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Classification of mental workload 
using brain connectivity 
and machine learning 
on electroencephalogram data
MohammadReza Safari 1, Reza Shalbaf 1*, Sara Bagherzadeh 2 & Ahmad Shalbaf 3*

Mental workload refers to the cognitive effort required to perform tasks, and it is an important factor 
in various fields, including system design, clinical medicine, and industrial applications. In this paper, 
we propose innovative methods to assess mental workload from EEG data that use effective brain 
connectivity for the purpose of extracting features, a hierarchical feature selection algorithm to select 
the most significant features, and finally machine learning models. We have used the Simultaneous 
Task EEG Workload (STEW) dataset, an open-access collection of raw EEG data from 48 subjects. We 
extracted brain-effective connectivities by the direct directed transfer function and then selected 
the top 30 connectivities for each standard frequency band. Then we applied three feature selection 
algorithms (forward feature selection, Relief-F, and minimum-redundancy-maximum-relevance) 
on the top 150 features from all frequencies. Finally, we applied sevenfold cross-validation on four 
machine learning models (support vector machine (SVM), linear discriminant analysis, random forest, 
and decision tree). The results revealed that SVM as the machine learning model and forward feature 
selection as the feature selection method work better than others and could classify the mental 
workload levels with accuracy equal to 89.53% (± 1.36).

Keywords Mental workload, EEG, Brain connectivity, Feature selection

Mental workload (MWL) is a concept that refers to how hard the brain is working to meet task  demands1. It 
refers to the number of cognitive resources required to perform a task and can be influenced by various fac-
tors such as task complexity, time pressure, and environmental conditions. It is a complicated, person-specific, 
dynamic, and non-linear construct that is  multidimensional2. Some theories have been suggested to define, 
explain, and measure MWL, but a single reliable and valid framework to measure it has not been established yet. 
The MWL can have adverse effects on workability, and identifying and optimizing the factors affecting MWL 
and workability is  crucial3–5. The measurement of MWL is important for both science and human factors. From 
a scientific perspective, quantifying MWL allows researchers to predict operator and system responses, optimize 
human–machine interactions, and determine the sources of error to enhance work performance in various 
industries, including  medicine6. This is crucial for the development of effective strategies to manage MWL and 
improve task performance. From a human perspective, understanding and managing MWL is essential for 
maintaining well-being and preventing the negative effects of excessive mental demands, such as stress, fatigue, 
and performance decrements. Therefore, the measurement of MWL plays a vital role in both scientific research 
and the improvement of human work conditions and  performance2.

There are many methods for measuring MWL, including information processing studies, time-line analysis, 
operator activation level studies, subjective questionnaires, physiological measures, and  modeling7. The abun-
dance of measurement methods for MWL can result in inconsistent results, and there is currently no consensus 
on a specific method suitable for all applications. Despite these challenges, the measurement of MWL remains 
a crucial aspect of scientific research and human factors as it allows researchers to predict operator and system 
responses, optimize human–machine interactions, and determine the sources of error to enhance work perfor-
mance. The subjective measures are the most commonly used method for measuring MWL, as they are low-cost 
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easy to administer, and have a high degree of face validity. A common method is to use a questionnaire asking 
subjects to rate the difficulty of the  task6. There are some well-known indices like the National Aeronautics and 
Space Administration (NASA) Task Load Index (NASA-TLX)8 and Subjective Workload Assessment Technique 
(SWAT)9. However, they are subject to bias and may not accurately reflect the actual  MWL10. Measuring MWL 
through performance measures involves evaluating individuals’ task performance as an indirect indicator of their 
MWL. This approach assesses how well individuals perform a task to infer their cognitive  workload11.

Finally, the psychophysiological measures method assesses MWL by analyzing physiological signals like 
heart rate variability, EEG, and  fNIRS12. Among these, EEG is extensively used due to its quick data acquisi-
tion, convenient usage, real-time assessment, lack of subject bias, portability, high temporal resolution, and 
non-invasiveness13,14. Traditionally, machine learning methods based on EEG have been used to classify MWL 
classes using various algorithms, like support vector machine (SVM)15–23, and linear discriminative analysis 
(LDA)24–27. These methods involve feature extraction, feature selection, and classification of EEG signals to 
measure MWL. Recently,  in28 a framework for assessing MWL is proposed. This framework uses discrete wave-
let transform (DWT) to decompose the EEG signal for extracting the non-stationary features of task-wise EEG 
signals.  Additionally29, aimed to investigate the cognitive workload of fighter pilots during different flight phases 
using physiological signals such as ECG and EEG. The researchers employed classification algorithms, including 
LDA, SVM, and k-nearest Neighbor (KNN), to classify the pilots’ cognitive workload. The results demonstrated 
that LDA and SVM, with an accuracy of 75%, were more consistent classifiers compared to the k-NN classi-
fier, which achieved an accuracy of 60%. Another study aimed to investigate the impact of theta-to-alpha and 
alpha-to-theta band ratios on creating models capable of discriminating self-reported perceptions of MWL. 
The study utilized the STEW dataset and found that models trained with high-level features extracted from the 
alpha-to-theta ratios and theta-to-alpha ratios achieved high classification accuracy. This indicates the richness 
of information in the temporal, spectral, and statistical domains extracted from these EEG band ratios for the 
distinction of self-reported perceptions of  MWL30.

Many studies have used various methods to assess MWL. However, there is still no single robust method 
that can accurately assess the MWL. To tackle this issue, we are exploring a brain connectivity-based approach 
that has shown promising results in various  domains31–33. So, we will use neural activity flow based on the direct 
directed transfer function (dDTF) to explore different regions and networks that distinguish between different 
levels of MWL. Additionally, we will utilize neural activity flow as a feature in machine learning (ML) models 
such as SVM, LDA, Decision Tree (DT), and Random Forest (RF) to classify MWL levels. Finally, we will use 
the feature selection method to select features from all frequency bands and filter out irrelevant or redundant 
variables to improve the accuracy of the model. This approach aims to enhance the understanding of neuronal 
mechanisms underlying MWL. The main novelties and contributions of our study are the use of dDTF as a 
measure of effective neural connectivity for the purpose of extracting features from EEG data and proposing a 
hierarchical feature selection method to select the most significant features, and finally investigating some ML 
models and compare their results.

Material and methods
Participants and EEG recording
We utilized the Simultaneous Task EEG Workload (STEW) dataset, an open-access collection of raw EEG data 
from 48 male subjects who participated in a multitasking workload experiment utilizing the SIMKAP multitask-
ing test. The SIMKAP multitasking assessment involves participants in identifying and marking identical items 
across two panels, all while answering auditory questions that vary in type, such as arithmetic, comparison, 
or data retrieval. Certain auditory tasks may necessitate delayed responses, prompting individuals to monitor 
a clock positioned in the upper right corner. This multitasking segment follows a predetermined sequence of 
 questions34. By focusing solely on male participants, the dataset minimizes variability arising from gender-related 
physiological differences that could impact EEG data collection and analysis. This approach allows for a more 
controlled examination of mental workload patterns and EEG responses, particularly in multitasking scenarios 
like those assessed in the SIMKAP experiment. The experiment consisted of two stages:

1. Information was gathered for 2.5 min when the participants were not engaged in any activity, referred to as 
‘low’ MWL.

2. The participants took the SIMKAP test while their brain activity was monitored, and the last 2.5 min were 
considered the high MWL condition.

The EEG signals were obtained using the Emotiv EPOC EEG headset, featuring a 16-bit A/D resolution, 
and 128 Hz sampling frequency. Also, 14 channels including AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, 
F8, and AF4 based on the 10–20 international system, in addition, CMS and DRL were as reference channels. 
The STEW dataset is valuable for studying multitasking workload and analyzing brain activity during different 
cognitive tasks. Researchers can use this dataset to develop and evaluate algorithms and models for MWL clas-
sification and prediction.

Preprocessing
We implemented the preprocessing pipeline recommended in the database-providing  paper34. The pipeline 
involved:
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1. High-pass filtering of the raw data at 1 Hz to filter out low frequency noise that can come from sources such 
as movement of the head and electrode wires, perspiration on the scalp, or slow drifts in the EEG signal over 
many seconds

2. Removing line noise which is caused by electrical equipment, such as power lines, that emit electromagnetic 
fields that interfere with the EEG signal

3. Performing Artifact Subspace Reconstruction (ASR) to automatically detect and remove unusual noise or 
artifacts from EEG signals

4. Re-reference the data to average to transform the data from a fixed or common reference to an ’average 
reference,’ which is advocated by some researchers, especially when the electrode montage covers nearly the 
whole head

The application of ASR was emphasized due to the presence of large amplitude artifacts in the data. ASR 
is a non-stationary method to remove large-amplitude  artifacts35. The preprocessing was conducted using the 
EEGLAB toolbox in MATLAB software (version 2019a).

Effective connectivity
Effective connectivity refers to the directional or unequal dependencies between distinct brain  regions36. The 
primary technique for assessing effective connectivity is Granger causality (GC), which can be calculated within 
the frequency domain. To accomplish this, it is necessary to estimate the parameters of a Multi-Variable Auto-
Regressive (MVAR) model for each individual signal dataset. Two crucial parameters for estimating the MVAR 
model from EEG signals are the window length and the model order. The window length is determined using the 
Variance-Ratio Test to maintain the stationarity of EEG signals. Subsequently, the estimated model is validated 
based on the whiteness of residuals, consistency percentage, and stability, and is chosen based on the Akaike 
Information Criterion (AIC). For a set of M channels of EEG data with lengths of T, denoted as X = {x_1; x_2;…
;x_T}, the MVAR process of order p is represented as  follows37:

where v represents an (M × 1) vector comprising intercept terms, denoted as v = [v1 . . . vM ]′ , Ak are (M × M) 
matrices of model coefficients, and ut signifies a white noise process characterized by a zero mean and a non-
singular covariance matrix Σ.

Rearranging terms results in:

where Âk = −Ak and Â0 = −I.
After applying the Fourier transform to both sides:

where
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Ŝii
(
f
)
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where H(f) is the transfer matrix of the system at a specific frequency and S(f) is the spectral density matrix. 
We extract five frequency bands for the dDTF measure by averaging the frequency spectrum as follows: delta 
(2–4), theta (4–8), alpha (8–13), beta (13–32), and gamma (32–50). All steps for dDTF measurement are done 
in MATLAB software by the Source Information Flow Toolbox (SIFT) version 0.1a36.

Feature Selection
Feature selection plays a crucial role in the interpretability of machine learning models. By carefully choosing 
which features to include in the model, researchers and practitioners can enhance the understanding of how the 
model makes predictions. In the context of MWL assessment from EEG data, feature selection is essential for 
understanding the relationship between brain regions and MWL assessment. By selecting the most relevant EEG 
features, researchers can better understand the underlying mechanisms of mental workload and provide more 
accurate and interpretable models. The removal of less important features can help enhance the performance of 
classification tasks. In order to distinguish between high-MWL and lo-MWL groups, a series of steps were fol-
lowed. Initially, one-seventh of the data was set aside for testing. Subsequently, the area under the curve (AUC) 
for each neural activity flow in every band was calculated using LDA. The AUC-ROC value was derived from the 
mean values of all cross-validation sets, serving as a valid measure of the model’s performance in a generalized 
setting. Following this, the top 30 connections from each frequency band with the highest AUC were selected 
which made the top 150 features among five frequency bands based on the AUC of each feature, and feature 
selection algorithms were subsequently applied. This process was designed to leverage neural activity flow fea-
tures in each band to differentiate between high-MWL and lo-MWL, with a specific focus on the connections 
exhibiting the highest AUC values. Some popular feature selection algorithms include forward feature selection, 
minimum-redundancy-maximum-relevance (mRMR), and Relief-F which we have used in this paper. Forward 
Feature Selection is a stepwise feature selection method that starts with an empty feature set and iteratively adds 
one feature at a time based on the classifier performance. The process begins by evaluating the individual predic-
tive power of each feature and selecting the best feature. Subsequently, additional features are sequentially added, 
with each subsequent feature chosen to maximize the improvement in model  performance39. mRMR algorithm 
selects features based on their individual and combined predictive power, aiming to build models that capture 
the most important aspects of the data. It focuses on reducing redundancy and increasing relevance, ensuring 
that the selected features are both relevant to the problem and non-redundant to each  other40,41. Relief-F is an 
unsupervised feature selection method that evaluates the importance of features based on their ability to dis-
tinguish between different classes. It measures the decrease in class separation (distance) between the closest 
neighbors of different classes when a feature is removed. The features with the highest decrease in class separation 
are selected as the most relevant  features42,43.

Classification
In this paper, we’ve used four classifiers for data classifications which are SVM, LDA, Decision tree (DT), and 
Random forest (RF). SVM is a supervised machine learning model used for classification and regression tasks. 
It works by finding a hyperplane that separates the data points with the largest margin. SVM is particularly 
useful for handling both linear and nonlinear input spaces and can be more accurate than other algorithms in 
certain  cases44. LDA is an algorithm used for dimensionality reduction and data visualization. It is a probabilistic 
model that aims to find a linear combination of input features that can maximize the separation between differ-
ent classes. LDA is commonly used in various applications, such as sentiment analysis and spam  detection45. A 
decision tree in machine learning is a supervised learning algorithm that creates models for classification and 
regression tasks. It uses a tree-like structure where each internal node represents a decision based on an attrib-
ute, leading to leaf nodes that represent outcomes. Decision trees are interpretable and widely used due to their 
simplicity and effectiveness in predicting values based on input  features46. RF is an ensemble learning method 
used for both classification and regression tasks. It works by constructing multiple decision trees and combin-
ing their predictions to improve overall accuracy. RF is known for its simplicity, scalability, and performance in 
various  applications47.

Statistical analysis
In our research, we have utilized k-fold cross-validation, a statistical method commonly used in machine learn-
ing to estimate the skill of a model. A cross-validation procedure is used to assess the effectiveness of machine 
learning models, and it can also be used to evaluate a model if there is insufficient data. For cross-validation to 
be performed, a portion of the training data must be set aside for evaluation later. We partitioned the data into k 
equally sized segments and then performed k iterations of training and validation. During each iteration, one of 
the k segments was held out as the test set, while the model was trained on the remaining data. This process was 
repeated for each segment, and the performance of the model was evaluated and averaged over the k iterations. 
After conducting a trial-and-error analysis, it was determined that 7 is the optimal value for k. Further analysis 
was based on the results of the sevenfold cross-validation. The flowchart of the proposed method is provided in 
Fig. 1. In addition, we applied AUC to selecting the most important connections. The AUC measure, commonly 
used in evaluating the performance of binary classification models, does not rely on specific assumptions about 
the underlying data distribution. Instead, it assesses the ability of a classifier to distinguish between positive and 
negative instances across all possible decision thresholds. However, while AUC itself does not make assumptions 
about the data, its interpretation can be influenced by certain factors related to the classification problem and the 
data being analyzed. AUC assumes that the observations used to evaluate the classifier are independent of each 
other. Violations of this assumption, such as autocorrelation or clustering of observations, can potentially bias 
the AUC estimate. In addition, AUC is designed for binary classification tasks where there are two distinct classes 
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(which in our case is low-MWL and high-MWL). It may not be directly applicable to multi-class classification 
problems without appropriate modifications.

Results
The EEG data from each subject’s 14 channels were pre-processed using the EEGLAB toolbox in MATLAB 
software (version 2019a). A sample of data before and after the preprocessing pipeline is provided in Fig. 2. Sub-
sequently, we computed the effective connectivity across all EEG data utilizing dDTF. The dDTF connectivities 
were derived from sequential 6-s segments of data from 14 channels for each subject across 5 frequency bands. 
Specifically, a 6-s window was slid along the EEG signals with a step size of 4 s. Figure 3 shows some samples 
of the dDTF image extracted from ‘high’ and ‘low’ MWL related to subject 16 for each frequency band. Hori-
zontal axes and vertical axes represent channels. Considering 150 s of EEG signals, 6-s as window size, and 4-s 
as window step, we achieved 37 dDTF matrices per EEG data. Subsequently, the AUC values for each directed 
connection were computed based on their respective dDTF values. These AUC values are then independently 
ranked, and the top 30 connections are identified according to their AUC values (Table 1, Fig. 4). In addition, 
Table 3 provides the number of connections within each region. Based on this table, the frontal lobe has the 
highest number of neural connections. The classification results and computational efficiency of four machine 
learning models (SVM, LDA, RF, and DT) for each frequency band and a combination of the top 30 AUC-based 
features from all bands (top 150) are shown in Table 4. The SVM and DT models demonstrated the best and 
weakest performance respectively, as indicated in Table 4. In addition, the top 150 features have the highest 
accuracy, specificity, sensitivity, and F1-measure in all models. Based on the information provided in Table 4, 
the RF model was the most time-consuming of the four investigated models, while the LDA model was the least 
time-consuming. We applied a hierarchical feature selection in this paper. So, after selecting 150 top features 
based on AUC, we used three different feature selection algorithms in parallel including Relief-F, forward feature 
selection, and mRMR. According to Table 5, the forward feature selection’s results were better than others and 
the SVM model could achieve 89.53% accuracy on 41 features that were selected based on the forward feature 
selection algorithm. The 41 selected features based on the forward feature selection are provided in Table 6.

Figure 1.  The flowchart of the proposed method. In this method firstly we preprocessed the raw EEG data, 
then calculated the effective connectivity with the dDTF index in 5 frequency bands. In the next step, the top 
30 features based on AUC in each frequency band were calculated and then we applied three feature selection 
algorithms on them. Finally, we classified the final selected features from each feature selection algorithm.
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Discussion
In this study, we investigated a new method for the classification of low MWL and high MWL from 14-channel 
EEG data in 48 participants. In the proposed model we extracted features from EEG signals by the brain’s effec-
tive connectivity. In this state, we had 37 matrices with dimensions of 14*14 for each EEG data. For the purpose 
of extracting the most significant connectivities at the first step, we calculated AUC for all connectivities and 
selected the top 30 connectivities with high AUC scores which provided 150 features in 5 frequency bands. 
According to Tables 2 and 3, the most significant connectivities in order to differ between high MWL and low 
MWL classes are from the frontal lobe. This result is in line with the findings of previous  studies48–50, who also 
reported similar outcomes. Table 4 provides a comparison between all features in each frequency band and the 
top 150 selected features. It revealed that the best accuracy achieved from the top 150 selected features on SVM 
is equal to 88.96%. At the next step of the feature selection, we applied three feature selection methods on the top 
150 features which were forward feature selection, Relief-F, and mRMR. Finally, we used four machine learning 
algorithms, SVM, LDA, DT, and RF in sevenfold cross-validation to classify the data. Using cross-validation in 
our research provided a more accurate estimate of out-of-sample accuracy, prevented overfitting, and allowed 
for more efficient use of data. After the next layer of feature selection, the number of selected features decreased 
and Table 5 provides a comparison between the accuracy of each algorithm’s results which indicates that the 
forward feature selection algorithm was most successful among all three feature selection algorithms. Forward 
feature selection selected the 41 most significant features that are provided in Table 6 and these selected features 
could achieve an accuracy of 89.53% in SVM which was even better than the accuracy of the top 150 selected 
features based on AUC.

The proposed framework to classify MWL from EEG data could achieve high accuracy and be in the top range 
of accuracy between other studies that used machine learning methods to classify MWL into two classes (Table 7). 
By leveraging brain effective connectivity analysis through dDTF and employing hierarchical feature selection 
alongside various machine learning models, also with finding and visualizing most important regions in brain 
for MWL assessment by calculating the brain connectivities, the research significantly has advanced the field of 
MWL assessment. This approach not only refines the precision of MWL assessment but also contributes to the 

Figure 2.  EEG signal before and after preprocessing. The top panel shows the raw EEG signal, while the bottom 
panel shows the same signal after preprocessing. The preprocessing steps applied to the signal are described in 
the Methods section.
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Figure 3.  The effective brain connectivity matrices calculated by dDTF for subject-16 in delta, theta, alpha, 
beta, and gamma bands.
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development of more robust and interpretable models for MWL assessment. In this research, we had some limi-
tations, especially in the dataset. We used the STEW dataset which is a well-known dataset in this field, but this 
dataset has some constraints such as the low number of participants and gender limitations because the dataset 
has only male participants and these may affect the generalizability of the findings to the broader population. In 
addition, the current study used just four machine learning algorithms, but future researchers in this field can 
try to apply more machine learning algorithms or even deep learning models. Future studies could benefit from 
expanding the dataset to include a more diverse and representative sample, encompassing participants of dif-
ferent genders and demographics. This would improve the robustness and applicability of the research findings. 
In addition, researchers can explore a wider range of machine learning algorithms beyond the four used in the 
current study. Incorporating more algorithms, including advanced deep learning models, can provide a more 
comprehensive analysis and potentially uncover additional insights from the data.

Conclusion
In this paper, we proposed a framework for classifying MWL into two classes. To reach this purpose, we used 
effective brain connectivity as the feature extraction technique and applied four machine learning algorithms 
including SVM, LDA, RF, and DT. In addition, we investigated a hierarchical feature selection method. In the first 
step, we extracted the top 30 features based on AUC in each frequency band and then applied three feature selec-
tion algorithms which were forward feature selection, Relief-F, and mRMR. The results of this study suggest that 
machine learning algorithms especially SVM and the proposed framework for feature extraction and hierarchical 
feature selection can classify MWL levels from EEG data with high accuracy (89.53%). In future investigations, 
deep learning models can be utilized to construct a robust framework for evaluating MWL through the use of 
effective brain connectivity images.

Table 1.  Based on the AUC values of high-MWL and low-MWL groups, the 30 most significant neural 
activity flows in the delta, theta, alpha, beta, and gamma bands are as follows.

Delta Theta Alpha Beta Gamma

Connection AUC Connection AUC Connection AUC Connection AUC Connection AUC 

F7⇒F8 0.756 F7⇒F8 0.728 FC5⇒O2 0.675 P8⇒F8 0.670 O2⇒F8 0.688

FC5⇒F8 0.717 O2⇒F8 0.716 FC6⇒O1 0.663 AF4⇒F8 0.666 P8⇒F8 0.670

O2⇒F8 0.713 AF3⇒F8 0.697 FC6⇒O2 0.663 O2⇒F8 0.666 O2⇒FC6 0.669

O2⇒FC6 0.695 P8⇒F8 0.691 F7⇒F8 0.658 T8⇒P8 0.662 O1⇒FC6 0.661

F7⇒FC6 0.695 O2⇒FC6 0.690 FC6⇒P8 0.654 T8⇒O2 0.655 O2⇒F7 0.660

F8⇒F7 0.692 O1⇒F8 0.688 T8⇒O2 0.652 O2⇒FC6 0.654 O1⇒F8 0.658

AF3⇒FC6 0.687 AF4⇒F8 0.677 T8⇒P8 0.647 AF3⇒F8 0.652 T8⇒P8 0.657

O1⇒FC6 0.686 F8⇒F7 0.675 FC5⇒P8 0.645 F7⇒F8 0.643 P8⇒FC6 0.652

AF3⇒F8 0.684 AF3⇒FC6 0.672 T7⇒O2 0.642 F3⇒F8 0.643 FC6⇒P8 0.648

P8⇒F8 0.679 FC5⇒F8 0.664 AF3⇒F8 0.639 FC6⇒O2 0.642 O2⇒FC5 0.642

T7⇒F8 0.679 O2⇒F7 0.662 O1⇒O2 0.635 T7⇒O2 0.640 P8⇒F7 0.642

FC6⇒F8 0.677 P8⇒FC6 0.659 F4⇒P8 0.635 P7⇒F8 0.638 P7⇒FC6 0.641

O1⇒F8 0.674 F3⇒F8 0.657 FC6⇒P7 0.633 O1⇒FC6 0.638 AF4⇒F8 0.638

FC6⇒F7 0.673 P7⇒F8 0.656 F7⇒O2 0.633 O1⇒F8 0.636 P7⇒F8 0.637

T8⇒F8 0.669 T7⇒F8 0.654 T8⇒O1 0.633 P8⇒F7 0.636 O1⇒F7 0.636

P8⇒FC6 0.663 O1⇒FC6 0.653 O1⇒P8 0.631 FC6⇒P8 0.636 P8⇒FC5 0.634

P7⇒F8 0.662 AF4⇒FC6 0.651 P7⇒O2 0.630 P8⇒FC6 0.636 F7⇒P8 0.633

AF4⇒FC6 0.661 AF3⇒F7 0.649 AF4⇒F8 0.628 T7⇒P8 0.632 T8⇒O2 0.628

F3⇒F8 0.660 T8⇒F8 0.646 F4⇒O2 0.626 O2⇒F7 0.632 O1⇒FC5 0.627

AF4⇒F8 0.655 F7⇒FC6 0.644 FC5⇒O1 0.624 F3⇒F7 0.630 F7⇒O2 0.626

T8⇒F7 0.653 AF4⇒F7 0.643 F3⇒P8 0.623 AF3⇒F7 0.626 AF4⇒FC6 0.624

P7⇒FC6 0.653 O1⇒F7 0.643 F8⇒O1 0.623 FC6⇒O1 0.626 FC6⇒O2 0.624

O2⇒F7 0.652 O2⇒FC5 0.642 O2⇒P8 0.622 P7⇒FC6 0.624 F3⇒F8 0.623

F4⇒F8 0.651 P8⇒F7 0.640 F4⇒O1 0.621 O1⇒F7 0.622 F3⇒FC6 0.618

O1⇒F7 0.650 F4⇒F8 0.640 P7⇒O1 0.620 FC5⇒O2 0.621 F8⇒P8 0.618

F3⇒FC6 0.647 F3⇒F7 0.637 F3⇒O2 0.620 FC5⇒P8 0.621 P7⇒F7 0.614

T7⇒FC6 0.646 P7⇒F7 0.633 F8⇒O2 0.619 F3⇒FC6 0.620 AF4⇒F7 0.611

F3⇒F7 0.644 FC6⇒F8 0.626 O1⇒O1 0.619 P7⇒F7 0.620 FC6⇒O1 0.609

T8⇒FC6 0.642 T8⇒F7 0.625 T7⇒O1 0.617 AF3⇒FC6 0.619 FC6⇒F4 0.609

P8⇒F7 0.639 P7⇒FC6 0.621 F8⇒F7 0.616 O2⇒FC5 0.616 FC6⇒AF4 0.609
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Figure 4.  Based on the AUC values, the top 30 neural activity patterns that demonstrate differences in 
propagation between the high MWL and low MWL groups are depicted. In this illustration, nodes represent 
electrodes in the 10–20 system, the edges indicate connection between channels, and the edges’ color represent 
the AUC values.
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Table 2.  An overview of electrodes across all frequency bands is presented. On the left, the electrode names 
and the number of originating connections are listed, while on the right, the electrode names and the number 
of connections to which the connections end are provided.

Channels name Number of connections from Channels name Number of connections to

O1 16 F8 43

O2 16 FC6 29

FC6 15 F7 28

P7 13 O2 17

P8 13 P8 15

F3 12 O1 10

T8 12 FC5 5

AF4 10 AF4 1

AF3 9 F4 1

F7 9 P7 1

FC5 7

T7 7

F8 6

F4 5

Table 3.  A comprehensive overview of the connections across different frequency bands in the different 
regions of the brain. The table presents the number of connections within each region, including the central, 
frontal, occipital, parietal, and temporal lobes among five brain frequency bands (Delta, Theta, Alpha, Beta, 
and Gamma). The ’From’ columns indicate the number of connections originating from a specific region, while 
the ’To’ column shows the number of connections ending in the specified region. For instance, there are 19 
connections from the frontal lobe in the alpha frequency band, and in total from all five frequency bands there 
are 73 connections that originated from the frontal lobe. The highest number of connections among all lobes 
and frequency bands in each group (“From” and “To”) are bold. Values of significant regions are in [italic].

Region From To

Frontal (AF3, F7, F3, FC5, FC6, F4, F8, AF4)
Delta Theta Alpha Beta Gamma Sum Delta Theta Alpha Beta Gamma Sum

14 14 19 13 13 73 30 30 4 21 22 107

Occipital (O1, O2)
Delta Theta Alpha Beta Gamma Sum Delta Theta Alpha Beta Gamma Sum

6 7 4 7 8 32 0 0 18 5 4 27

Parietal (P7, P8)
Delta Theta Alpha Beta Gamma Sum Delta Theta Alpha Beta Gamma Sum

5 6 2 6 7 26 0 0 8 4 4 16

Temporal (T7, T8)
Delta Theta Alpha Beta Gamma Sum Delta Theta Alpha Beta Gamma Sum

5 3 5 4 2 19 0 0 0 0 0 0
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Table 4.  A comparison of SVM, LDA, RF, and DT classification results in the delta, theta, alpha, beta, gamma, 
top150, and top30 bands. Significant values are in bold.

Band Model Accuracy Precision Recall F1-Measure Time consumed (second)

delta

SVM 75.51% (± 2.95) 74.19% (± 3.04) 78.26% (± 5.26) 76.09% (± 3.37) 4.43

LDA 72.64% (± 3.59) 74.29% (± 3.73) 69.12% (± 5.45) 71.56% (± 4.38) 0.01

RF 75.00% (± 2.02) 74.09% (± 1.50) 76.75% (± 4.35) 75.36% (± 2.76) 5.11

DT 67.45% (± 2.09) 68.64% (± 3.14) 64.61% (± 2.99) 66.48% (± 2.03) 0.05

theta

SVM 76.18% (± 2.76) 77.21% (± 3.19) 74.28% (± 3.96) 75.68% (± 3.17) 4.26

LDA 71.29% (± 2.95) 74.04% (± 3.43) 65.37% (± 5.06) 69.38% (± 4.08) 0.03

RF 73.76% (± 1.47) 73.07% (± 1.92) 75.33% (± 2.51) 74.15% (± 1.58) 6.38

DT 65.43% (± 3.15) 66.64% (± 3.13) 62.10% (± 2.73) 64.26% (± 2.67) 0.06

alpha

SVM 80.80% (± 1.46) 81.95% (± 2.21) 79.04% (± 2.74) 80.43% (± 1.74) 4.28

LDA 76.35% (± 2.27) 74.76% (± 2.55) 79.64% (± 2.92) 77.09% (± 2.25) 0.01

RF 81.36% (± 2.03) 82.91% (± 2.96) 79.01% (± 2.37) 80.89% (± 2.26) 5.03

DT 72.86% (± 2.12) 73.04% (± 2.60) 72.64% (± 2.81) 72.79% (± 1.93) 0.06

beta

SVM 82.49% (± 2.21) 82.97% (± 3.64) 81.88% (± 3.85) 82.33% (± 2.54) 4.35

LDA 78.04% (± 1.02) 78.28% (± 1.53) 77.73% (± 3.47) 77.94% (± 1.36) 0.02

RF 81.65% (± 1.66) 82.04% (± 2.45) 81.07% (± 1.57) 81.54% (± 1.67) 5.61

DT 70.38% (± 2.44) 71.34% (± 3.77) 68.37% (± 4.13) 69.72% (± 2.91) 0.06

gamma

SVM 79.56% (± 1.95) 79.90% (± 3.31) 79.29% (± 1.05) 79.54% (± 1.34) 4.23

LDA 76.58% (± 2.09) 77.78% (± 3.07) 74.68% (± 2.34) 76.14% (± 1.66) 0.01

RF 79.73% (± 1.71) 79.59% (± 1.81) 80.11% (± 3.26) 79.80% (± 1.61) 5.32

DT 68.63% (± 2.01) 69.14% (± 2.76) 67.44% (± 1.80) 68.25% (± 1.92) 0.06

top150

SVM 88.96% (± 1.03) 89.10% (± 2.42) 88.85% (± 1.64) 88.94% (± 1.11) 3.91

LDA 81.87% (± 1.75) 82.12% (± 1.79) 81.55% (± 3.32) 81.79% (± 1.88) 0.01

RF 85.81% (± 1.20) 85.84% (± 1.65) 85.81% (± 2.68) 85.79% (± 1.34) 4.85

DT 75.51% (± 1.48) 76.44% (± 2.55) 74.04% (± 3.42) 75.12% (± 1.40) 0.06

top30

SVM 79.34% (± 1.98) 78.02% (± 2.08) 81.81% (± 4.22) 79.79% (± 2.22) 3.71

LDA 77.14% (± 2.90) 77.66% (± 2.95) 74.18% (± 4.36) 76.87% (± 3.29) 0.01

RF 80.24% (± 2.61) 79.18% (± 2.30) 82.08% (± 3.28) 80.58% (± 2.57) 4.65

DT 72.46% (± 3.10) 73.17% (± 3.27) 71.09% (± 5.69) 71.99% (± 3.60) 0.06

Table 5.  A comparison of SVM, LDA, RF, and DT classification results in the delta, theta, alpha, beta, and 
gamma bands using mRMR, Relief-F and forward feature selection using features from all frequency bands. 
Significant values are in [bold].

Feature Selection Method Model Accuracy Precision Recall F1-Measure

Forward Feature Selection

SVM 89.53% (± 1.36) 89.49% (± 2.13) 89.65% (± 2.42) 89.54% (± 1.36)

LDA 83.22% (± 1.40) 83.37% (± 2.05) 83.09% (± 4.26) 83.14% (± 1.84)

RF 87.50% (± 0.94) 87.93% (± 1.52) 86.93% (± 2.05) 87.41% (± 1.15)

DT 79.84% (± 2.01) 80.08% (± 2.66) 79.51% (± 2.16) 79.77% (± 1.97)

mRMR

SVM 88.96% (± 0.96) 89.09% (± 2.26) 88.85% (± 1.82) 88.94% (± 1.04)

LDA 82.09% (± 1.87) 82.53% (± 1.63) 81.42% (± 3.32) 81.94% (± 2.05)

RF 86.59% (± 1.53) 87.07% (± 2.25) 86.03% (± 3.29) 86.49% (± 1.73)

DT 75.84% (± 1.37) 76.93% (± 1.75) 73.99% (± 2.24) 75.39% (± 0.97)

Relief-F

SVM 88.96% (± 1.03) 89.10% (± 2.42) 88.85% (± 1.63) 88.94% (± 1.10)

LDA 82.03% (± 1.64) 82.71% (± 1.68) 81.11% (± 3.61) 81.84% (± 1.77)

RF 86.37% (± 1.67) 86.24% (± 2.48) 86.59% (± 2.57) 86.38% (± 1.81)

DT 76.18% (± 0.92) 77.25% (± 1.98) 74.33% (± 1.72) 75.72% (± 0.77)
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Table 6.  Top 41 features selected among top-150 features based on forward feature selection and SVM model.

Feature Number Feature (from⇒to) Frequency Band ACC updated by adding this feature to previous AUC 

1 F7⇒F8 delta 0.686 0.756

2 FC6⇒P8 alpha 0.751 0.654

3 F8⇒F7 theta 0.773 0.675

4 FC6⇒P8 gamma 0.791 0.648

5 FC5⇒O2 alpha 0.801 0.675

6 AF3⇒FC6 theta 0.815 0.672

7 T7⇒O2 beta 0.827 0.640

8 O2⇒FC5 theta 0.837 0.642

9 O1⇒F7 gamma 0.845 0.636

10 FC5⇒P8 beta 0.850 0.621

11 O1⇒P8 alpha 0.855 0.631

12 F3⇒F8 beta 0.862 0.643

13 F7⇒F8 beta 0.865 0.643

14 P7⇒F8 gamma 0.868 0.637

15 P7⇒F7 gamma 0.869 0.614

16 FC6⇒O2 gamma 0.874 0.624

17 F3⇒FC6 delta 0.877 0.647

18 O2⇒F7 beta 0.880 0.632

19 FC6⇒O2 beta 0.881 0.642

20 AF3⇒FC6 delta 0.882 0.687

21 F3⇒F8 gamma 0.883 0.623

22 F8⇒O2 alpha 0.883 0.619

23 AF4⇒FC6 theta 0.884 0.651

24 FC6⇒O1 gamma 0.885 0.609

25 FC6⇒F7 delta 0.886 0.673

26 AF3⇒FC6 beta 0.887 0.619

27 O1⇒F7 delta 0.887 0.650

28 T7⇒O1 alpha 0.888 0.617

29 P7⇒F8 theta 0.888 0.656

30 O2⇒F8 gamma 0.888 0.688

31 P8⇒FC6 delta 0.889 0.653

32 T7⇒O2 alpha 0.889 0.642

33 F7⇒FC6 theta 0.890 0.644

34 F4⇒F8 theta 0.891 0.640

35 T8⇒F8 delta 0.891 0.669

36 F3⇒F8 theta 0.892 0.657

37 AF3⇒F7 theta 0.893 0.649

38 O1⇒F8 beta 0.894 0.636

39 F3⇒F8 delta 0.894 0.660

40 P8⇒F7 delta 0.894 0.692

41 O2⇒FC6 delta 0.895 0.695
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Data availability
The data used in this study is the Simultaneous Task EEG Workload (STEW) dataset, an open-access collection 
of raw EEG data from 48 male subjects who participated in a multitasking workload experiment utilizing the 
SIMKAP multitasking  test34. The raw dataset is available for download via: https:// ieee- datap ort. org/ open- access/ 
stew- simul taneo us- task- eeg- workl oad- datas et. The data are available to qualified investigators for purposes of 
scientific research.
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