and Saboor et al.7) for more reading.

Similarly, in this regard, Mahdavi and  Kundu8 also proposed a new family of distributions by incorporat-
ing one additional parameter to the baseline distribution. They named their proposed method by Alpha Power 
transformation (APTra) family of distributions. The CDF of the APTra family is defined by

Using Eq. (3), Mahdavi and  Kundu8 modified the exponential distribution and named the alpha power 
transformed exponential (APTra-Expo) distribution. Furthermore, considering Eq. (3), various contributions 
have been made in the literature on distribution theory; see Dey et al.9, Ihtisham et al.10, and Hassan et al.11.

In the recent past, Shah et al.12 proposed a new method of probability distribution by incorporating one addi-
tional parameter into baseline distribution. Their proposed method is called, the new generalized logarithmic–X 
(NGLog–X) family of distributions. The CDF of the NGLog-X family is given by

Using Eq. (4), Shah et al.12 modified the Weibull distribution and named a new generalized logarithmic 
Weibull (NGLog-Wei) distribution. For recent developments about the distributional approaches, we refer to a 
superior extension for the Lomax distribution with application to Covid-19, proposed by Alsuhabi et al.13, a novel 
logarithmic approach to generate new probability distributions, proposed by Zhao et al.14, a novel updated-W 
family of distributions, proposed by Alnssyan et al.15, a new Type 1 Alpha Power family of distributions, proposed 
by Tekle et al.16, the Type II-Topp-Leone-Gompertz-G family of distributions with applications to COVID-19 
data, proposed by Chamunorwa et al.17, a Weighted Cosine-G family of distributions, proposed by Odhah et al.18, 
some inferences on three parameters Birnbaum–Saunders distribution, developed by Shakil et al.19, a statistical 
analysis of excess mortality mean at Covid-19 in 2020–202, proposed by Raihen et al.20, exponentiated general-
ized Weibull exponential distribution, proposed by Abonongo et al.21, a case study for Kuwait mortality during 
the consequent waves of COVID-19, derived by BuHamra et al.22, and a new inverse Rayleigh distribution with 
applications of COVID-19 data, developed by El-Sherpieny et al.23.

In this research paper, taking motivation from the above discussion, we also propose a new method for 
obtaining more flexible probability distributions. The proposed method is obtained by implementing the T–X 
family approach proposed by (Alzaatreh et al.24). The proposed method may be named a Novel Generalized 
Exponent Power-X (NGEP-X) family of distributions. Based on the NGEP-X method, the improvised version 
of the Weibull distribution with distributional flexibility in shapes of PDF (probability density function) and 
HF (hazard function) is introduced. Based on COVID-19 data sets, the fitting power of the proposed work is 
compared with Alpha Power Transformed Weibull, New Reduce Logarithmic Weibull, Kumaraswamy Weibull, 
Weibull, Marshal Olkin Nadarajah Haghigh, and Gull Alpha Power Weibull distributions; see Table 3, for refer-
ences of these competing distributions.

The rest of the work done in the study is organized into seven sections: In section "NGEP-X family", the 
newly proposed family of distributions is comprehensively derived. Section "NGEP-Wei distribution", gives a 
special sub-model of the proposed family, named a Novel Exponent power Weibull distribution, and in the same 
section, the shapes of its CDF, survival function, PDF, and HF are also graphically illustrated. The mathematical 
properties of the NGEP-X family are given (or derived) in Section "Basic mathematical properties". The method 
of Maximum Likelihood Estimation is applied for estimating the model parameters of the proposed method in 
section "Estimation, experiment and simulation". Practical applications via two COVID-19 data sets (describing 
the mortality rates of the countries of Canada and Mexico) are discussed in section 6. Finally, section 7 gives 
the "Concluding remarks" based on the analyses done in this paper.

(1)Y(x;φ,µ) = [A(x;µ)]φ , φ,µ > 0, x ∈ R,

(2)Y(x;φ,µ) =
A(x;µ)

1− (1− φ)[1− A(x;µ)]
, φ,µ > 0, x ∈ R,

(3)Y(x;α1,µ) =
α
A(x;µ)
1 − 1

α1 − 1
, α1, µ > 0, α1 �= 1, x ∈ R,

(4)Y(x;φ,µ) =
eφA(x;µ)

[

e − logA(x;µ)
]φ

, φ,µ > 0, x ∈ R,
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NGEP‑X family
In this section, the CDF, PDF, SF (survival function), HF, and CHF (cumulative hazard function) of the NGEP-X 
family of distributions are computed.

Definition Let m(t) = e−αt be the PDF of exponential random variable, say T, where T ∈ [b1, b2] for 
−∞ ≤ b1 < b2 ≤ ∞ and let suppose K[A(x;µ)] be a function of CDF A(x;µ) of a random variable, say X, 
satisfying the following three conditions.

 I. K[A(x;µ)] ∈ [b1, b2],
 II. K[A(x;µ)] is monotonically increasing function and differentiable,
 III. K[A(x;µ)] → b1 as x → −∞ and K[A(x;µ)] → b2 as x → ∞.

According to (Alzaatreh et al.24) the CDF of T–X family defined by

where, K[A(x;µ)] satisfies the conditions (I)–(III); see (Alzaatreh et al.24). The PDF Y(x;µ) of T–X distribution, 
associated with Eq. (5) is as follow

Now, by using m(t) = e−t as the PDF of exponential distribution with rate parameter (α = 1) and setting the 
upper limit K[A(x;µ)] = − log

(

eφA(x;µ)
2
− eφA(x;µ)2

)

 and lower limit b1 = 0 in Eq. (5), we get the CDF 
Y(x;φ,µ) of the NGEP-X family, which is given by

where, A(x;µ) is the CDF of any sub-model which may be depending on µ ∈ R . To prove that whether the CDF 
Y(x;φ,µ) is an exact CDF or not, we have the following two proposition.

Proposition 1 The CDF Y(x;φ,µ) derived in Eq. (7), we need to prove.

Proof 
and

Proposition 2 The CDF Y(x;φ,µ) derived in Eq. (7), is RC (right continues) and differentiable.

Hence, from proposition 1 and 2, we concluded that the CDF Y(x;φ,µ) in Eq. (7) is a valid CDF. Corresponding 
to Eq. (7), the PDF y(x;φ,µ) of the NGEP-X family is given by

where, ddx A(x;µ) = a(x;µ) and the rest of the SF S(x;φ,µ) , HF h(x;φ,µ) , and CHF H(x;φ,µ) of the NGEP-X 
family are respectively given by

(5)Y(x;µ) =

∫ K[A(x;µ) ]

b1

m(t)dt = M(K[A(x;µ)]), x ∈ R,

(6)y(x;µ) = m(K[A(x;µ)])
d

dx
{K[A(x;µ)]}, x ∈ R.

(7)Y(x;φ,µ) = 1−
(

eφA(x;µ)
2
− eφA(x;µ)2

)

, φ ∈ R
+, x ∈ R.

lim
x→−∞

Y(x;φ,µ) = 0, and lim
x→∞

Y(x;φ,µ) = 1.

lim
x→−∞

Y(x;φ,µ) = lim
x→−∞

{

1−
(

eφA(x;µ)
2
− eφA(x;µ)2

)}

,

= 1−
(

eφA(−∞;µ)2 − eφA(−∞;µ)2
)

= 0.

lim
x→∞

Y(x;φ,µ) = lim
x→∞

{

1−
(

eφA(x;µ)
2
− eφA(x;µ)2

)}

,

= 1−
(

eφA(∞;µ)2 − eφA(∞;µ)2
)

= 1

d

dx
Y(x;φ,µ) = y(x;φ,µ).

(8)y(x;φ,µ) = 2a(x;µ)A(x;µ)
[

eφ − φeφA(x;µ)
]

, µ ∈ R, x ∈ R.

(9)S(x;φ,µ) =
(

eφA(x;µ)
2
− eφA(x;µ)2

)

, µ ∈ R, x ∈ R,

(10)h(x;φ,µ) = 2a(x;µ)A(x;µ)

(

eφ − φeφA(x;µ)
2
)

(

eφA(x;µ)
2
− eφA(x;µ)2

) , µ ∈ R, x ∈ R,
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and

NGEP‑Wei distribution
This section of the article is based on a three-parameter-specific sub-model of the NGEP-X family of distribu-
tions. This special model of the proposed family is called a Novel Generalized Exponent Power Weibull distribu-
tion (NGEP-Wei for short). Let A(x;µ) and a(x;µ) be the corresponding CDF and PDF of the classical Weibull 
distribution expressed as A(x;µ) = 1− e−αxδ and a(x;µ) = αδxδ−1e−αxδ , respectively, ( α, δ, x ∈ R

+ ), where 
µ = (α, δ) . Using A(x;µ) = 1− e−αxδ in Eq. (7), we obtain the updated version of the Weibull distribution. The 
CDF Y(x;φ,µ) , and SF S(x;φ,µ) of the NGEP-Wei distribution (or updated version) is given by the following 
form, respectively

and

Some attractive plots of Y(x;φ,µ) and S(x;φ,µ) are visualized in Fig. 1. The plots of CDF Y(x;φ,µ) and SF 
S(x;φ,µ) are obtained with different parameters values (i) φ = 0.1, α = 2.3, and δ = 1.3 (red line), (ii) φ = 0.5, 
α = 0.4, and δ = 2.9 (green line), (iii) φ = 0.2, α = 1.2, and δ = 1.9 (black line), and (iv) φ = 1.1, α = 0.1, and 
δ = 3.4 (blue line). From Fig. 1, it is visually confirmed that the proposed model has a valid CDF.

Furthermore, the PDF y(x;φ,µ) , HF h(x;φ,µ) and function for CHF H(x;φ,µ) corresponding to Eq. (12) 
are given in Eqs. (14)–(16), respectively, by

and

(11)H(x;φ,µ) = − log
(

eφA(x;µ)
2
− eφA(x;µ)2

)

, µ ∈ R, x ∈ R,

(12)Y(x;φ,µ) = 1−

(

e
φ

(

1−e−αxδ
)2

− eφ
(

1− e−αxδ
)2

)

, φ,α, δ ∈ R
+, x ∈ R

+,

(13)S(x;φ,µ) =

(

e
φ

(

1−e−αxδ
)2

− eφ
(

1− e−αxδ
)2

)

, φ,α, δ ∈ R
+, x ∈ R

+.

(14)y(x;φ,µ) = 2αδxδ−1e−αxδ
(

1− e−αxδ
)

(

eφ − φe
φ

(

1−e−αxδ
)2
)

, x ∈ R
+,

(15)h(x;φ,µ) = 2αδxδ−1e−αxδ
(

1− e−αxδ
)

(

eφ − φe
α

(

1−e−αxδ
)2
)

(

e
φ

(

1−e−αxδ
)2

− eφ
(

1− e−αxδ
)2

) , x ∈ R
+,

(16)H(x;φ,µ) = − log

(

e
φ

(

1−e−αxδ
)2

− eφ
(

1− e−αxδ
)2

)

, x ∈ R
+.

Figure 1.  Y(x;φ,µ) and S(x;φ,µ) graphs with different parameters values.
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Some attractive, right skewed, lift skewed, and symmetrical PDF y(x;φ,µ) plots are visualized in Fig. 2. The 
plots in lift penal of the Fig. 2 of y(x;φ,µ) are obtained with different parameters values (i) φ = 0.1, α = 0.4, and 
δ = 5.0 (red line), (ii) φ = 1.0, α = 1.3, and δ = 2.5 (green line), (iii) φ = 0.1, α = 1.0, and δ = 4.0 (black line), 
and (iv) φ = 0.3, α = 2.3, and δ = 1.5 (blue line). The plots in right penal of the Fig. 2 of y(x;φ,µ) are obtained 
with different parameters values (i) φ = 0.1, α = 1.1, and δ = 3.7 (red line), (ii) φ = 0.1, α = 2.3, and δ = 1.3 
(green line), (iii) φ = 1.0, α = 0.2, and δ = 4.5 (black line), and (iv) φ = 1.1, α = 0.1, and δ = 3.6 (blue line).

Similarly, some increasing, decreasing, unimodal, and bathtub shape plots of HF h(x;φ,µ) are also visualized 
in Fig. 3. The plots in left penal of the Fig. 3 of h(x;φ,µ) are obtained with different parameters values (i) φ = 
1.6, α = 0.36, and δ = 0.3 (red line), (ii) φ = 1.4, α = 0.5, and δ = 0.46 (green line), (iii) φ = 0.6, α = 0.8 and 
δ = 0.9 (black line), and (iv) φ = 0.5, α = 0.64, and δ = 0.8 (blue line). The plots in right penal of the Fig. 3 of 
y(x;φ,µ) are obtained with different parameters values (i) φ = 2.1, α = 0.09, and δ = 1.75 (red line), (ii) φ = 
0.7, α = 1.20, and δ = 0.85 (green line), (iii) φ = 0.6, α = 1.70, and δ = 0.70 (black line), and (iv) φ = 0.8, α = 
1.90, and δ = 0.70 (blue line).

Basic mathematical properties
In the present section, we derive some mathematical properties of the NGEP-X family of distributions. These 
properties include the QF (quantile function), moments, and MGF (moment-generating function), order statistic, 
and Residual and Reverse Residual life.

Quantile function
The QF is also called the inverse of the CDF and is generally used for generating RNs (random numbers) from 
a distribution. The RNs are usually used for simulation purposes to evaluate the performances of the estima-
tors (or estimation method). Later in section "Simulation", we have implemented this method (i.e., inverse 

Figure 2.  Some different plots of y(x;φ,µ) with different parameters values of NGEP-Wei distribution.

Figure 3.  Some different plots of h(x;φ,µ) with different parameters values of NGEP-Wei distribution.
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distribution function) for generating RNs from the NGEP-Wei distribution. For the NGEP-Wei distributions, 
the QF is given by

where, 0 < u < 1 and u is the solution of the above expression. The expression can be used to generate random 
samples or random numbers from any special model of the NGEP-X family of distributions.

rth moment
The moment is an important and useful statistical tool to obtain certain characteristics and features of any model. 
These characteristics are known as (i) CT (central tendency): which deals with the mean point of a distribution, 
(ii) MD (Measure of dispersion): which take care of the variance of a model (or measure dispersion among the 
data), (iii) skewness: which describe the tail behaviour of the model, and (iv) kurtosis: which helps in studying 
the peakiness of the distribution. For the proposed method, the rth moment expressed by µ′

r , is derived as

Using Eq. (8) in Eq. (17), we have

Next, using the exponential series in Eq. (18), we get

where, κr,1 =
∫∞
−∞

r
x a(x;µ)A(x;µ)dx and κr,2m+1 =

∫∞
−∞

r
x a(x;µ)A(x;µ)2m+1dx.

Furthermore, a simple general expression for the MGF of the NGEP-X random variable X, say Mx(t) , is 
derived as

Order statistics
In distribution theory, OS is a very crucial importance. They make their appearance (or role) in the reliability 
analysis, problems of estimation theory and life testing in a number of ways. They can characterize the lifetime 
of elements or elements of a reliability system.

Let X1, X2, .. . , Xk be a random set of observations of size k chosen from NGEP-X family with CDF Y(x;φ,µ) 
and PDF y(x;φ,µ) given by (7) and (8), respectively. Then the DF (density function) of yr:k(x) is given by “

We express the 1st order statistic as X1:k = min (X1, X2, .. . , Xk) and the kth order statistic as 
Xk:k = max (X1, X2, .. . , Xk). Since, 0 < Y(x) < 1 for x > 0. We may utilize the binomial expansion of 
[1− Y(X)]k−r as follow”

On using Eq. (21) into Eq. (20), we get

Using Eqs. (7) and (8), in Eq. (22), we obtain the DF of yr:k(x).

αF(x; δ)2 − log (1− u)− 2 log F(x; δ)− α = 0.

(17)µ′
r = E

(

Xr
)

=

∫ ∞

−∞

xr y(x;φ,µ)dx.

(18)E
(

Xr
)

= 2

∫ ∞

−∞

xr a(x;µ)A(x;µ)
(

eφ − φeφA(x;µ)
2
)

dx,

(19)µ′
r = E

�

Xr
�

= 2





∞
�

j=0

φj

j!
κr,1 −

∞
�

m=0

φm+1

m!
κ ′r,2m+1



,

Mx(t) =

∞
�

0

etxy(x;φ,µ)dx,

Mx(t) =

∞
�

r=0

tr

r!

∞
�

0

xry(x;φ,µ)dx

Mx(t) = 2

∞
�

r=0





∞
�

j=0

trφj

r!j!
κr,1 −

∞
�

m=0

trφm+1

r!m!
κ ′r,2m+1



.

(20)yr:k(x) =
1

B(r, k − r + 1)
y(x)[Y(x)]r−1[1− Y(x)]k−r .

(21)[1− Y(x)]k−r =

k−r
∑

i=0

(−1)i[Y(x)]i .

(22)yr:k(x) =
y(x)

B(r, k − r + 1)

k−r
∑

i=0

(−1)i[Y(x)]r+i−1.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8992  | https://doi.org/10.1038/s41598-024-59720-1

www.nature.com/scientificreports/

Residual and reverse residual lifetime
The RL (residual lifetime) and RRL (reverse residual lifetime) offer broader application (or characteristics) in risk 
management, actuarial measures, biometry, and survival analysis. The RL of the NGEP-X family with a random 
variable X, say R(X)(t) is defined as

In addition to the RL, we also obtain the RRL of the NGEP-X family of distributions. The RRL, say R(X)(t) 
is given by

Estimation, experiment and simulation
This section provides a detailed description of the maximum likelihood estimation implemented for obtaining 
the parameter estimates of the proposed family of distributions. Furthermore, we also conduct a comprehensive 
Monte Carlo simulation study to assess the performance of the estimators (or the estimation method).

Maximum likelihood estimation
Several methods of estimation are proposed for obtaining the parameter estimates in the various studies. MLE 
(Maximum likelihood estimation) is one of the most frequently used methods of estimation. This method fur-
nishes estimators with several important properties and can be used in the construction of confidence intervals 
as well as other tests for checking statistical significance. For further details about MLEs, please  see19. This sub-
section provides a discussion on the MLEs approach for obtaining the parameter estimates of the NGEP-Wei 
distributions.

Suppose x1, x2, ..., xn are the observed values from PDF y(x;φ,µ) given in Eq. (8). Then, the likelihood func-
tion corresponding y(x;φ,µ) is expressed by

Now, the log-likelihood function derived by putting Eq. (8) into Eq. (23) and taking the log

where, � = (φ,α, δ)T . The log-likelihood function can be maximized either directly by using the R package 
(AdequecyModel), Ox program (subroutine Max BFGS) or SAS (PROC NLMIXED) (see,  Doornik25 for more 
reading) or by solving the nonlinear log-likelihood equations obtained by differentiating Eq. (24). So, the partial 
derivatives of Eq. (24), the, we get

and

Equating the Eq. (25) ∂L(�)
∂φ

 and Eq. (26) ∂L(�)
∂µ

 to zero, and simultaneously solving, yield these expression 
MLEs of φ and µ.

Simulation
To cover the second aim of this section, the performance of the MLEs (φMLE ,αMLE , δMLE) of (φ,α, δ) is assessed 
by conducting a MCSS (monte Carlo Simulation study). We consider different sample size (i.e., n = 50, 100, 200, 

R(X)(t) =
S(x + t)

S(t)
,

R(X)(t) =

(

eφA(x+t;µ)2 − eφF(x + t;µ)2
)

(

eφA(t;µ)
2
− eφA(t;µ)2

) , x ∈ R.

R(X)(t) =
S(x − t)

S(t)
,

R(X)(t) =

(

eφA(x−t;µ)2 − eφF(x − t;µ)2
)

(

eφA(t;µ)
2
− eφA(t;µ)2

) , x ∈ R.

(23)L =

n
∏

i=1

y(x;φ,µ).

(24)L(�) = n log 2+

n
∑

i=1

log a(x;µ)+

n
∑

i=1

logA(x;µ)+

n
∑

i=1

log
(

eφ − φeφA(x;µ)
2
)

,

(25)
∂L(�)

∂φ
=

n
∑

i=1

eφ − φA(x;µ)2eφA(x;µ)
2
− eφA(x;µ)

2

(

eφ − φeφA(x;µ)
2
) ,

(26)

∂L(�)

∂µ
=

n
∑

i=1

∂a(xi;µ)
/

∂µ

a(xi;µ)
+

n
∑

i=1

∂A(xi;µ)
/

∂µ

A(xi;µ)

+

n
∑

i=1

2φ2A(xi;µ)e
φA(xi;µ)

2
∂A(xi;µ)

/

∂µ
(

eφ − φeφ A(xi;µ)
2
) .
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300, 400, 500, 600, 700, 800, 900, and 1000) with different parameters values φ =(0.9, 0.7, 0.8, 0.7), α =(1.0, 1.5, 
0.7, 1.8), and δ =(1.9, 0.5, 1.2, 0.8). As we have already mentioned the range of φ ∈ R

+ , α ∈ R
+ , and δ ∈ R

+ . 
So, we can choose any values (by default or predefined values of parameters) within their ranges of φ , α , and δ 
to conduct the simulation study. For each combination of parameters values, the MCSS is repeated 1000 times 
and the AMLEs (average of MLEs), ABs (average of Biases), and MSEs (mean square error) values are gained. 
The ABs, and MSEs are calculated using the following expression

and

where,  � = (φ,α, δ) .  The numerical  results for set I  = (φ = 0.9, α = 1.0, δ = 1.9 ) ,  and Set 
II = (φ = 0.7, α = 1.5, δ = 0.5 ) are recorded in Table  1, while the numerical MCSS results for set 
III = (φ = 0.8, α = 0.7, δ = 1.2 ) and Set IV = (φ = 0.7, α = 1.8, δ = 0.8 ) are presented in Table 2. In Tables 1 
and 2, the simulation results are obtained by using the R-script with L-BFGS-B method. Based on the numerical 
results (or numerical facts) in Tables 1 and 2, we can observe that as the sample size n increase (i.e., n → ∞ ), the.

• MSE of φ̂MLE , α̂MLE , and δ̂MLE decay to zero.

bias(�) =
1

N

N
∑

i=1

(

�̂i −�

)

,

MSE(�) =
1

N

N
∑

i=1

(

�̂i −�

)2
,

Table 1.  MCSS results for NGEP-Wei distribution with different combination of parameters values.

n Est

Set I:φ = 0.9, α = 1.0, δ = 1.9 Set II:φ = 0.7, α = 1.5, δ = 0.5

AMLEs MSEs ABs AMLEs MSEs ABs

50

φ 2.8295152 8.52331816 1.5811746393 0.7399052 2.82293381 0.39448767

α 0.9333573 0.065967868 −0.055722548 1.544058 0.09817217 0.005713591

δ 1.754639 0.161472844 −0.1740907378 0.4970734 0.00909711 0.006312572

100

φ 2.0309181 5.09024322 1.1309181496 0.5833240 0.51099052 −0.11667602

α 0.9708093 0.043473246 −0.029190672 1.544882 0.04934609 0.044882305

δ 1.754320 0.134428869 −0.1456804345 0.4992120 0.0020656677 −0.000787979

200

φ 1.6171153 3.33376234 0.7171153082 0.5299882 0.20763766 −0.17001178

α 0.9925023 0.032817710 −0.007497723 1.548448 0.03902823 0.048448144

δ 1.790207 0.105442784 −0.1097931979 0.4967701 0.0008243972 −0.003229935

300

φ 1.2935387 1.98636160 0.3935386652 0.5911336 0.14895937 −0.10886645

α 1.0170566 0.025652871 0.017056623 1.519749 0.03272702 0.019749008

δ 1.836130 0.066478316 −0.0638697388 0.4956399 0.0006034432 −0.004360115

400

φ 1.1565709 1.35991763 0.2565708748 0.5738637 0.13477031 −0.12613630

α 1.0163500 0.020806866 0.016350003 1.526217 0.03056997 0.026217321

δ 1.852868 0.050546110 −0.0471315769 0.4960813 0.0004504960 −0.003918749

500

φ 1.0344630 0.81687494 0.1344630405 0.5701568 0.11278547 −0.12984317

α 1.0221229 0.017025525 0.022122881 1.531690 0.03030522 0.031690076

δ 1.870636 0.034426115 −0.0293643435 0.4952322 0.0003335911 −0.004767831

600

φ 0.9695984 0.51043941 0.0695984056 0.5983371 0.09322090 −0.10166286

α 1.0217724 0.013865733 0.021772444 1.518970 0.02557863 0.018969779

δ 1.881736 0.022381627 −0.0182636572 0.4956333 0.0002997004 −0.004366677

700

φ 0.9203701 0.30950644 0.0203701047 0.6053952 0.09029518 −0.09460476

α 1.0256675 0.012718606 0.025667511 1.514795 0.02513799 0.014794894

δ 1.890928 0.016171932 −0.0090719819 0.4956012 0.0002494730 −0.004398840

800

φ 0.9004115 0.22447142 0.0004114608 0.6085708 0.08545514 −0.09142921

α 1.0269242 0.012243592 0.026924151 1.515382 0.02504993 0.015382435

δ 1.889684 0.013484865 −0.0103163108 0.4968129 0.0002422502 −0.003187063

900

φ 0.8710536 0.06958742 −0.0289463893 0.6183263 0.07425003 −0.08167368

α 1.0265209 0.009804688 0.026520906 1.514956 0.02192106 0.014956016

δ 1.896029 0.007033279 −0.0039710725 0.4964915 0.0002091654 −0.003508541

1000

φ 0.8596384 0.03612116 −0.0403616179 0.6229132 0.06381277 −0.07708678

α 1.0273299 0.009903526 0.027329917 1.511150 0.02167760 0.011150494

δ 1.900566 0.005952839 0.0005656867 0.4957554 0.0001767675 −0.004244554
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• MLEs of φ̂MLE , α̂MLE , and δ̂MLE become closer to the true values.
• Biases of φ̂MLE , α̂MLE , and δ̂MLE also decrease.

Real life application to coved‑19 data sets
Here, we consider two applications from COVID-19 data sets to illustrate the fitting power of the NGEP-Wei 
distribution. We applied the NGEP-Wei distribution on both data sets and compared its flexibility (or fitting 
power) with the other rival distributions. The rival distributions of the NGEP-Wei distribution are presented in 
the following Table 3.

The SFs of these rival distributions are the following:

• APTra-Wei distribution

• NRLog-Wei distribution

S(x; a,α, δ) = 1−





a

�

1−e−axδ
�

− 1

a− 1



 x ∈ R,

Table 2.  MCSS results for NGEP-Wei distribution with different combination of parameters values.

n Est

Set III:φ = 0.8, α = 0.7, δ = 1.2 Set IV:φ = 0.7, α = 1.8, δ = 0.8

AMLEs MSE ABs AMLEs MSE ABs

50

φ 1.3401419 3.73696921 0.540141877 0.8221352 1.60373271 0.348790717

α 0.7209277 0.026167164 0.020927651 1.833487 0.11695117 0.043725520

δ 1.152840 0.080740908 −0.047160170 0.7954637 0.01193009 0.006672544

100

φ 1.0639405 1.98095765 0.263940510 0.6928009 0.86577761 −0.007199094

α 0.7196219 0.014107102 0.019621861 1.832861 0.08809218 0.032861292

δ 1.167813 0.026743453 −0.032186898 0.7911665 0.006896347 −0.008833518

200

φ 0.8787327 1.12014754 0.078732678 0.5934661 0.34166207 −0.106533854

α 0.7299946 0.011426791 0.029994553 1.832323 0.06471138 0.032323185

δ 1.174071 0.016923436 −0.025928824 0.7867408 0.002915682 −0.013259159

300

φ 0.7855351 0.51353181 −0.040098399 0.5541187 0.19567145 −0.145881268

α 0.7252219 0.009306032 0.027827067 1.834145 0.05585333 0.034144703

δ 1.178937 0.008845356 −0.014837884 0.7932608 0.00169396 −0.006739160

400

φ 0.7137202 0.25206101 −0.086279844 0.5901948 0.14774553 −0.109805244

α 0.7293404 0.008248674 0.029340359 1.821428 0.04697499 0.021427846

δ 1.190765 0.004827222 −0.009234729 0.7926479 0.001339951 −0.007352076

500

φ 0.7224529 0.19017907 −0.077547090 0.5670105 0.13901290 −0.132989546

α 0.7219769 0.007216719 0.021976925 1.836642 0.04552487 0.036641898

δ 1.189611 0.003973352 −0.010388667 0.7931329 0.001026925 −0.006867102

600

φ 0.7220863 0.14494077 −0.077913705 0.5780741 0.12905761 −0.121925861

α 0.7223801 0.006567211 0.022380082 1.827314 0.04449885 0.027313535

δ 1.190422 0.003082486 −0.009577535 0.7908397 0.000945917 −0.009160279

700

φ 0.7127174 0.10754679 −0.087282615 0.5945143 0.09703003 −0.105485702

α 0.7237454 0.006713205 0.023745436 1.821323 0.03990010 0.021323237

δ 1.192115 0.002415838 −0.007884738 0.7924756 0.000714308 −0.007524425

800

φ 0.7082831 0.09268212 −0.091716874 0.5842262 0.09692024 −0.115773793

α 0.7230103 0.006303908 0.023010301 1.827301 0.03860714 0.027300792

δ 1.191677 0.002180030 −0.008322607 0.7924884 0.000641495 −0.007511647

900

φ 0.7246462 0.05970638 −0.075353835 0.6033333 0.09024770 −0.096666676

α 0.7184143 0.005301582 0.018414289 1.815633 0.03647963 0.015633414

δ 1.191563 0.001618962 −0.008437136 0.7930041 0.000597343 −0.006995930

1000

φ 0.7312756 0.05373190 −0.068724370 0.6007523 0.08558905 −0.099247718

α 0.7157047 0.004913919 0.015704749 1.822380 0.03595069 0.022379732

δ 1.194376 0.001417435 −0.005623963 0.7931987 0.000548591 −0.006801286
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• Kumar–Wei distribution

• Wei distribution

• MO-NH distribution

• GAP-Wei distribution

Next, after selecting the rival distributions, we consider certain statistical criteria (i.e., analytical goodness of 
fit measures) to find out (i.e., fitting power of the competing distributions) the best-suited distribution for the 
considered COVID-19 data sets. The mathematical formulas (or expression) of this goodness of fits measures 
(or statistical criteria) are given by

• The CRMS (Cramer–von-Misses)

• The ANDR (Anderson–Darling)

• The KS (Kolmogorov–Smirnov)

• The AINC (Akaike information criteria)

• The BINC (Bayesian information criteria)

• The CAINC (Consistent AINC)

S(x;φ,α, δ) =
log

(

φ + 1− φ

(

1− e−αxδ
))

log (1+ φ)
, x ∈ R,

S(x; a, b,α, δ) =
(

1−
(

1− e−αxδ
)a)b

, x ∈ R,

S(x; ,α, δ) = e−αxδ , x ∈ R,

S(x;φ,α, δ) = 1−

(

1− e[1−(1+αx)δ ]

1− (1− φ)e[1−(1+αx)δ ]

)

, x ∈ R,

S(x;φ,α, δ) = 1−





φ

�

1− e−αxδ
�

φ

�

1−e−αxδ
�



, x ∈ R,

CRMS =

n
∑

i=1

[

A(xi)−
2i − 1

2n

]2

+
1

12n
,

ANDR = −n−
1

n

n
∑

i=1

(2i − 1)×
[

logA(xi)+ log (1− A(xi−n+1))
]

,

KS = sup
x

[

An(x)− Â(x)
]

AINC = 2p− 2L(�),

BINC = p log(n)− 2L(�),

CAINC =
2np

n− p− 1
− 2L(�),

Table 3.  Rival distributions of the NGEP-Wei distribution.

S. no Rival or classical distributions Abbreviations Author references

1 Alpha Power Transformed Weibull APTra-Wei Dey et al.9

2 New Reduce Logarithmic Weibull NRLog-Wei Liu et al.26

3 Kumaraswamy Weibull Kumar-Wei Cordeiro et al.27

4 Weibull Wei Weibull28

5 Marshal Olkin Nadarajah Haghigh MO-NH Muhammad et al.29

6 Gull Alpha Power Weibull GAP-Wei Ijaz et al.30
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• The HQINC (Hannan–Quinn information criteria)

In the above expressions of the decision criteria, L(�) is the MLF (maximized likelihood function) evaluated at 
MLEs, n represents the sample size and p represents the number of parameters to be estimated in the model. For 
the NGEP-Wei distribution and Rival distributions, the values of MLEs and the above decision tools (i.e., CRMS, 
ANDR, KS, AINC, BINC, CAINC, and HQINC) are computed by using R-software with “method = Nelder-Mead” 
algorithm. In general, among the above-applied distributions to each data set, a distribution with the lowest values 
of the above goodness of fit measures represents best-suited distribution for the data.

Analysis of first COVID‑19 data sets
The first data set (onward signified by DAST 1) consists of 36 observations and daily new death cases (due to 
COVID-19) recorded from the period of 10 April to 15 May 2020 in the country of Canada. The data can also be 
accessible via the link [https:// covid 19. who. int/]. For mor details about the DS 1, we refer to Almetwally et al.31, 
and Xin et al.32. The DAST 1 is: DAST 1 = {3.1091, 3.3825, 2.8636, 3.2218, 4.2781, 4.2202, 2.1901, 2.4141, 1.9048, 
2.9078, 3.6426, 3.2110, 3.6346, 2.7957, 1.5157, 2.6029, 3.3592, 2.8349, 3.1348, 2.5261, 1.5806, 2.7704, 3.8594, 
4.0480, 4.1685, 3.1444, 3.2135, 2.4946, 3.5146, 4.9274, 3.3769, 6.8686, 3.0914, 4.9378, 3.1091, 3.2823}.

Some significant descriptive analysis of DAST 1, are: Min. = 1.516, Max. = 6.869, Mean = 3.282, Q1 (1st quar-
tile) = 2.789, Q2 (2nd quartile or median) = 3.178, Q3 (3rd quartile) = 3.637, Range = 5.3529, variance = 0.9970656, 
Skewness = 1.213916, and Kurtosis = 6.151625. Additionally, the histogram plot (HP), Kernal density plot (KDP), 
total-time on test plot (TTT-P), Violin plot, and Box plot (BP) of the DAST 1 are presented in Fig. 4.

Corresponding to DATS 1, the numerical values of MLEs along with standard errors enclosed in parenthesis 
of the NFEP-Wei and rival distributions (i.e., φ̂MLE , α̂MLE , δ̂MLE , âMLE , b̂MLE ) are recorded in Table 4. Furthermore, 
the numerical values of the goodness of fit measures of the NGEP-Wei and other competitive rival distribu-
tions are recorded in Table 5. According to the model selection criteria (goodness of fit measures) in Table 5, 
the NGEP-Wei distribution provides the best-suited fit with the minimum value of CRMS, ANDR, KS, AINC, 
BINC, CAINC, and HQINC as compared with rival distributions to the Canada COVID-19 dataset (DATS 1). In 
other words, based on model selection criteria, we can say that the NGEP-Wei distribution attains reasonable (or 
satisfactory) fit, which is not sufficiently (or adequately) fitted by the other rival distributions (i.e., APTra-Wei, 
NRLog-Wei, Kumar-Wei, Wei, MO-NH, and GAP-Wei). Consequently, the NGEP-Wei distribution provides a 
valuable fit to the DATS 1. Except for the numerical illustration (or comparison) of the NFEP-Wei distribution 
and other rival distributions, we also presented a visual illustration of the NGEP-Wei distribution. For visual 
illustration, we plotted the profiles of the log-likelihood function of the φ̂MLE , α̂MLE , and δ̂MLE in Fig. 5. The plots 

HQINC = 2p log
(

log(n)
)

− 2L(�).

Figure 4.  The HP, KDP, TTT-P, VP, and BP of the DATS 1.

https://covid19.who.int/
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in Fig. 5, we clearly see that the point estimated parameter values of the NGEP-Wei distribution are the maxima. 
Similarly, the PDF, CDF, SF, PP-plot and QQ-plot for the NGEP-Wei distribution are visualized in Fig. 6. From 
the graphical illustration in Fig. 6, we can also see that the respective red curve lines of the NGEP-Wei distribu-
tion are more close fit to the corresponding empirical objects.

Analysis of second COVID‑19 data sets
The second data set (onward signified by DAST 2) consists of 108 observations. The DAST 2 represents COVID-
19 mortality rates and belonging to Mexico for 108 days. This DAST 2 was recently used by Almongy et al.33 and 
suggested a new extended Rayleigh distribution. Observations on the mortality rates were recorded from the 
period of March 4, 2020 to July 20, 2020. The DAST 2 is: DAST 2 = {8.826, 6.105, 9.391, 14.962, 10.383, 7.267, 
13.220, 16.498, 11.665, 6.015, 10.855, 6.122, 6.656, 3.440, 5.854, 10.685, 10.035, 5.242, 4.344, 5.143, 7.630, 14.604, 
7.903, 6.370, 3.537, 6.327, 4.730, 3.215, 9.284, 12.878, 8.813, 10.043, 7.260, 5.985 , 6.412, 3.395, 4.424, 9.935, 
7.840, 9.550, 3.499, 3.751, 6.968, 3.286, 10.158, 8.108, 6.697, 7.151, 6.560, 2.077, 3.778, 2.988, 3.336, 6.814, 8.325, 
7.854, 8.551, 3.228, 7.486, 6.625, 6.140, 4.909, 4.661, 5.392, 12.042, 8.696, 1.815, 3.327, 5.406, 6.182, 1.041, 1.800, 
4.949, 4.089, 3.359, 2.070, 3.298, 5.317, 5.442, 4.557, 4.292, 2.500, 6.535, 4.648, 4.697, 5.459, 4.120, 3.922, 3.219, 
1.402, 2.438, 3.257, 3.632, 3.233, 3.027, 2.352, 1.205, 3.218, 2.926, 2.601, 2.065, 3.029, 2.058, 2.326, 2.506, 1.923}.

Some significant descriptive analysis of DAST 2, are: Min. = 1.041, Max. = 16.498, Mean = 5.822, Q1 (1st quar-
tile) = 3.289, Q2 (2nd quartile or median) = 5.279, Q3 (3rd quartile) = 7.594, Range = 15.457, variance = 10.56173, 
Skewness = 0.9732453, and Kurtosis = 3.666136. Additionally, the histogram plot (HP), Kernal density plot (KDP), 
total-time on test plot (TTT-P), Violin plot, and Box plot (BP) of the DAST 2 are presented in Fig. 7.

Table 4.  Estimated MLEs values along with standard errors in parenthesis for DATS 1.

Distributions φ̂MLE α̂MLE δ̂MLE âMLE b̂MLE

NGEP-Wei 0.88579 (2.04917) 0.04581 (0.00902) 2.57243 (0.36007) – –

APTra-Wei – 2.03279
(0.08744)

0.02448
(0.30557) 3.04691 (126.70663) –

NRLog-Wei −0.83524 (0.11319) 0.00259 (0.00068) 4.10087(0.20517) – –

Kumar-Wei – 0.35386 (0.00258) 2.39619 (0.00258) 0.70119 (0.31077) 0.13320 (0.02349)

Wei – 0.01387 (0.00749) 3.31324 (0.35909) – –

MO-NH 22.78807 (1.14637) 11.12585 (4.64358) 0.01742
(0.58032) – –

GAP-Wei 0.00265 (0.00336) 0.29942 (0.09719) 1.74019 (0.22120) – –

Table 5.  The analytical measures of the NGEP-Wei and others competitive models for DATS 1.

Distribution AINC BINC CRMS ANDR KS CAINC HQINC

NGEP-Wei 100.8689 105.6195 0.0747849 0.42072 0.10523 101.6189 102.5270

APTra-Wei 109.0913 113.8419 0.1765308 1.00856 0.14524 109.8413 110.7494

NRLog-Wei 108.3037 113.0543 0.1594273 0.92619 0.16140 109.0537 109.9618

Kumar-Wei 119.4377 125.7717 0.1400811 0.80116 0.24207 120.7280 121.6484

Wei 106.9485 110.1156 0.1729072 0.99175 0.14995 107.3122 108.0539

MO-NH 113.8304 118.5809 0.2434690 1.39362 0.14322 114.5804 115.4884

GAP-Wei 103.4109 108.1615 0.0894868 0.51062 0.13167 103.1609 104.0697

Figure 5.  The profile of Likelihood function of φ̂ , α̂ , and δ̂ of NGEP-Wei for DATS 1.
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Corresponding to DATS 1, the numerical values of MLEs along with standard errors enclosed in parenthesis 
of the NGEP-Wei and rival distributions (i.e., φ̂MLE , α̂MLE , δ̂MLE , âMLE , b̂MLE ) are recorded in Table 6. Further-
more, the numerical values of the goodness of fit measures of the NGEP-Wei and other competitive rival distri-
butions are recorded in Table 7. According to the model selection criteria (goodness of fit measures) in Table 7, 
the NGEP-Wei distribution provides the best-suited fit with the minimum value of CRMS, ANDR, KS, AINC, 
BINC, CAINC, and HQINC as compared with rival distributions to the Mexico COVID-19 dataset (DATS 2). In 
other words, based on model selection criteria, we can say that the NGEP-Wei distribution attains reasonable (or 
satisfactory) fit, which is not sufficiently (or adequately) fitted by the other rival distributions (i.e., APTra-Wei, 
NRLog-Wei, Kumar-Wei, Wei, MO-NH, and GAP-Wei). Except for the numerical illustration (or comparison) 
of the NGEP-Wei distribution and other rival distributions, we also presented a visual illustration of the NGEP-
Wei distribution. For visual illustration, we plotted the profiles of the log-likelihood function of φ̂MLE , α̂MLE , 
and δ̂MLE in Fig. 8. The plots in Fig. 8, we clearly see that the point estimated parameter values of the NGEP-Wei 
distribution are the maxima. Similarly, the empirical PDF, CDF, SF, PP-plot and QQ-plot are visualized for the 
NGEP-Wei distribution in Fig. 9. From the graphical illustration in Fig. 9, we can again see that the respective 
red curve lines of the NGEP-Wei distribution are more close fit to the corresponding empirical objects.

Concluding remarks
In this article, we presented a novel generator called a “Novel Generalized Exponent Power-X” family of distribu-
tions or in short NGEP-X family. A special sub case of the proposed class by employing the Weibull distribution 
as a baseline distribution is derived. The special sub-case is named as a Novel Generalized Exponent Power 
Weibull distribution (NGEP-Wei for short). The density function of the derived model is positively skewed, 
negatively skewed as well as symmetrical depending on parameter values. Moreover, the hazard function can 
be monotonically increasing, decreasing, unimodal, and bathtub-shaped. General expressions, for different sta-
tistical properties of the proposed class (NGEP-X) have been derived including quantile function, moments, 
moments generating function, order statistics, residual and reverse residual of lifetime. The maximum Likelihood 
Estimation method has been used for estimating the model parameters. In addition, a comprehensive MCSS (or 

Figure 6.  The empirical PDF, CDF, SF, PP-plot and QQ-plot of the NGEP-Wei distribution for DATS 1.
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Figure 7.  The HP, KDP, TTT-P, VP, and BP of the DATS 2.

Table 6.  Estimated MLEs values along with standard errors in parenthesis for DATS 2.

Distributions φ̂MLE α̂MLE δ̂MLE âMLE b̂MLE

NGEP-Wei 0.53917 (0.50584) 0.11282 (0.03349) 1.38283
(0.10085) – –

APTra-Wei 0.10144 (0.10746) 0.00717
(0.00302)

2.24540
(0.14051) –

FRlog-Wei 1.19154
(0.05608)

0.04610
(0.00166)

1.75252
(0.13879) – –

Kumar-Wei – 0.14472 (0.02699) 1.91841
(0.03279) 1.24081 (0.04679) 0.19223 (0.04993)

Wei – 0.02675 (0.00829) 1.91968
(0.13893) – –

MO-NH 7.26576 (3.32495) 2.20606 (0.55597) 0.02036
(0.01068) – –

GAP-Wei 1.91446
(0.53924) 0.01076 (0.00450) 2.14066

(0.14493) – –
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simulation) is carried out to assess the performance of the estimators of the proposed model. To prove the efficacy 
(or fitting power over other classical distributions) of the proposed family of distribution (NGEP-X) based on 
an NGEP-Wei distribution, we considered two data sets of COVID-19 mortality rates related to the countries of 
Mexico and Canada. Based on numerical illustration, it is observed that the proposed work outperforms then 
other widely used existing distributions. For future works, many researchers can use our proposed method to 
develop new extensions of the existing distributions such as a Novel Generalized Exponent Power Lomax, a 
Novel Generalized Exponent Power Inverse Lomax, a Novel Generalized Exponent Power Pareto, and a Novel 
Generalized Exponent Power Lindley that are powerful for representing and predicting real-world phenomena.

Table 7.  The analytical measures of the NEPAW and others competitive models for DATS 2.

Distribution AIC BIC CRMS ANDR KS CIAC HQIC

NGEP-Wei 530.3143 537.3046 0.0614379 0.360954 0.071092 530.5496 533.5528

APTW 531.5389 539.5292 0.0741368 0.447980 0.076439 531.8403 534.7774

FRlog-Wei 536.4827 544.4730 0.1222831 0.7864775 0.074103 536.7180 539.7212

Kumar-Wei 534.9466 545.6004 0.0869666 0.5548021 0.088029 535.3427 539.2646

Wei 532.5865 537.9134 0.1022121 0.6570378 0.06923 532.7030 534.7455

MO.NH 549.2811 557.2714 0.2304078 1.484616 0.10807 549.5164 552.5196

GAP-Wei 532.2489 540.2392 0.0804400 0.4975332 0.082046 532.4842 535.4874

Figure 8.  The profile of Likelihood function of φ̂ , α̂ , and δ̂ of NGEP-Wei for DATS 2.
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Data availability
The corresponding author can provide the datasets utilized and/or examined during the present study upon a 
reasonable request.
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