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Single‑cell transcriptome analysis 
profiling lymphatic invasion‑related 
TME in colorectal cancer
Liping Wang 1,7, Liming Ma 2,7, Zhaona Song 3,7, Li Zhou 6, Kexin Chen 3, Xizi Wang 3, Zhen Liu 2, 
Baozhong Wang 4, Chen Shen 5, Xianchao Guo 2* & Xiaodong Jia 3*

Lymphatic invasion (LI) is extremely aggressive and induces worse prognosis among patients with 
colorectal cancer (CRC). Thus, it is critical to characterize the cellular and molecular mechanisms 
underlying LI in order to establish novel and efficacious therapeutic targets that enhance the 
prognosis of CRC patients. RNA-seq data, clinical and survival information of colon adenocarcinoma 
(COAD) patients were obtained from the TCGA database. In addition, three scRNA-seq datasets of CRC 
patients were acquired from the GEO database. Data analyses were conducted with the R packages. 
We assessed the tumor microenvironment (TME) differences between LI+ and LI− based scRNA-seq 
data, LI+ cells exhibited augmented abundance of immunosuppression and invasive subset. Marked 
extracellular matrix network activation was also observed in LI+ cells within SPP1+ macrophages. We 
revealed that an immunosuppressive and pro-angiogenic TME strongly enhanced LI, as was evidenced 
by the CD4+ Tregs, CD8+ GZMK+, SPP1+ macrophages, e-myCAFs, and w-myCAFs subcluster 
infiltrations. Furthermore, we identified potential LI targets that influenced tumor development, 
metastasis, and immunotherapeutic response. Finally, a novel LIRS model was established based 
on the expression of 14 LI-related signatures, and in the two testing cohorts, LIRS was also proved 
to have accurate prognostic predictive ability. In this report, we provided a valuable resource and 
extensive insights into the LI of CRC. Our conclusions can potentially benefit the establishment of 
highly efficacious therapeutic targets as well as diagnostic biomarkers that improve patient outcomes.

Colorectal cancer (CRC) ranks third in the world in terms of incidence, and it is the second contributor to 
cancer-related mortality1. Metastasis is the major cause of death in patients with CRC, and lymphatic invasion 
(LI) is an early metastatic event that serves as a stand-alone risk factor influencing the prognosis of CRC patients2. 
Thus far, multiple attempts have been made to elucidate the LI-associated genes and signaling pathways within 
CRC. Shi et al. suggested that the genetic and transcriptional alterations in lymphatic invasion were associated 
with tumor microenvironment (TME)3. Zhang et al.4 suggested that lymph node metastasis-related signature 
was associated with immune infiltrating cells. Sarah et al.5 suggested that the epithelial cell-specific p53 dele-
tion markedly enhanced cancer invasive and lymph node metastasis. These studies suggested LI in CRC were 
typically controlled by an intricate and dynamic cellular network within the TME. It is clear that an extensive 
knowledge of the complex TME (including heterogeneous cancer cells, diverse infiltrating immune, as well as 
stromal cells) which modulates LI in CRC is crucial for the regulation of CRC development, metastasis, and 
prognosis, as well as LI-based therapies.

However previous studies primarily examined bulk RNA-Seq data or genetic aberrations, and analysis using 
bulk RNA-seq seems not suitable to reveal the dynamic status of various cells and their interactions involving 
in the progression of tumor. In this regard, Single-cell RNA sequencing (scRNA-seq) is a robust and innovative 
technology for discerning cellular and molecular heterogeneities of CRC samples6–10. One recent scRNA-seq 
study demonstrated strong tumor-associated macrophage (TAM) heterogeneity among CRC tissue7. Addition-
ally, scRNA-seq also defines a continuum of cellular states and compositional alterations in the malignant polyps 
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transformation to colorectal cancer11. Herein, we aimed to validate and further evaluate the heterogeneous cel-
lular and transcriptomic profiles of LI in CRC. To do this, we extracted CRC scRNA-seq datasets from the GEO 
database, namely, those with accession numbers GSE200997, GSE166555, and GSE20134811–13. To minimize 
batch effect among the acquired scRNA-seq datasets, we independently assessed individual datasets to obtain 7 
major cellular components. Next, to fine-tune our exploration of the TME, we combined the immunocyte and 
fibroblast cell sets of tumor tissues from the aforementioned 3 datasets to generate second-stage clustering. Lastly, 
to identify cell subpopulations that promote LI, we employed scissor14 to associate cells with LI, forming a relative 
concept. Thus, we utilized scRNA-seq to not only identify specific immunocyte and fibroblast sub populations 
that promote LI in CRC patients, but also recognized certain invasive genes as potential therapeutic targets to 
enhance outcomes of the same patients. Meanwhile, we also further verified the enrichment of particular sub-
cell populations using TCGA-COAD-derived bulk RNA-seq. Using the infiltrated gene expressions, we next 
stratified TCGA-COAD patients into 3 subgroups with different carcinogenic profiles. We revealed that the 
patient clinical outcome, immune cell score, and activated functional networks were strongly distinct among the 
3 subcategories. Thus, we identified potential therapeutic targets for enhancement of CRC patient outcomes. In 
addition, herein, we provided valuable mechanistic insights into lymphatic infiltration as well as establishment 
of personalized therapies for CRC patients.

Results
Identification of major cell types
To systematically evaluate TME significance in CRC patients, we obtained scRNA-seq data from 3 datasets, 
encompassing 35 CRC patients and 4 healthy controls, with 34 tumor and 23 non-tumor samples. Among the 
23 non-tumor samples, 19 were adjoining non-malignant tissues from CRC patients. To minimize batch effect 
among the scRNA-seq datasets, we separately assessed individual dataset. Following low-quality cell filtration, we 
acquired 42,696, 68,702, and 118,904 single cells, and generated unsupervised clustering of 24, 31, and 39 clusters, 
respectively for the GSE200997, GSE166555 and GSE201348 CRC datasets (Fig. 1A, Supplementary Figs. 1A and 
2A). The aforementioned clusters were, in turn, separated into 7 primary cell components, according to their 
associated canonical markers, and these were, fibroblasts (harboring ACTA2, MCAM, MYLK, MYL9, FAP and 
THY1), epithelial cells (harboring EPCAM, SFN, KRT19, KRT18 and CDH1), myeloid cells (harboring CD68, 

Figure 1.   A summary of the single cells in CRC patients, and recognition of primary cell types in the 
GSE200997 dataset. (A) UMAP plot depicting single cells (colored according to cell cluster). (B) UMAP 
plot depicting single cells (colored according to cellular type). (C) UMAP plot depicting single cells (colored 
according to sample origins, either tumor versus normal samples). (D) Dot plot illustrating representative 
marker genes across all cellular clusters. Dot size indicates fraction of specific gene-expressing cells. Color 
intensity indicates relative specific gene expressions. (E) Stacked bar chart depicting 7 major cellular type 
contents in individual tumor or normal samples.
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CD14, FCGR3A,LYZ and MARCO), endothelial cells (harboring VWF, PECAM1 and CD34), NK/T cells (har-
boring NKG7, GNLY, KLRD1, CD24, CD3,CD4 and CD8), B cells (harboring CD19, MS4A1,PAX5 and CD79A) 
and plasmaB cells (harboring MZB1, JCHAIN, JCHAIN and SDC1) (Fig. 1B,D, Supplementary Figs. 1B,D and 
2B,D). Figure 1C, Supplementary Figs. 1C and 2C illustrate the cell-type compositions and tissue origins of each 
dataset. Based on our observation, cells from tumor samples were integrated with cells from non-tumor samples. 
This indicated no marked batch effects among different samples during clustering. To better elucidate cellular 
clustering, we performed cell proportion analysis. We revealed un-even distribution of the relative abundances 
of the 7 primary cellular populations between tumor and non-tumor cells (Fig. 1E, Supplementary Figs. 1E, and 
2E). Given this evidence, it was clear that the TME strongly modulated status of CRC patients.

From the 3 aforementioned datasets, we respectively acquired 25,667, 38,233, and 17,713 cells from tumor 
tissues. Previous studies have revealed T13, myeloid7 and fibroblast15 cells played an important role in the pro-
gression of CRC. Thereafter, to better elucidate the T, myeloid and fibroblast profiles in various TME of CRC LI 
patients in greater detail, we combined these cells for tumor tissues from all 3 datasets, namely, NK/T, myeloid, 
and fibroblasts cell populations. Following batch effect correction, we conducted second stage clustering, and 
we obtained diversity of cell populations (Figs. 2C, 3A, and 4A). This showed that there were complex TMEs 
in CRC patients. Lastly, to explore the TMEs-mediated regulation of LI in CRC patients, we examined the link 
between cells and LI-specific phenotypes. Our findings from the aforementioned analyses are described in detail 
below (Figs. 2D, 3B, and 4B).

Distinct CD8+ and CD4+ T cell states regulate the pro‑invasive immune response
We retrieved the TCGA-COAD clinicopathological data (such as, lymphatic_invasion and primary therapy 
outcome success) from UCSC xena, which examined 164 LI patients and 250 no-LI patients, along with 195 
complete response patients, 12 partial response patients, 25 progressive disease patients, and 4 stable disease 
patients. Our extensive analysis of LI and primary therapeutic success revealed that LI patients exhibited substan-
tially reduced therapeutic response and experienced worse survival, relative to no-LI (Fig. 2A, Supplementary 
Fig. 3). To better elucidate the single-cell transcriptome data between LI and no-LI patients, we employed scissor 
to correspond single-cell data to LI-specific phenotypes via TCGA-COAD bulk RNA-seq sample. We revealed 
513 LI-related (LI+ cells) and 641 no-LI-related (LI− cells) cells (Supplementary Fig. 4A). Notably, immune 
checkpoint genes, such as, CTLA4, IL2RA, and TIGIT were strongly differentially expressed (DE) between LI+ 
and LI− cells (Fig. 2B). To explore the role of T cells in promoting LI formation in CRC patients, we stratified 

Figure 2.   Immune response is diminished in lymphatic invasion (LI) patients. (A) Bar graph depicting the 
primary therapeutic response (complete/partial response (response), stable/progressive disease (no-response)) 
for LI and no-LI TCGA patients. (B) The immune checkpoint gene expression profiles between LI- and LI+ 
cells (ns ≥ 0.05, * < 0.05, ** < 0.01, *** < 0.001 and **** < 0.0001). (C) UMAP plots depicting all NK and T cells, 
colored according to cell sub-clusters. (D) Stacked bar chart depicting detailed components of individual 
NK/T cell clusters in LI- or LI+ cells. (E) The immune checkpoint gene expressions in 8 NK/T cell subclusters. 
(F) Enrichment analysis of upregulated genes in CD8+ GZMK+ or CD8+ GZMB+ cells. (G) The venn plot 
depicting DEG contents in CD4+ Tregs, CD8+ GZMK+, CD4+ Th, and CD8+ GZMB+, by comparing LI+ or 
LI-cells to the remaining cells.
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NK/T cells into progenitors, NK cell, CD4+ T cell, and CD8+ T cell clusters (Fig. 2C, Supplementary Fig. 4B). 
Individual cell clusters exhibited contributions from distinct datasets (Supplementary Fig. 4C), which indicated 
no marked batch effects during clustering. Among the CD4+ T cell states, CD4+ Tregs (harboring FOXP3), CD4+ 
Memory (harboring CCR7, SELL, and TCF7), CD4+ Resting (harboring ANXA1), and CD4+ Th (harboring IL22 
and IL17A) were recognized as 4 independent clusters (Supplementary Fig. 4B). Of note, we demonstrated that 
CD4+ Tregs were more enriched in LI+ than in LI− cells (Fig. 2D). We further validated this using CD4+ Tregs 
signature gene set scores via the TCGA-COAD bulk RNA-seq (Supplementary Fig. 4D). Additional assessment 
revealed that the immune checkpoint markers, CTLA4, IL2RA, and TIGIT, were relatively abundant in CD4+ 
Tregs (Fig. 2E). Based on these evidences, the tumor immune microenvironment (TIME) strongly contributes 
to shaping LI, which is, in turn, regulated by immune evasion during LI states in CRC patients.

Among the CD8+ T cell states, CD8+ GZMB+ and CD8+ GZMK+ were recognized as 2 independent CD8+ 
cytotoxic cell clusters (Fig. 2C, Supplementary Fig. 4B). These cellular states were previously reported in CRC 
patients13. CD8+ GZMK+, which possesses pro-inflammatory properties16, exhibited a higher population in 
LI+ cells, relative to the LI- cells (Fig. 2C), and this was further validated by CD8+ GZMK+ cell signature gene 
set scores using the TCGA-COAD bulk RNA-seq (Supplementary Fig. 4D). Alternately, CD8+ GZMB+ cells 
were enriched in LI− cells (Fig. 2C), which suggested a possible antagonistic function between CD8+ GZMK+ 
and CD8+ GZMB+ cells. Moreover, we observed no marked alterations in the CD8+ GZMB+ cell populations 
in the LI+ and LI− TCGA-COAD patients, which may be due to an underestimation of CD8+ GZMB+ cells 
infiltration abundance by bulk RNA-seq. To further elucidate the antagonistic property between CD8+ GZMK+ 
and CD8+ GZMB+ cells, we conducted gene expression and Gene Ontology (GO) term analysis for the 2 CD8+ 
subsets. We revealed that the DUSP2 (serving as a T cell suppressor to attenuate host antitumor immunity17) 
expression as well as the negative immune system regulatory pathways were substantially upregulated in CD8+ 
GZMK+ cells (Fig. 2E,F). In contrast, we revealed marked elevation in exhaustion marker expressions (LAG3, 
HAVCR2) as well as the leukocyte-driven cytotoxicity pathway in CD8+ GZMB+ cells (Fig. 2E,F). Collectively, 
these evidences confirmed that TIME strongly regulated LI, and CD8+ GZMK+ cells accelerated LI by weaken-
ing the immune response.

We next examined the transcriptome alterations in LI+ versus LI− states, and identified differentially 
expressed genes (DEGs) in CD4+ Tregs, CD8+ GZMK+, CD4+ Th, and CD8+ GZMB+ cells. Based on our 
observation, most DEGs were not common among T cell clusters (Fig. 2G, Supplementary Fig. 4E,F). This 
suggested that distinct molecular networks were activated among distinct T cell types to promote or inhibit LI.

Figure 3.   Myeloid cellular cluster comparison between LI+ and LI- cells. (A) UMAP plots depicting all myeloid 
cells, colored according to cellular sub-clusters. (B) Stacked bar chart illustrating the detailed compositions 
of individual myeloid cell clusters in LI- and LI+ cells. (C) The tumor suppressor and tumor promoting gene 
expressions in individual myeloid sub-clusters. (D) DEG evaluation via comparison of LI+ or LI-cells to 
the remaining cells in SPP1+ macrophages. (E) Association between gene expression and OS for DEGs via 
comparison among LI+ or LI-cells and the remaining cells in individual myeloid sub-clusters. Dot size 
represents the absolute correlation coefficient value, and shape indicates the cell subsets. (F) Enrichment analysis 
for DEGs via comparison of LI+ or LI-cells to the remaining cells in SPP1+ macrophages and pDCs.
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Myeloid subtyping and contribution to LI
Prior investigations also reported that myeloid cells critically regulated CRC progression7. Herein, we identified 
2603 myeloid cells, which were sub-classified into 6 clusters, according to their canonical marker gene expression, 
and these included macrophages (harboring MARCO, CD68, TREM2 and MRC1; including 2 subsets), neutro-
phils (harboring CSF3R, S100A8 and S100A9), dendritic cells (harboring CD1C, CD1E, FCER1A and PKIB), 
pDCs (harboring DNASE1L3 and LAMP5) and mast cells (harboring MS4A2 and TPSAB1) (Fig. 3A,B and 
Supplementary Fig. 5A). We also identified two macrophage subcategories, namely, C1QC+ macrophages and 
SPP1+ macrophages using upregulated expressions of C1QC and SPP1 respectively. Additionally, chemokine 
genes CCL1818 and CCL2019 are reported to accelerate cancer progression via positive regulation of migration 
and angiogenesis, respectively, and these genes exhibited enhanced expression in SPP1+ macrophages (Fig. 3C). 
FTL20, which possesses both pro-proliferative and pro-angiogenic properties, was also upregulated in SPP1+ 
macrophages (Fig. 3C). In all our expression analysis supported that the SPP1+ macrophages controlled the 
pro-metastatic behavior of CRC, which corroborated with prior reports7. Nonetheless, the C1QC+ macrophages 
which have been reported to perform cytophagic and antigen-presenting function7, exhibited enhanced TNF and 
MERTK expressions, which may slow down tumor progression (Fig. 3C). Collectively, our evidences regarding 
the two macrophage subsets closely mirrored reports from earlier publication7 that existed the dichotomous 
functional phenotypes between SPP1+ macrophages and C1QC+ macrophages in the CRC TME7.

We next examined the association between relative abundance of various myeloid subtypes and LI-associated 
cells. Using scissor, we recognized 293 cells related to LI (LI+ cells), and 272 cells related to no-LI (LI− cells) 
(Supplementary Fig. 5B). More importantly, we discovered that the SPP1+ macrophage population was aug-
mented in LI+ versus LI− cells. In contrast, we revealed that plasmacytoid dendritic cells (pDCs) were more 
prominent in LI− cells (Fig. 3B). Lastly, using bulk dataset integration, we also achieved the same conclusions 
(Supplementary Fig. 5C). We further explored the differing transcriptional distributions of SPP1+ macrophages 
and pDCs between LI+ cells and LI− cells.

In case of SPP1+ macrophages, 28 genes were highly expressed in LI+ cells, whereas, 23 were augmented 
in LI− cells (Fig. 3D). Of note, among the elevated genes in LI+ cells, we observed that the TIMP1 and SERF2 
contents closely associated with poor survival of CRC patients (Fig. 3D,E). Additionally, we utilized the 

Figure 4.   CAF cell cluster comparisons between LI+ and LI- cells. (A) UMAP plots depicting all CAF 
cells, colored according to the cell sub-clusters. (B) Stacked bar chart illustrating the detailed compositions 
of individual CAF cell clusters in LI- and LI+ cells. (C) The expression profiles of genes (SPON2, VCAN, 
MCAM, MGP, and POSTN) whose enhanced expression is correlated with disease progression and metastasis, 
in individual CAF sub-clusters. (D) Enrichment analyses of significantly upregulated genes in e-myCAFs, 
w-myCAFs, and IGFBP6+ CAFs. (E) DEG evaluation via comparison of the LI+ or LI-cells to the remaining 
cells in individual CAF cell clusters. (F) Association between gene expression and patient OS for DEGs via 
comparison of LI+ or LI-cells to the remaining cells in individual CAF sub-clusters. Dot size represents the 
absolute correlation coefficient value, and shape indicates the cellular subsets.
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TCGA-COAD bulk samples to obtain the same conclusion that TIMP1 and SERF2 contents were elevated in 
LI patients (Supplementary Fig. 5D). Subsequently, we employed functional enrichment analysis to show that 
invasive networks, namely, negative immune modulation, negative TNF regulation, positive MAPK modulation, 
positive ERK1, ERK2, and extracellular matrix (ECM) regulation, were upregulated in the LI+ cells of SPP1+ 
macrophages (Fig. 3F). Alternately, among the elevated genes in LI− cells, we observed marked activation of 
immune response. In pDCs, 305 genes were augmented in LI+ cells, and 46 genes were augmented in LI− cells 
(Supplementary Fig. 5E). Among the elevated genes in LI+ cells, we found a strong inverse relationship between 
EPOR, GPS2, GSTM2, LINGO1, NEIL1, NLGN4Y, TPD52L1, and VPS50 gene expressions and patient survival 
(Fig. 3E). Among the elevated genes in LI-cells, the CXCL8 and MMP9 expressions were positively associated 
with patient survival (Fig. 3E). Using functional enrichment analysis, we further validated that the immune 
response-associated networks, namely, IL-17, TLRs, and TNF axes were strongly diminished in LI+ cells, in rela-
tion to LI− cells (Fig. 3F, Supplementary Fig. 5F). Together, these evidences indicated that the SPP1+ macrophage 
infiltration in LI+ cells accelerated LI, in turn pDCS infiltration in LI- cells, modulated anti-tumor immunity. 
Thus, targeting these signatures may diminish invasion and enhance patient clinical outcome.

CAFs exert diverse functions in LI
Cancer-associated fibroblasts (CAFs) are critical contributors to the TME. Following re-clustering, we identi-
fied 9 fibroblast subsets with distinct properties, all of which were defined as CAFs owing to the expressions 
of angiogenesis- and immunomodulation-related genes (PDGFRA, PDGFRB, FAP, NOTCH3, HES4, THY1, 
CXCL12, CXCL14, CCL2, CXCR4, and ACTG2) (Supplementary Fig. 6). Subcluster cells that expressed antigen-
presenting molecules, namely, HLA-DRA and HLA-DRB1 were designated as apCAFs (Fig. 4A, Supplementary 
Fig. 7A); cells that expressed collagen-associated genes, namely, COL1A1, COL5A1, and ATCA2 were referred 
to as myCAFs (Fig. 4A, Supplementary Fig. 7A); cells that expressed pericyte markers, namely, RGS5, PDGFRB, 
and CD248, were noted as pericytes (Fig. 4A, Supplementary Fig. 7A); and lastly, cells that expressed chemokines, 
namely, CXCL12, CXCL14, and CCL2, were recognized as iCAFs (Fig. 4A, Supplementary Fig. 7A). Among the 
myCAF cell states, e-myCAFs (harboring ECM molecules like MMP14 and LOXL2) and w-myCAFs (harbor-
ing contractile myofibroblast factors, namely, MYL9 and TAGLN) were designated as two independent clusters 
(Fig. 4A, Supplementary Fig. 7A). The remaining 4 subclusters were defined as CXCL12+ CAFs, CXCR4+ CAFs, 
ACTG2+ CAFs, and IGFBP6+ CAFs, respectively, based on their unique gene expressions. This reflected the 
CAF heterogeneity among CRC patients (Fig. 4A, Supplementary Fig. 7A).

Till date, there are no single-cell level studies on CAF heterogeneity and association with LI in CRC patients. 
Using scissor, we identified 218 cells as LI+ cells, due to their marked association with LI, and 148 cells as 
LI− cells owing to their marked association with no-LI (Supplementary Fig. 7B). Importantly, we revealed that 
both e-myCAFs and w-myCAFs were more abundant in LI+ versus LI− cells (Fig. 4B). Following a combined 
analysis of bulk datasets, we also obtained the same conclusion that the e-myCAF and w-myCAF cell abundance 
was substantially upregulated in LI versus no-LI patients (Supplementary Fig. 7C). Moreover, using enrich-
ment analysis of significantly upregulated e-myCAF and w-myCAF genes, we revealed that both cells expressed 
elevated levels of proliferation- and ECM remodeling network-related genes, whereas, w-myCAFs also showed 
enrichment for angiogenesis-associated genes (Fig. 4D). Based on these evidences, the upregulated e-myCAFs 
and w-myCAFs in CRC patients likely enhance invasion and metastasis. Furthermore, we revealed that inva-
sion-related gene expression SPON221, VCAN22, and POSTN23 was heavily upregulated in e-myCAFs, whereas, 
MCAM was augmented in w-myCAFs (Fig. 4C). Collectively, these results suggested that both e-myCAFs and 
w-myCAFs enhance invasion and metastasis24. Moreover, we revealed that a previously unreported CAF sub-
population (harboring IGFBP6, a gene strongly associated with VSMC physiological function25) (Fig. 4B), was 
more enriched in LI+ cells than in LI− cells. Lastly, following a combined analysis of bulk datasets, we obtained 
the comparable conclusions (Supplementary Fig. 7C). Additionally, we revealed that the MGP expression, a gene 
that is inversely related to patient prognosis, was substantially elevated in IGFBP6+ CAFs (Fig. 4C). To assess 
possible function of augmented IGFBP6+ CAF abundance in CRC patients, we conducted pathway enrichment 
analysis, and revealed that the ECM and signal transduction networks in absence of ligand were remarkably 
enriched (Fig. 4D). Collectively, these evidences indicated that IGFBP6+ CAFs could accelerate metastasis and 
modulate prognosis of CRC patients.

Furthermore, the apCAF population, which are known to regulate immune evasion in pancreatic cancer26, 
was also remarkably enhanced in LI+ versus LI− cells, and this was further validated using apCAF signature 
gene set scores via TCGA-COAD-based bulk RNA-seq (Supplementary Fig. 7C). The apCAFs are also consid-
ered to be antigen presenting cells. Thus, we analyzed its association with T cells. We revealed that, in the SPP1 
axis-based interactions, apCAFs with enhanced SSP1 expressions exhibited more cellular crosstalk with T cells 
with enhanced CD44 expression (Supplementary Fig. 7D). Since it has been early reported that the SPP1-CD44 
ligand-receptor pair causes immunosuppression in intrahepatic cholangiocarcinoma progression27, we speculated 
that the augmented apCAF abundance in CRC patients may potentially induce immune escape. Collectively, these 
evidences suggested that the heterogeneous CAFs exerted multiple functions to form LI, including accelerating 
invasion and enhancing immune escape.

Establishment of 3 subcategories in CRC patients using invasive genes
Herein, we employed single-cell and TCGA analysis to evaluate the TME infiltration status of CRC patients, and 
confirmed our identification of the LI-related cells from single-cell data with phenotypic guidance from bulk 
data. This information can potentially enhance cell-targeted therapies and identification of robust prognostic 
markers. Through our comparison of LI+ or LI− cells with all other cells from individual cellular subset, we 
conducted extensive DE (Fig. 4E) and overall survival (OS) analysis. Our conclusions were as follows: 60 genes 
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were substantially elevated in LI+ cells, and had negative correlation with patient OS. Moreover, 19 genes were 
enhanced in LI− cells, showed positive correlation with patient OS (Figs. 3E and 4F, and Supplementary Fig. 4F). 
Additionally, our unsupervised clustering analysis of 79 gene expressions from the TCGA-COAD dataset revealed 
3 distinct regulatory patterns. These included 129 cases in cluster 1, 178 cases in cluster 2, and 148 cases in cluster 
3 (Fig. 5A). We next separated all participants into 3 cohorts, based on the PCA results, and confirmed the pres-
ence of 3 distinct subtypes (Fig. 5B). Based on our survival analysis, the 3 newly segregated subtypes exhibited 
markedly different prognosis (Fig. 5C, P < 0.05), with the cluster 3 patients experiencing the best prognosis.

In addition, we performed an extensive assessment of clinicopathological profiles among the 3 distinct sub-
types. We observed no discernible differences in the tumor stage, gender, age and stage among the 3 subtypes 
(Supplementary Fig. 8). However, the cluster 3 patients exhibited the highest proportion of no-LI (Supplementary 
Fig. 8). To better elucidate differences in immune response, we compared the immune scores of various subtypes. 
We revealed that cluster 3 had the lowest immune cell and stromal cell scores, whereas, cluster 1 produced the 
largest immune cell and stromal cell scores (Fig. 5D). We next compared the profiles of immune checkpoint 
molecules, namely, PD-1, CTLA4, LAG3, TIGIT, IL2RA, and HAVCR2. We revealed that the cluster 3 patients 
produced the lowest expressions of immune checkpoint molecules (Fig. 5E). Lastly, we demonstrated significant 
differences in the carcinogenic profiles of the 3 clusters using GSVA analysis with the 50 Hallmark gene sets. Clus-
ter 1 showed enrichment in the EMT networks, namely, TGF-B, NOTCH, and epithelial mesenchymal transition 
axes (Fig. 5F). Cluster 2 showed enrichment in metabolism networks, namely, GLYCOLYSI and XENOBIOTIC 
(Fig. 5F). Cluster 3 showed enrichment in proliferation networks, namely, E2F TARGETS, G2M CHECKPOINT, 
and MYC TARGETS (Fig. 5F). Based on these evidences, we identified certain LI targets, which modulate tumor 
development, metastasis and immune response, and have great potential in enhancing prognosis of CRC patients.

Development and validation of the LI‑related prognostic model
To develop an ideal biomarker for exactly stratifying the prognosis, based on these above-mentioned LI tar-
gets, we applied 60 machine-learning algorithm combinations to construct prediction models in the TCGA-
COAD training cohort, and calculated the mean AUC and C-index of each algorithm in the two testing cohorts 
(GSE17536, GSE17537). As shown in Fig. 6A, the combination of Ridge (genes, with the coefficient > 0.01, were 
selected) and LASSO Cox with the highest average AUC (0.74) was selected as the final model. As illustrated in 
Fig. 6B, the LI-related risk score (LIRS) was developed according to the expression of 14 LI-related signatures 
with following equation: LIRS = (0.168 * ARPC5L) + (0.260 * NOL3) + (0.115 * TIMP1) + (0.334 * FAM24B) + (0.
108 * PPIA) + (0.157 * ARPC1A) + (0.317 * NGRN) + (0.047 * DUSP22) + (0.155 * IRAK1) + (− 0.416 * STRIP1) + ( 
− 0.138 * TBC1D9B) + (0.177 * JDP2) + ( − 0.128 * HMGN2) + (0.195 * LINGO1). The expression differences of 
the 14 LI-related signatures between high and low LIRS groups according to the median value in TCGA-COAD 
patients was shown in Fig. 6C. To evaluate the prognostic performance of LIRS, the Kaplan–Meier curve of OS 
demonstrated the high LIRS group possessed significantly shorter survival time in the TCGA-COAD training 
cohort (p < 0.0001 Fig. 6D). The time-dependent ROC curves at 1, 2 and 3 years of OS with the AUC values of 

Figure 5.   Consensus clustering of lymphatic invasion (LI)-associated genes in TCGA-COAD. (A) Consensus 
matrices of TCGA patients. (B) PCA analysis of the 3 subgroups in TCGA cohort. (C) KM curves depicting 
prognosis of the 3 TCGA subgroups. (D) Stromal, immune, and estimate scores among the 3 subgroups 
(ns ≥ 0.05, * < 0.05, ** < 0.01, *** < 0.001 and **** < 0.0001). (E) The immune checkpoint gene expressions among 
3 subgroups (ns ≥ 0.05, * < 0.05, ** < 0.01, *** < 0.001 and **** < 0.0001). (F) Heatmap depicting gene set variation 
analysis scores of the 50 hallmark gene sets in the 3 subgroups of colorectal cancer (CRC). Color intensity 
represents scores.
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0.869, 0.852 and 0.810 confirmed the prognostic value of the LIRS in the TCGA-COAD training cohort (Fig. 6E). 
The LIRS was further independently validated in the two testing cohorts. The patients with high LIRS group 
possessed significantly shorter survival time both in the GSE17536 cohort and in the GSE17537 cohort (p < 0.05 
Fig. 6F,H), and the AUC values of 1, 2 and 3 years were 0.709, 0.623, and 0.585 in the GSE17536 cohort, 0.768, 
0.778, and 0.760 in the GSE17537 cohort (Fig. 6G,I). The above results further clarified the LIRS could produce 
an accurate prognostic prediction, and we provided valuable mechanistic insights into LI in clinical process.

Discussion
LI is more aggressive and produces worse prognosis in CRC patients2. Thus, it is crucial to characterize the cel-
lular and molecular pathways of LI, and recognize new robust targets for improvement of CRC patient prognosis. 
Herein, we provided a high-resolution view for dissecting the TME in CRC by integrating 230,302 single cells 
from 35 patients across 3 datasets. Then we integrated scRNA-seq and TCGA LI-specific phenotypic data for 
CRC patients to investigate the TME of LI versus no-LI patients, and provided a comprehensive perspective for 
dissecting the cellular and molecular mechanisms in the LI -related TME, further our results were confirmed via 
TCGA bulk RNA-seq data. Our single-cell analysis revealed that the LI+ cells exhibited enhanced expression of 
immune checkpoint genes, as well as an augmented abundance of CD4+ Tregs (an immunosuppressive subset) 
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Figure 6.   Development and validation of the LI-related prognostic model. (A) The AUC and C-indexes of 60 
machine-learning algorithm combinations in the TCGA-COAD training cohort and the two testing cohorts. 
(B) Coefficients of the 14 LI-related signatures in the cox regression model. (C) The differential expression of 14 
LI-related signatures between high- and low-LIRS subgroups based on median level of LIRS in TCGA-COAD. 
(D–I) Kaplan–Meier survival curve of OS between high- and low-LIRS, and ROC curves at 1, 2 and 3 years in 
the TCGA-COAD training cohort and the two testing cohorts.
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and CD8+ GZMK+ cells. CD8+ GZMK+ cells in CRC patients expressed large quantities of DUSP2, and genes 
of negatively regulate immune networks. The CD8+ GZMK+ cells in CRC patients have been reported to be 
correlated with worse outcome16. These suggested that the quantity of infiltrating CD4 Tregs and CD8+ GZMK+ 
cells could form the suppressive TME and affected therapeutic response and prognosis of LI patients in CRC. 
Prior investigations also reported that myeloid cells critically regulated CRC progression. Zhang et al. identified 
the dichotomy of C1QC+ macrophages and SPP1+ macrophages in CRC, namely C1QC+ macrophages was 
reported to perform cytophagic and antigen-presenting function, whereas SPP1+ macrophages was reported 
to perform pro-angiogenic and tumor-promoting functions, and the patients with high SPP1+ and low C1QC+ 
macrophages signatures had the poor prognosis7. Lee et al.28 also showed that expansion of SPP1+ macrophages 
may perform immune suppression and tumor promotion in CRC patients, and patients with high SPP1 expres-
sion had a poorer prognosis. In our paper, we also identified the 2 independent macrophage populations in CRC, 
namely, C1QC+ and SPP1+ macrophages, and interestingly, we observed the abundance of SPP1+ macrophages 
was largely enhanced in LI+ cells. The SPP1 has been reported to be a key gene of lymph node metastasis both 
in lung adenocarcinoma29 and head and neck carcinoma30. Dong et al. identified a higher abundance of mac-
rophages in the lymph node metastasis tumor of lung adenocarcinoma29 using the immunohistochemistry. 
Based on these previous researches, we preliminarily speculated that the SPP1+ macrophages promoted LI and 
induced poor prognosis in CRC. Meanwhile we also observed the most reduced abundance of pDCs in LI+ 
cells. The elevated LI+ or LI− cellular genes in SPP1+ macrophages and pDCs respectively, revealed that the 
TNF and immune response were severely diminished in LI+ cells. Together, these evidences about the T and 
myeloid cells suggested that the immune response was strongly inhibited in LI TME, which corroborated with 
prior reports of immunosuppression contributing to distal metastasis31,32. These findings may have important 
implications for improving cancer immunotherapy in CRC LI patients, such as the combination therapies that 
target both T and myeloid cells.

CAFs strongly promote tumor metastasis in numerous cancer types33. Prior investigations identified multiple 
CAF subpopulations among CRC patients33, however, the molecular mechanisms underlying CAF function in 
the CRC LI TME remain poorly determined. Herein, we revealed that LI+ cells exhibited enhanced e-myCAF, 
w-myCAF, and apCAF infiltration. Both e-myCAF and w-myCAF subclusters revealed enhanced expressions 
of invasion-related genes. Meanwhile, both ECM- and angiogenesis-related networks were also substantially 
upregulated in the two subclusters. In case of the apCAF subcluster, we identified strong immunosuppressive 
interactions between apCAFs and T cells in CRC patients. Interestingly, we recognized a previously unreported 
CAF subpopulation (IGFBP6+ CAFs), which showed augmented abundance in LI+ cells, and MGP, which was 
inversely associated with patient OS, was specifically upregulated in this CAF subcluster. In all, in this report, 
we demonstrated that the heterogeneous CAFs served diverse roles that developed LI.

In conclusion, herein, we assessed TME differences between LI+ and LI- at a single-cell level. We also dem-
onstrated that LI+ cells exhibited augmented abundance of immunosuppression and invasive subset, relative to 
LI- cells. The TME encompasses a complicated ecosystem that enhances LI. Thus, a combinational therapy target-
ing ≥ 2 TME subclusters may be a promising strategy to combat invasion and enhance patient OS. We observed 
marked ECM network activation in LI+ cells within SPP1+ macrophages, as well as in augmented abundance 
CAFs subclusters for LI+ cells. This suggested that specific targeting of the ECM networks may effectively sup-
press LI in CRC patients. In addition, we found some genes were associated with both LI and survival, and we 
employed immune scores, immune checkpoint molecule expression, and GSVA analysis to identify these genes 
which could impact tumor development, metastasis, and immune response in CRC patients. Finally, a novel LIRS 
model was established based on the expression of 14 LI-related signatures, and in the two testing cohorts LIRS 
was also proved to have accurate prognostic predictive ability, which further demonstrated the clinical impor-
tance of these targets. The conclusions from our study can be a valuable resource for an enhanced comprehension 
of the underlying pathways that contribute to LI. This information can potentially aid in the development of 
highly efficacious therapeutic targets and biomarkers for CRC patient OS enhancement.

Materials and methods
Data source and processing
RNA-seq from COAD patient samples were acquired from TCGA using the TCGA biolinks R package. To analyze 
the gene expression data, we collected FPKM data, a normalized estimation of gene expression according to the 
RNA‐seq data. In all, we acquired 3 scRNA-seq transcriptome datasets of CRC patients from the GEO database, 
namely, GSE200997, GSE166555, and GSE201348.

scRNA‑seq data preprocessing
We utilized the R package Seurat (v4.4.0)34 to convert that way matrix count for individual sample. Subsequently, 
we removed genes expressed in < 3 cells. Low-quality cells were eliminated using parameters as follows: Cells 
containing < 500 UMIs, or < 200 expressed genes, or > 20% mitochondrial content. Using LogNormalize, we 
confirmed equal quantities of total gene expression profile of individual cells, and the scale factor was adjusted 
to 10,000. Then, we employed the FindVariableFeatures function to identify the leading 2000 DEGs. We next 
used principal component analysis (PCA) to minimize dataset dimensionality, and the leading 30 PCs were 
chosen for UMAP. Finally, we utilized FindClusters function to recognize cell clusters. Batch effect correction 
utilized Seurat cca during 3 dataset integration. Cell identity annotations on individual clusters were designated 
according to the expressions of established canonical marker genes. Cell subclusters with comparable gene 
expression profiles were then designated as the same cell type. All aforemetioned analyses were conducted with 
the R package Seurat (v4.4.0).
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DEGs identification and signaling network analysis
Highly expressed genes of each cell subcluster, as well as DEGs between LI+ or LI- cells and other cell types in 
each cell subset, were recognized via the “FindAllMarker” function in Seurat using parameters: |logFC|> 0.7 and 
only.pos = TRUE. DEGs or biomarker genes were selected using Wilcoxon Rank Sum test, based on a thresh-
old value (p-value < 0.05). The clusterProfiler (4.6.2) R package was employed for GO and KEGG35–37 network 
enrichment analysis. Lastly, we verified TME components in CRC patients, using the R package GSVA (1.46.0), 
in combination with the ssGSEA algorithm, for quantification of the relative abundance of individual cellular 
invasion in the TCGA-COAD bulk sample.

OS analysis
RNA-seq and COAD patient clinical information were acquired from TCGA for evaluation of prognostic influ-
ence of genes. Individual gene expressions were determined via the log2 (FPKM+ 1) scale. Single factor Cox 
regression analysis was employed for DEGs analysis. Lastly, OS curves were fitted via the Kaplan–Meier formula 
in R survival package (v3.5-7).

CRGs consensus clustering analysis
Our comparison of LI+ or LI− cells to all other cells in each cell subset yielded DEGs. We next conducted uni-
variate Cox analysis on the newly identified DEGs to screen for prognostic-associated genes with p-value < 0.05. 
We discovered 73 prognosis-related genes. Using the ConsensusClusterPlus (1.62.0) R package, we clustered 
patients according to the profiles of 73 aforementioned genes in tumor tissues from the TCGA dataset. Next, 
we utilized the FactoMineR (2.9) package to conduct PCA analysis. To next assess the clinical performance of 
the invasive subtypes, we examined the associations between invasive subtypes and patient prognosis as well 
as other clinicopathological characteristics, namely, patient age, gender, stage, grade, and treatment response.

Cell–cell crosstalk
We assessed cell-to-cell crosstalk using CellChat (1.6.1). We utilized single cell gene expression matrix and cor-
responding cellular type to elucidate potential association strength between individual cell type. The cell-to-cell 
crosstalk was further evaluated using communication probability and p-value from the output file (p ≤ 0.01).

Gene set variation analysis (GSVA)
To estimate the distinct signaling network enrichment scores among the 3 distinct molecular subgroups, we 
conducted GSVA via GSVA (1.46.0) R package38. Gene sets were obtained from the MsigDB database.

Development the LI‑related prognostic model
To construct a consensus prognosis model, we integrated 8 classical algorithms, random forest (RFS), LASSO 
COX, GBM, ridge regression, CoxBoost, Stepback Cox, Stepboth Cox, and elastic network (Enet), into 60 
machine-learning algorithm combinations. We utilized the TCGA-COAD as the training cohort, and the 
GSE17536 and GSE17537 as the testing cohort. Finally, we calculated the mean AUC and C-index of each algo-
rithm in the two testing cohorts, and picked the best consensus LIRS model based on the average.

Statistical analysis
All data analyses were performed on the R software. Categorical data were assessed using the chi-square test 
and continuous data were analyzed using the Wilcoxon rank sum test. P < 0.05 was adjusted as the significance 
threshold.

Data availability
The TCGA-COAD cohort can be downloaded from TCGA (https://​portal.​gdc.​cancer.​gov/) and datasets 
GSE200997, GSE166555, and GSE201348 are available in the NCBI GEO (https://​www.​ncbi.​nlm.​nih.​gov/​geo/) 
public repositoriy. In addition, we provided all the relevant source data in the Supplementary Tables.

Received: 18 January 2024; Accepted: 12 April 2024

References
	 1.	 Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 

Countries. CA 71, 209–249. https://​doi.​org/​10.​3322/​caac.​21660 (2021).
	 2.	 van Wyk, H. C., Roxburgh, C. S., Horgan, P. G., Foulis, A. F. & McMillan, D. C. The detection and role of lymphatic and blood 

vessel invasion in predicting survival in patients with node negative operable primary colorectal cancer. Crit. Rev. Oncol. Hematol. 
90, 77–90. https://​doi.​org/​10.​1016/j.​critr​evonc.​2013.​11.​004 (2014).

	 3.	 Shi, J. et al. Molecular profile reveals immune-associated markers of lymphatic invasion in human colon adenocarcinoma. Int. 
Immunopharmacol. 83, 106402. https://​doi.​org/​10.​1016/j.​intimp.​2020.​106402 (2020).

	 4.	 Zhang, H., Zhao, G., Zhu, G. & Ye, J. Identification of lymph node metastasis-related genes and patterns of immune infiltration in 
colon adenocarcinoma. Front. Oncol. 12, 907464. https://​doi.​org/​10.​3389/​fonc.​2022.​907464 (2022).

	 5.	 Schwitalla, S. et al. Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node 
metastasis of carcinogen-induced colorectal tumors. Cancer Cell 23, 93–106. https://​doi.​org/​10.​1016/j.​ccr.​2012.​11.​014 (2013).

	 6.	 Zhou, Y. et al. Single-cell multiomics sequencing reveals prevalent genomic alterations in tumor stromal cells of human colorectal 
cancer. Cancer Cell 38, 818-828 e815. https://​doi.​org/​10.​1016/j.​ccell.​2020.​09.​015 (2020).

	 7.	 Zhang, L. et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell 181, 442-459.e429. 
https://​doi.​org/​10.​1016/j.​cell.​2020.​03.​048 (2020).

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/j.critrevonc.2013.11.004
https://doi.org/10.1016/j.intimp.2020.106402
https://doi.org/10.3389/fonc.2022.907464
https://doi.org/10.1016/j.ccr.2012.11.014
https://doi.org/10.1016/j.ccell.2020.09.015
https://doi.org/10.1016/j.cell.2020.03.048


11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8911  | https://doi.org/10.1038/s41598-024-59656-6

www.nature.com/scientificreports/

	 8.	 Liu, X. et al. Evaluating the role of IDO1 macrophages in immunotherapy using scRNA-seq and bulk-seq in colorectal cancer. 
Front. Immunol. 13, 1006501. https://​doi.​org/​10.​3389/​fimmu.​2022.​10065​01 (2022).

	 9.	 Dentro, S. C. et al. Characterizing genetic intra-tumor heterogeneity across 2658 human cancer genomes. Cell 184, 2239-2254 
e2239. https://​doi.​org/​10.​1016/j.​cell.​2021.​03.​009 (2021).

	10.	 Pelka, K. et al. Spatially organized multicellular immune hubs in human colorectal cancer. Cell 184, 4734-4752.e4720. https://​doi.​
org/​10.​1016/j.​cell.​2021.​08.​003 (2021).

	11.	 Becker, W. R. et al. Single-cell analyses define a continuum of cell state and composition changes in the malignant transformation 
of polyps to colorectal cancer. Nat. Genet. 54, 985–995. https://​doi.​org/​10.​1038/​s41588-​022-​01088-x (2022).

	12.	 Uhlitz, F. et al. Mitogen-activated protein kinase activity drives cell trajectories in colorectal cancer. EMBO Mol. Med. 13, e14123. 
https://​doi.​org/​10.​15252/​emmm.​20211​4123 (2021).

	13.	 Khaliq, A. M. et al. Refining colorectal cancer classification and clinical stratification through a single-cell atlas. Genome Biol. 23, 
113. https://​doi.​org/​10.​1186/​s13059-​022-​02677-z (2022).

	14.	 Sun, D. et al. Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing data. Nat. Biotechnol. 
40, 527–538. https://​doi.​org/​10.​1038/​s41587-​021-​01091-3 (2022).

	15.	 Sathe, A. et al. Colorectal cancer metastases in the liver establish immunosuppressive spatial networking between tumor-associated 
SPP1+ macrophages and fibroblasts. Clin. Cancer Res. 29, 244–260. https://​doi.​org/​10.​1158/​1078-​0432.​ccr-​22-​2041 (2023).

	16.	 Tiberti, S. et al. GZMK(high) CD8(+) T effector memory cells are associated with CD15(high) neutrophil abundance in non-
metastatic colorectal tumors and predict poor clinical outcome. Nat. Commun. 13, 6752. https://​doi.​org/​10.​1038/​s41467-​022-​
34467-3 (2022).

	17.	 Dan, L. et al. The phosphatase PAC1 acts as a T cell suppressor and attenuates host antitumor immunity. Nat. Immunol. 21, 287–297. 
https://​doi.​org/​10.​1038/​s41590-​019-​0577-9 (2020).

	18.	 Lin, L. et al. CCL18 from tumor-associated macrophages promotes angiogenesis in breast cancer. Oncotarget 6, 34758–34773. 
https://​doi.​org/​10.​18632/​oncot​arget.​5325 (2015).

	19.	 Kadomoto, S., Izumi, K. & Mizokami, A. The CCL20-CCR6 axis in cancer progression. Int. J. Mol. Sci. 21, 5186. https://​doi.​org/​
10.​3390/​ijms2​11551​86 (2020).

	20.	 Coffman, L. G., Parsonage, D., D’Agostino, R. Jr., Torti, F. M. & Torti, S. V. Regulatory effects of ferritin on angiogenesis. Proc. Natl. 
Acad. Sci. U. S. A. 106, 570–575. https://​doi.​org/​10.​1073/​pnas.​08120​10106 (2009).

	21.	 Huang, C. et al. Tumor cell-derived SPON2 promotes M2-polarized tumor-associated macrophage infiltration and cancer progres-
sion by activating PYK2 in CRC. J. Exp. Clin. Cancer Res. 40, 304. https://​doi.​org/​10.​1186/​s13046-​021-​02108-0 (2021).

	22.	 Zhang, S. et al. Single cell transcriptomic analyses implicate an immunosuppressive tumor microenvironment in pancreatic cancer 
liver metastasis. Nat. Commun. 14, 5123. https://​doi.​org/​10.​1038/​s41467-​023-​40727-7 (2023).

	23.	 Jia, Y. Y., Yu, Y. & Li, H. J. POSTN promotes proliferation and epithelial-mesenchymal transition in renal cell carcinoma through 
ILK/AKT/mTOR pathway. J. Cancer 12, 4183–4195. https://​doi.​org/​10.​7150/​jca.​51253 (2021).

	24.	 Kobayashi, H. et al. The origin and contribution of cancer-associated fibroblasts in colorectal carcinogenesis. Gastroenterology 
162, 890–906. https://​doi.​org/​10.​1053/j.​gastro.​2021.​11.​037 (2022).

	25.	 Wang, Z. et al. IGFBP6 regulates vascular smooth muscle cell proliferation and morphology via cyclin E-CDK2. J. Cell. Physiol. 
235, 9538–9556. https://​doi.​org/​10.​1002/​jcp.​29762 (2020).

	26.	 Huang, H. et al. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells 
in pancreatic cancer. Cancer Cell 40, 656-673 e657. https://​doi.​org/​10.​1016/j.​ccell.​2022.​04.​011 (2022).

	27.	 Cheng, M. et al. Immunosuppressive role of SPP1-CD44 in the tumor microenvironment of intrahepatic cholangiocarcinoma 
assessed by single-cell RNA sequencing. J. Cancer Res. Clin. Oncol. 149, 5497–5512. https://​doi.​org/​10.​1007/​s00432-​022-​04498-w 
(2023).

	28.	 Lee, H.-O. et al. Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer. Nat. Genet. 
52, 594–603. https://​doi.​org/​10.​1038/​s41588-​020-​0636-z (2020).

	29.	 Dong, B., Wu, C., Huang, L. & Qi, Y. Macrophage-related SPP1 as a Potential biomarker for early lymph node metastasis in lung 
adenocarcinoma. Front. Cell Dev. Biol. https://​doi.​org/​10.​3389/​fcell.​2021.​739358 (2021).

	30.	 Feng, S. et al. SPP1 as a key gene in the lymph node metastasis and a potential predictor of poor prognosis in head and neck 
carcinoma. J. Oral Pathol. Med. 51, 620–629. https://​doi.​org/​10.​1111/​jop.​13333 (2022).

	31.	 Kitamura, T., Qian, B. Z. & Pollard, J. W. Immune cell promotion of metastasis. Nat. Rev. Immunol. 15, 73–86. https://​doi.​org/​10.​
1038/​nri37​89 (2015).

	32.	 Ren, B. et al. Tumor microenvironment participates in metastasis of pancreatic cancer. Mol. Cancer 17, 108. https://​doi.​org/​10.​
1186/​s12943-​018-​0858-1 (2018).

	33.	 Ishimoto, T. et al. Activation of transforming growth factor beta 1 signaling in gastric cancer-associated fibroblasts increases their 
motility, via expression of rhomboid 5 homolog 2, and ability to induce invasiveness of gastric cancer cells. Gastroenterology 153, 
191-204 e116. https://​doi.​org/​10.​1053/j.​gastro.​2017.​03.​046 (2017).

	34.	 Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888-1902 e1821. https://​doi.​org/​10.​1016/j.​cell.​2019.​05.​
031 (2019).

	35.	 Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30. https://​doi.​org/​10.​1093/​
nar/​28.1.​27 (2000).

	36.	 Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951. https://​doi.​org/​
10.​1002/​pro.​3715 (2019).

	37.	 Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways 
and genomes. Nucleic Acids Res. 51, D587–D592. https://​doi.​org/​10.​1093/​nar/​gkac9​63 (2023).

	38.	 Liu, Z. et al. Hypoxia molecular characterization in hepatocellular carcinoma identifies one risk signature and two nomograms 
for clinical management. J. Oncol. 2021, 6664386. https://​doi.​org/​10.​1155/​2021/​66643​86 (2021).

Acknowledgements
This research benefited from the TCGA and GEO databases. We would like to thank the data platforms and 
authors for sharing their data.

Author contributions
X.D.J. and X.C.G. conceived and designed the study. L.P.W., L.M.M., Z.N.S., K.X.C. and X.Z.W. collected, ana-
lyzed and interpreted the data. L.P.W. and L.M.M. drafted the manuscript. X.D.J., C.S., L.Z. and X.C.G. reviewed 
and revised the paper. Z.L. and B.Z.W. provided technical and material support.

Funding
This work was supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2020KC021).

https://doi.org/10.3389/fimmu.2022.1006501
https://doi.org/10.1016/j.cell.2021.03.009
https://doi.org/10.1016/j.cell.2021.08.003
https://doi.org/10.1016/j.cell.2021.08.003
https://doi.org/10.1038/s41588-022-01088-x
https://doi.org/10.15252/emmm.202114123
https://doi.org/10.1186/s13059-022-02677-z
https://doi.org/10.1038/s41587-021-01091-3
https://doi.org/10.1158/1078-0432.ccr-22-2041
https://doi.org/10.1038/s41467-022-34467-3
https://doi.org/10.1038/s41467-022-34467-3
https://doi.org/10.1038/s41590-019-0577-9
https://doi.org/10.18632/oncotarget.5325
https://doi.org/10.3390/ijms21155186
https://doi.org/10.3390/ijms21155186
https://doi.org/10.1073/pnas.0812010106
https://doi.org/10.1186/s13046-021-02108-0
https://doi.org/10.1038/s41467-023-40727-7
https://doi.org/10.7150/jca.51253
https://doi.org/10.1053/j.gastro.2021.11.037
https://doi.org/10.1002/jcp.29762
https://doi.org/10.1016/j.ccell.2022.04.011
https://doi.org/10.1007/s00432-022-04498-w
https://doi.org/10.1038/s41588-020-0636-z
https://doi.org/10.3389/fcell.2021.739358
https://doi.org/10.1111/jop.13333
https://doi.org/10.1038/nri3789
https://doi.org/10.1038/nri3789
https://doi.org/10.1186/s12943-018-0858-1
https://doi.org/10.1186/s12943-018-0858-1
https://doi.org/10.1053/j.gastro.2017.03.046
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1002/pro.3715
https://doi.org/10.1002/pro.3715
https://doi.org/10.1093/nar/gkac963
https://doi.org/10.1155/2021/6664386


12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8911  | https://doi.org/10.1038/s41598-024-59656-6

www.nature.com/scientificreports/

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​024-​59656-6.

Correspondence and requests for materials should be addressed to X.G. or X.J.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

https://doi.org/10.1038/s41598-024-59656-6
https://doi.org/10.1038/s41598-024-59656-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Single-cell transcriptome analysis profiling lymphatic invasion-related TME in colorectal cancer
	Results
	Identification of major cell types
	Distinct CD8+ and CD4+ T cell states regulate the pro-invasive immune response
	Myeloid subtyping and contribution to LI
	CAFs exert diverse functions in LI
	Establishment of 3 subcategories in CRC patients using invasive genes
	Development and validation of the LI-related prognostic model

	Discussion
	Materials and methods
	Data source and processing
	scRNA-seq data preprocessing
	DEGs identification and signaling network analysis
	OS analysis
	CRGs consensus clustering analysis
	Cell–cell crosstalk
	Gene set variation analysis (GSVA)
	Development the LI-related prognostic model
	Statistical analysis

	References
	Acknowledgements


